

GuardLogix 5570 Controllers

Catalog Numbers 1756-L71S, 1756-L72S, 1756-L73S, 1756-L7SP, 1756-L73SXT, 1756-L7SPXT, 1756-L72EROMS, 1756-L73EROMS

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT

Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

	Preface	9
	Summary of Changes	
	About GuardLogix Controllers	
	Extreme Environment Controllers	
	Armor GuardLogix Controllers	
	Terminology	
	Additional Resources	11
	Chapter 1	
System Overview	Safety Application Requirements	13
•	Safety Network Number	
	Safety Task Signature	
	Distinguish between Standard and Safety Components	
	HMI Devices	
	Controller Data-flow Capabilities	
	Select System Hardware	
	Primary Controller	
	Safety Partner	
	Chassis	
	Power Supply	
	Select Safety I/O Device	
	Select Communication Networks	
	Programming Requirements	
	Chapter 2	
Install the Controller	Precautions	21
	European Hazardous Location Approval	
	Make Sure That You Have All of the Components	
	Install a Chassis and Power Supply	
	Install the Controller Into the Chassis	
	Insert or Remove a Memory Card	
	Remove the SD Card	
	Install the SD Card	
	Make Communication Connections	
	Update the Controller	
	Using ControlFLASH Software to Update Firmware	
	Using AutoFlash to Update Firmware	
	Choose the Operating Mode of the Controller	
	Use the Key Switch to Change the Operation Mode	
	Use the Logix Designer Application to Change the	11
	Operation Mode	41
	Uninstall an Energy Storage Module (ESM)	
	Install an Energy Storage Module (ESM)	
	0/ 0	

	Chapter 3	
Configure the Controller	Create a Controller Project	47
	Electronic Keying	50
	Set Passwords for Safety-locking and -unlocking	51
	Protect the Safety Task Signature in Run Mode	52
	Handling I/O Device Replacement	53
	Enable Time Synchronization	54
	Configure a Peer Safety Controller	55
	Chapter 4	
Communicate over Networks	The Safety Network	
	Manage the Safety Network Number (SNN)	57
	Assign the Safety Network Number (SNN)	59
	Change the Safety Network Number (SNN)	60
	EtherNet/IP Communication	65
	Producing and Consuming Data via an	
	EtherNet/IP Network	66
	Connections over the EtherNet/IP Network	66
	EtherNet/IP Communication Examples	67
	EtherNet/IP Connections for Safety I/O Devices	69
	Standard EtherNet/IP Connections	69
	ControlNet Communication	70
	Producing and Consuming Data via a ControlNet Network .	71
	Connections over the ControlNet Network	71
	ControlNet Communication Example	72
	ControlNet Connections for Distributed I/O	72
	DeviceNet Communication	73
	DeviceNet Connections for Safety I/O Devices	73
	Standard DeviceNet Connections	74
	Chapter 5	
Add, Configure, Monitor, and	Add Safety I/O Devices	75
Replace CIP Safety I/O Devices	Configure Safety I/O Devices	
maphaga an banas, 4 o banas	Set the IP Address by Using Network Address Translation	
	(NAT)	78
	Set the Safety Network Number (SNN)	79
	Use Unicast Connections on EtherNet/IP Networks	79
	Set the Connection Reaction Time Limit	79
	Specify the Requested Packet Interval (RPI)	80
	View the Maximum Observed Network Delay	
	Set the Advanced Connection Reaction Time Limit	
	Parameters	82
	Understanding the Configuration Signature	85
	Configuration via the Logix Designer Application	
	Different Configuration Owner (listen-only connection)	
	Reset Safety I/O Device Ownership	

	Address Safety I/O Data	86
	Safety I/O Modules Address Format	86
	Kinetix 5500, Kinetix 5700, and PowerFlex 527 Drive	
	Address Format	87
	Monitor Safety I/O Device Status	88
	Reset a Module to Out-of-box Condition	89
	Replace a Device by Using the Logix Designer Application	90
	Replacement with 'Configure Only When No Safety	
	Signature Exists' Enabled	91
	Replacement with 'Configure Always' Enabled	96
	Replace a POINT Guard I/O Module by Using RSNetWorx	
	for DeviceNet Software	97
	Chapter 6	
Develop Safety Applications	The Safety Task	102
bevelop surety Applications	Safety Task Period Specification	
	Safety Task Execution	
	Safety Programs	
	Safety Routines	
	Safety Tags	
	Tag Type	
	Data Type	
	Scope	
	Class	
	Constant Value.	
	External Access.	
	Produced/Consumed Safety Tags	
	Configure the Peer Safety Controllers' Safety	
	Network Numbers	. 109
	Produce a Safety Tag	. 112
	Consume Safety Tag Data	
	Safety Tag Mapping	
	Restrictions	
	Create Tag Mapping Pairs	
	Monitor Tag Mapping Status	
	Safety Application Protection	
	Safety-lock the Controller	
	Generate a Safety Task Signature	
	Programming Restrictions	. 122

	Chapter 7	
Go Online with the Controller	Connect the Controller to the Network	
	or DeviceNet Scanner and Your Computer Configure an EtherNet/IP, ControlNet, or	
	DeviceNet Driver	
	Understanding the Factors that Affect Going Online	
	Project to Controller Matching	
	Firmware Revision Matching	
	Safety Status/Faults	127
	Safety Task Signature and Safety-locked	
	and -unlocked Status	
	Download	
	Upload	
	Go Online	132
	Chapter 8	
Store and Load Projects Using	Use Memory Cards for Nonvolatile Memory	135
Nonvolatile Memory	Store a Safety Project	136
,	Load a Safety Project	137
	Use Energy Storage Modules	138
	Save the Program to On-board NVS Memory	138
	Clear the Program from On-board NVS Memory	139
	Estimate the ESM Support of the WallClockTime	
	Manage Firmware with Firmware Supervisor	
	Chapter 9	
Monitor Status and Handle Faults	View Status via the Online Bar	141
	Monitor the Connections.	
	All Connections	
	Safety Connections	
	Monitor the Status Flags	
	Monitor the Safety Status	
	Controller Faults.	
	Nonrecoverable Controller Faults.	
	Nonrecoverable Safety Faults in the Safety Application	
	Recoverable Faults in the Safety Application	
	View Faults	
	Fault Codes	
	Developing a Fault Routine	
	Program Fault Routine	
	Controller Fault Handler	
	Use GSV/SSV Instructions	

	Appendix A	
Status Indicators	Controllers Status Indicators	151
	Controller Status Display	152
	Safety Status Messages	152
	General Status Messages	153
	Fault Messages	154
	Major Recoverable Fault Messages	155
	I/O Fault Codes	
	Appendix B	
Change Controller Type	Change from a Standard to a Safety Controller	159
,,	Change from a Safety to a Standard Controller	
	Change Safety Controller Types	
	Index	163

Торіс	Page
Summary of Changes	9
About GuardLogix Controllers	10
Terminology	11
Additional Resources	11

This manual is a guide for when a GuardLogix* 5570 controller is used in a Studio 5000 Logix Designer* application. It describes the GuardLogix-specific procedures that you use to configure, operate, and troubleshoot your controller.

Use this manual if you are responsible for the design, installation, programming, or troubleshooting of control systems with GuardLogix 5570 controllers.

You must have a basic understanding of electrical circuitry and familiarity with relay logic. You must also be trained and experienced in the creation, operation, and maintenance of safety systems.

For detailed information on related topics for GuardLogix controller, Safety Integrity Level (SIL) 3 and Performance Level (e) (SIL 3/PLe) requirements, or information on standard Logix components, see the list of <u>Additional Resources on page 11</u>.

Summary of Changes

We added the 1756-L72EROMS and 1756-L73EROMS Armor™ GuardLogix controllers to this user manual.

About GuardLogix Controllers

Two lines of 1756 GuardLogix controllers are available. These controllers share many features but also have some differences. <u>Table 1</u> provides a brief overview of those differences.

Table 1 - Differences between GuardLogix 5570 and GuardLogix 5560 Controllers

Feature	GuardLogix 5570 Controllers (1756-L71S, 1756-L72S, 1756-L72EROMS, 1756-L73S, 1756-L73EROMS, 1756-L7SP, 1756-L73SXT, 1756-L7SPXT)	GuardLogix 5560 Controllers (1756-L61S, 1756-L62S, 1756-L63S, 1756-LSP)
Clock support and backup that is used for memory retention at powerdown	Energy storage module (ESM)	Battery
Communication ports (built-in)	USB	Serial
Connections, controller	500	250
Memory, nonvolatile	Secure Digital (SD) card	CompactFlash (CF) card
Status indicators	Scrolling status display and status indicators	Status indicators
Programming tool	Studio 5000® environment, version 21 or later RSLogix 5000 software, version 20 or later	RSLogix 5000® software, version 14 RSLogix 5000 software, version 16 or later
User manual	Studio 5000 environment: this manual RSLogix 5000 software: 1756-UM020	<u>1756-UM020</u>
Safety reference manual	Studio 5000 environment: <u>1756-RM099</u> RSLogix 5000 software: <u>1756-RM093</u>	1756-RM093

Extreme Environment Controllers

The extreme environment GuardLogix controller, catalog numbers 1756-L73SXT and 1756-L7SPXT, provide the same functionality as the 1756-L73S controller, but is designed to withstand temperatures of -25...+70 °C (13...+158 °F).

IMPORTANT	Logix-XT system components are rated for extreme environmental conditions only when used properly with other Logix-XT system
	components. The use of Logix-XT components with traditional Logix system components nullifies extreme-environment ratings.

Armor GuardLogix Controllers

The Armor™ GuardLogix controllers (catalog numbers 1756-L72EROMS and 1756-L73EROMS) combine a 1756-L72S or 1756-L73S GuardLogix controller and safety partner with two EtherNet/IP™, DLR-capable communication channels in an IP67-rated housing for mounting on a machine. For more information on the Armor GuardLogix controller, refer to the Armor GuardLogix Controller Installation Instructions, publication 1756-IN060.

Though the 1756-L72EROMS and 1756-L73EROMS controllers have functionality identical to that of the 1756-L72S and 1756-L73S controllers,

the Armor controller energy storage modules (ESM) cannot be removed or replaced.

Terminology

This table defines terms that are used in this manual.

Table 2 - Terms and Definitions

Abbreviation	Full Term	Definition
1002	One Out of Two	Refers to the behavioral design of a multi-processor safety system.
CIP™	Common Industrial Protocol	A communication protocol that is designed for industrial automation applications.
CIP Safety [™]	Common Industrial Protocol — Safety Certified	SIL 3/PLe-rated version of CIP.
DC	Diagnostic Coverage	The ratio of the detected failure rate to the total failure rate.
EN	European Norm	The official European standard.
ESM	Energy Storage Module	Used for clock support and backup for memory retention at powerdown on GuardLogix 5570 controllers.
GSV	Get System Value	An instruction that retrieves specified controller-status information and places it in a destination tag.
_	Multicast	The transmission of information from one sender to multiple receivers.
NAT	Network Address Translation	The translation of an Internet Protocol (IP) address to another IP address on another network.
PFD	Probability of Failure on Demand	The average probability of a system to fail to perform its design function on demand.
PFH	Probability of Failure per Hour	The probability of a system to have a dangerous failure occur per hour.
PL	Performance Level	ISO 13849-1 safety rating.
RPI	Requested Packet Interval	The expected rate in time for production of data when communicating over a network.
SNN	Safety Network Number	A unique number that identifies a section of a safety network.
SSV	Set System Value	An instruction that sets controller system data.
_	Standard	An object, task, tag, program, or component in your project that is not a safety-related item.
_	Unicast	The transmission of information from one sender to one receiver.

Additional Resources

These documents contain more information about related products from Rockwell Automation. You can view or download publications at

Table 3 - Publications Related to GuardLogix Controllers and Systems

Resource		Description	
Safety application	GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication <u>1756-RM099</u>	Contains detailed requirements for achieving and maintaining SIL 3/PLe with the GuardLogix 5570 controller system, using the Studio 5000 Logix Designer application.	
requirements	GuardLogix Controller Systems Safety Reference Manual, publication 1756-RM093	Contains detailed requirements for achieving and maintaining SIL 3/PLe with the GuardLogix 5560 or 5570 controller system, using RSLogix 5000 software.	
CIP Sync [™] (time synchronization)	Integrated Architecture® and CIP Sync Configuration Application Technique, publication IA-AT003	Provides detailed and comprehensive information about how to apply CIP Sync technology to synchronize clocks in a Logix control system.	
Guard I/O™ modules	Guard I/O DeviceNet™ Safety Modules User Manual, publication 1791DS-UM001	Provides information on using Guard I/O DeviceNet Safety modules.	
	Guard I/O EtherNet/IP Safety Modules User Manual, publication 1791ES-UM001	Provides information on using Guard I/O EtherNet/IP Safety modules.	
	POINT Guard I/O™ Safety Modules User Manual, publication 1734-UM013	Provides information on installing, configuring, and using POINT Guard I/O modules.	
	Armor GuardLogix Controller Installation Instructions, publication 1756-IN060	Provides information on installing and using Armor GuardLogix controllers.	

Table 3 - Publications Related to GuardLogix Controllers and Systems (Continued)

Resource		Description
Drives	Kinetix® 5500 Servo Drives User Manual, publication <u>2198-UM001</u>	Provides information to install, configure, start, and troubleshoot your Kinetix 5500 servo drive system. Also includes requirements for using Kinetix 5500 drives in safety applications.
	Kinetix 5700 Servo Drives User Manual, publication <u>2198-UM002</u>	Provides information to install, configure, start, and troubleshoot your Kinetix 5700 servo drive system. Also includes requirements for using Kinetix 5700 drives in safety applications.
	PowerFlex® 527 Adjustable Frequency AC Drive User Manual, publication 520-UM002	Provides information to install, start, and troubleshoot the PowerFlex 520-series adjustable frequency AC drive.
Hardware installation	ControlLogix® Chassis and Power Supplies Installation Instructions, publication 1756-IN005	Describes how to install and ground ControlLogix chassis and power supplies.
	Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	Provides in-depth information on how to ground and wire programmable controllers.
Instructions (programming)	GuardLogix Safety Application Instruction Set Reference Manual, publication 1756-RM095	Provides information on the GuardLogix Safety application instruction set.
	Logix5000 Controllers General Instructions Reference Manual, publication 1756-RM003	Provides programmers with details about each available instruction for a Logix5000™ controller.
	Logix5000 Controllers Motion Instructions Reference Manual, publication MOTION-RM002	Provides programmers with details about the motion instructions that are available for a Logix5000 controller.
Motion	Sercos Motion Configuration and Startup User Manual, publication MOTION-UM001	Details how to configure a sercos motion application system.
	Motion Coordinated Systems User Manual, publication MOTION-UM002	Details how to create and configure a coordinated motion application system.
	Integrated Motion on the EtherNet/IP Network Configuration and Startup User Manual, publication MOTION-UM003	Details how to configure an Integrated Motion on EtherNet/IP networks application system.
	Integrated Motion on the EtherNet/IP Network Reference Manual, publication MOTION-RM003	Detailed information on axis control modes and attributes for Integrated Motion on EtherNet/IP networks.
Networks (ControlNet™, DeviceNet™, EtherNet/IP™)	EtherNet/IP Modules in Logix5000 Control Systems User Manual, publication ENET-UM001	Describes how to configure and operate EtherNet/IP modules in a Logix5000 control system.
	ControlNet Modules in Logix5000 Control Systems User Manual, publication CNET-UM001	Describes how to configure and operate ControlNet modules in a Logix5000 control system.
	DeviceNet Modules in Logix5000 Control Systems User Manual, publication <u>DNET-UM004</u>	Describes how to configure and operate DeviceNet modules in a Logix5000 control system.
PhaseManager™	PhaseManager User Manual, publication <u>LOGIX-UM001</u>	Provides steps, guidance, and examples on how to set up and program a Logix5000 controller to use equipment phases.
Programming tasks and procedures	Logix5000 Controllers Common Procedures Programming Manual, publication 1756-PM001	Provides access to the Logix5000 Controllers set of programming manuals, which cover such topics as how to manage project files, organize tags, program logic, test routines, handle faults, and more.
	Logix5000 Controllers Execution Time and Memory Use Reference Manual, publication 1756-RM087	Helps with how to estimate memory use and execution time of programmed logic, and how to select different programming options.

http://www.rockwellautomation.com/literature. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

System Overview

Торіс	Page
Safety Application Requirements	13
Distinguish between Standard and Safety Components	14
Controller Data-flow Capabilities	15
Select System Hardware	16
Select Safety I/O Device	17
Select Communication Networks	18
Programming Requirements	19

Safety Application Requirements

The GuardLogix* 5570 controller system is certified for use in safety applications up to and including Safety Integrity Level Claim Limit (SIL CL) 3 and Performance Level (e) where the de-energized state is the safe state. Safety application requirements include probability of failure rates evaluation, such as:

- Probability of failure on demand (PFD)
- Probability of failure per hour (PFH)
- System reaction-time settings
- Functional-verification tests that fulfill SIL 3/PLe criteria

GuardLogix-based SIL 3/PLe safety applications require at least one safety network number (SNN) and a safety task signature be used. Both affect controller and I/O configuration and network communication.

For SIL 3 and PLe safety system requirements, including functional validation test intervals, system reaction time, and PFD/PFH calculations, refer to the GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication <u>1756-RM099</u>. You must read, understand, and fulfill these requirements before you operate a GuardLogix SIL 3, PLe safety system.

Safety Network Number

The safety network number (SNN) must be a unique number that identifies safety subnets. Each safety subnet that the controller uses for safety communication must have a unique SNN. Each safety I/O device must also be configured with the SNN of the safety subnet. The SNN can be assigned automatically or manually.

For information on how to assign the SNN, see <u>Manage the Safety Network Number (SNN) on page 57</u>.

Safety Task Signature

The safety task signature consists of an ID number, date, and time that uniquely identifies the safety portion of a project. This signature includes safety logic, data, and configuration. The GuardLogix system uses the safety task signature to determine project integrity and to let you verify that the correct project is downloaded to the target controller. The ability to create, record, and verify the safety task signature is a mandatory part of the safety-application development process.

See Generate a Safety Task Signature on page 120 for more information.

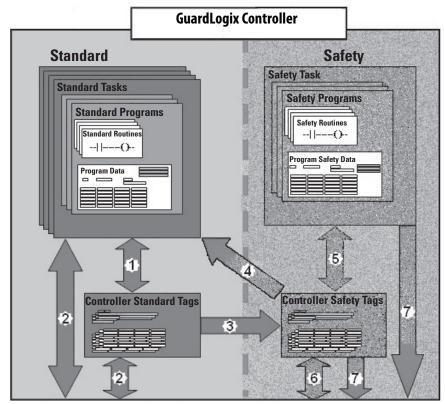
Distinguish between Standard and Safety Components

Slots of a GuardLogix system chassis that are not used by the safety function can be populated with other ControlLogix® modules that are certified to the Low Voltage and EMC Directives. See http://www.rockwellautomation.com/rockwellautomation/certification/ce.page to find the CE certificate for the Programmable ControlSogix Product Family and determine the modules that are certified.

You must create and document a clear, logical, and visible distinction between the safety and standard portions of the controller project. As part of this distinction, the Logix Designer application features safety identification icons to identify the safety task, safety programs, safety routines, and safety components. In addition, the Logix Designer application uses a safety class attribute that is visible whenever safety task, safety programs, safety routine, safety tag, or safety Add-On Instruction properties are displayed.

The controller does not allow writes to safety tag data from external human machine interface (HMI) devices or via message instructions from peer controllers. The Logix Designer application can write safety tags when the GuardLogix controller is safety-unlocked, does not have a safety task signature, and is operating without safety faults.

The ControlLogix Controllers User Manual, publication <u>1756-UM001</u>, provides information on using ControlLogix devices in standard (nonsafety) applications.


HMI Devices

HMI devices can be used with GuardLogix controllers. HMI devices can access standard tags as with a standard controller. However, HMI devices cannot write to safety tags; safety tags are read-only for HMI devices.

Controller Data-flow Capabilities

This illustration explains the standard and safety data-flow capabilities of the GuardLogix controller.

Figure 1 - Data-flow Capabilities

No.	Description			
1	Standard tags and logi	Standard tags and logic behave the same way that they do in the standard Logix platform.		
2		Standard tag data, program- or controller-scoped, can be exchanged with external HMI devices, personal computers, and other controllers.		
3		GuardLogix controllers are integrated controllers with the ability to move (map) standard tag data into safety tags for use within the safety task.		
	\triangle	ATTENTION: These data must not be used to control a SIL 3/PLe output directly.		
4	Controller-scoped safe	ty tags can be read directly by standard logic.		
5	Safety tags can be read or written by safety logic.			
6	Safety tags can be exchanged between safety controllers over Ethernet or ControlNet™ networks, including 1756 and 1768 GuardLogix controllers.			
7	Safety tag data, program- or controller-scoped, can be read by external devices, such as HMI devices, personal computers, or other standard controllers.			
	IMPORTANT	IMPORTANT Once this data is read, it is considered standard data, not SIL 3/PLe data.		

Select System Hardware

The GuardLogix system supports SIL 3 and PLe safety applications. The GuardLogix controller is composed of a primary controller and a safety partner that function together in a 1002 architecture. <u>Table 4</u> lists catalog numbers for primary controllers and safety partners.

The safety partner must be installed in the slot immediately to the right of the primary controller. The firmware major and minor revisions of the primary controller and safety partner must match exactly to establish the control partnership that is required for safety applications.

Table 4 - Primary Controller and Corresponding Safety Partner Catalog Numbers

Primary Controller	Safety Partner
1756-L71S, 1756-L72S, 1756-L73S	1756-L7SP
1756-L73SXT	1756-L7SPXT

Primary Controller

The primary controller is the processor that performs standard and safety functions and communicates with the safety partner for safety-related functions in the GuardLogix control system. Standard functions include the following:

- I/O control
- Logic
- Timing
- Counting
- Report generation
- Communication
- Arithmetic computations
- Data file manipulation

The primary controller consists of a central processor, I/O interface, and memory.

Table 5 - Memory Capacity

Cat. No.	User Memory (RAM capacity)		
Cat. No.	Standard Tasks and Components	Safety Task and Components	
1756-L71S	2 MB	1 MB	
1756-L72S	4 MB	2 MB	
1756-L73S,1756-L73SXT	8 MB	4 MB	

A three-position key switch on the front of the primary controller governs the controller operational modes. The following modes are available:

- RUN
- PROGram
- REMote-this software-enabled mode can be Program, Run, or Test

Figure 2 - Key Switch Positions

Safety Partner

The safety partner is a coprocessor that provides an isolated second channel (redundancy) for safety-related functions in the system.

The safety partner does not have a key switch or communication port. Its configuration and operation are controlled by the primary controller.

Chassis

The ControlLogix chassis provides physical connections between modules and the GuardLogix controller.

Power Supply

The ControlLogix power supplies listed on <u>page 26</u> are suitable for use in SIL 3 applications. No extra configuration or wiring is required for SIL 3 operation of the power supplies.

Select Safety I/O Device

Safety input and output devices, like sensors and actuators, can be connected to safety I/O on DeviceNet[™] or EtherNet/IP[™] networks. This connection controls output devices by a GuardLogix controller system via DeviceNet or EtherNet/IP communication.

For the most up-to-date information on available safety I/O catalog numbers, certified series, and firmware revisions, see the safety certificates at http://www.rockwellautomation.com/rockwellautomation/certification/safety.page.

Select Communication Networks

The GuardLogix controller supports communication that lets it do the following:

- Distribute and control Safety I/O on DeviceNet or EtherNet/IP networks
- Distribute and control remote Safety I/O on DeviceNet, EtherNet/IP, or ControlNet networks
- Produce and consume safety tag data between 1756 and 1768
 GuardLogix controllers across EtherNet/IP or ControlNet networks or
 within the same ControlLogix chassis
- Distribute and control standard I/O on Ethernet, ControlNet, or DeviceNet networks

Use these communication modules to provide an interface between GuardLogix controllers and network devices.

Table 6 - Communication Modules

To interface between	Use this module	See these installation instructions
The GuardLogix controller and DeviceNet devices	1756-DNB	<u>DNET-IN001</u>
The GuardLogix controller and EtherNet/IP devices	1756-ENBT 1756-EN2T 1756-EN2F 1756-EN2TR 1756-EN3TR 1756-EN2TXT 1756-EN2TXT	ENET-IN002
Controllers on the ControlNet network	1756-CN2 1756-CN2R 1756-CN2RXT	<u>CNET-IN005</u>

The GuardLogix controller can connect to the Logix Designer application via a USB port, an Ethernet module, or a ControlNet module.

See <u>Additional Resources on page 11</u> for more information on network communication modules.

Programming Requirements

Use <u>Table 7</u> to identify the programming tool and the versions for use with your GuardLogix 5570 controllers.

Table 7 - Software Versions

Cat. No.	Studio 5000°	RSLogix 5000°	RSLinx® Classic
	Environment	Software Version ⁽¹⁾	Software Version
1756-L71S, 1756-L72S, 1756-L73S, 1756-L73SXT	21 or later	20 or later	2.59 or later

⁽¹⁾ For information on how to use a GuardLogix controller with RSLogix 5000 software, see GuardLogix Controllers User Manual, publication <u>1756-UM020</u>, and GuardLogix Controller Systems Safety Reference Manual, publication <u>1756-RM093</u>.

Safety routines include safety instructions, which are a subset of the standard ladder logic instruction set, and safety application instructions. Programs that are scheduled under the safety task support only ladder logic.

Table 8 - Supported Features

	Studio 5000 Logix Designer Application Version 24 and Later		
Feature	Safety Task	Standard Task	
Add-on instructions	Х		
Alarms and events			
Controller logging	Х		
Data access control	7 ^		
Equipment phase routines			
Event tasks			
Firmware supervisor	Х		
Function block diagrams (FBD)			
Integrated motion			
Ladder logic		Х	
Language switching	X		
Memory card	7 ^		
Network address translation (NAT)	7		
Online import and export of program components			
Safety and standard connections	Х		
Sequential function chart (SFC) routines		1	
Structured text			
Unicast connections for produced and consumed safety tags	Х		
Unicast connections for safety I/O devices on EtherNet/IP networks	1		

For information on how to use these features, refer to the Logix5000[™] Controllers Common Procedures Programming Manual, publication 1756-PM001, the publications that are listed in Additional Resources on page 11, and online help.

Notes:

Install the Controller

Торіс	Page
Precautions	21
Make Sure That You Have All of the Components	25
Install a Chassis and Power Supply	26
Install the Controller Into the Chassis	27
Insert or Remove a Memory Card	28
Make Communication Connections	31
Update the Controller	33
Choose the Operating Mode of the Controller	40
Uninstall an Energy Storage Module (ESM)	42
Install an Energy Storage Module (ESM)	44

Precautions

Read and follow these precautions for use.

Table 9 - Environment and Enclosure Information

ATTENTION: This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC 60664-1), at altitudes up to 2000 m (6562 ft) without derating.

This equipment is not intended for use in residential environments and may not provide adequate protection to radio communication services in such environments.

This equipment is supplied as open-type equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to help prevent personal injury resulting from accessibility to live parts. The enclosure must have suitable flame-retardant properties to help prevent or minimize the spread of flame, complying with a flame spread rating of 5VA or be approved for the application if non-metallic. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.

In addition to this publication, see these publications for more information:

- Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1, for additional installation requirements
- NEMA Standard 250 and IEC 60529, as applicable, for explanations of the degrees of protection provided by enclosure

Table 10 - Programmable Electronic Systems (PES)

ATTENTION: Personnel responsible for the application of safety-related Programmable Electronic Systems (PES) shall be aware of the safety requirements in the application of the system and shall be trained in using the system.

Table 11 - Removal and Insertion Under Power (RIUP)

WARNING: When you insert or remove the module while backplane power is on, an electric arc can occur. This could cause an explosion in hazardous location installations.

Be sure that power is removed or the area is nonhazardous before proceeding. Repeated electric arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance that can affect module operation.

Table 12 - Prevent Electrostatic Discharge

ATTENTION: This equipment is sensitive to electrostatic discharge that can cause internal damage and affect normal operation. Follow these guidelines when you handle this equipment:

- Touch a grounded object to discharge potential static.
- · Wear an approved grounding wriststrap.
- Do not touch connectors or pins on component boards.
- Do not touch circuit components inside the equipment.
- Use a static-safe workstation, if available.
- Store the equipment in appropriate static-safe packaging when not in use.

ATTENTION: This equipment is not resistant to sunlight or other sources of UV radiation.

Table 13 - North American Hazardous Location Approval

The following information applies when operating this equipment in hazardous locations.

Products marked "CL I, DIV 2, GP A, B, C, D" are suitable for use in Class I Division 2 Groups A, B, C, D, Hazardous Locations and nonhazardous locations only. Each product is supplied with markings on the rating nameplate indicating the hazardous location temperature code. When combining products within a system, the most adverse temperature code (lowest "T" number) may be used to help determine the overall temperature code of the system. Combinations of equipment in your system are subject to investigation by the local Authority Having Jurisdiction at the time of installation.

Informations sur l'utilisation de cet équipement en environnements dangereux.

Les produits marqués "CL I, DIV 2, GP A, B, C, D" ne conviennent qu'à une utilisation en environnements de Classe I Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livré avec des marquages sur sa plaque d'identification qui indiquent le code de température pour les environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le système sont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.

WARNING: EXPLOSION HAZARD

- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.
- Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.
- Substitution of components may impair suitability for Class I, Division 2.
- If this product contains batteries, they must only be changed in an area known to be nonhazardous.

AVERTISSEMENT: RISQUE D'EXPLOSION

- Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher l'équipement.
- Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les connecteurs externes reliés à cet équipement à l'aide de vis, loquets coulissants, connecteurs filetés ou autres moyens fournis avec ce produit.
- La substitution de composants peut rendre cet équipement inadapté à une utilisation en environnement de Classe I, Division 2.
- S'assurer que l'environnement est classé non dangereux avant de changer les piles.

European Hazardous Location Approval

The following applies when the product bears the Ex Marking.

This equipment is intended for use in potentially explosive atmospheres as defined by European Union Directive 94/9/EC and has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of Category 3 equipment intended for use in Zone 2 potentially explosive atmospheres, given in Annex II to this Directive.

Compliance with the Essential Health and Safety Requirements has been assured by compliance with EN 60079-15 and EN 60079-0.

WARNING: Follow these guidelines to mount and use the equipment:

- Mount in an ATEX certified enclosure with a minimum ingress protection rating of at least IP54 (as defined in IEC60529) and used in an environment of not more than Pollution Degree 2 (as defined in IEC 60664-1) when applied in Zone 2 environments. The enclosure must use a tool removable cover or door.
- Use within its specified ratings defined by Rockwell Automation.
- Use only with ATEX-certified Rockwell Automation backplanes.
- Do not disconnect unless power has been removed or the area is known to be nonhazardous.

Make provisions to prevent the rated voltage from being exceeded by transient disturbances of more than 140% of the rated voltage when applied in Zone 2 environments.

Secure any external connections that mate to this equipment with screws, sliding latches, threaded connectors, or other means provided with this equipment.

Make Sure That You Have All of the Components

Before you begin, check to make sure you have all of the components you need.

IMPORTANT You must use a primary controller **and** a safety partner to achieve SIL 3/ PLe.

These parts are included with the primary controller and safety partner.

Cat. No.	Description	Ships with
1756-L71S 1756-L72S 1756-L73S	Primary controller	 1756-ESMCAP capacitor-based energy storage module (ESM) 1784-SD1 SD memory card, 1 GB 1747-KY key
1756-L7SP	Safety partner	1756-SPESMNSE energy storage module (ESM)
1756-L73SXT	Extreme temperature primary controller	1756-ESMCAPXT capacitor-based energy storage module (ESM) 1747-KY key
1756-L7SPXT	Extreme temperature safety partner	1756-SPESMNSEXT capacitor-based energy storage module (ESM)

The following optional equipment can be used.

If your application requires	Then use this part	
Nonvolatile memory	1784-SD1 (1 GB) or 1784-SD2 (2 GB)	
That the installed ESM depletes its residual stored energy to 200 μ J or less before transporting it into or out of your application ⁽¹⁾	1756-ESMNSE for the primary controller 1756-SPESMNSE for the safety partner ⁽²⁾ This ESM does not have WallClockTime backup power. Also, you can only use this ESM with a 1756-L73S (8 MB) or smaller memory sized controller.	
ESM that secures the controller by preventing the USB port and SD card use ⁽¹⁾	1756-ESMNRM for the primary controller 1756-SPESMNRM for the safety partner ⁽³⁾ This ESM provides your application an enhanced degree of security.	

⁽¹⁾ For information about the hold-up time of the ESMs, see the section <u>Estimate the ESM Support of the WallClockTime on</u> page 140.

⁽²⁾ For extreme temperature primary controller and safety partner use 1756-ESMNSEXT and 1756-SPESMNSEXT respectively.

⁽³⁾ For extreme temperature primary controller and safety partner use 1756-ESMNRMXT and 1756-SPESMNRMXT respectively.

Install a Chassis and Power Supply

Before you install a controller, you need to install a chassis and power supply.

1. Install a ControlLogix® chassis according to the corresponding installation instructions.

Cat. No.	Available Slots	Series	Refer to These Installation Instructions
1756-A4	4		
1756-A7	7		
1756-A10	10	В	
1756-A13	13		
1756-A17	17		1756-IN621
1756-A4LXT	4	В	1/30-IN02 I
1756-A5XT	5	В	
1756-A7XT	7	В	
1756-A7LXT	7	В	
1756-A10XT	10	В	

Extreme environment (XT) controllers require an XT chassis.

2. Install a ControlLogix power supply according to the corresponding installation instructions.

Cat. No.	Description	Series	Refer to These Installation Instructions
1756-PA72	Power supply, AC	C	
1756-PB72	Power supply, DC		
1756-PA75	Power supply, AC	В	1756-IN619
1756-PB75	Power supply, DC	В	1730-IN019
1756-PAXT	XT power supply, AC	В	
1756-PBXT	XT power supply, DC	В	

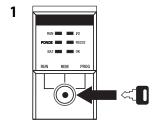
Extreme environment (XT) controllers require an XT power supply.

Install the Controller Into the Chassis

You can install or remove a controller while chassis power is on and the system is operating.

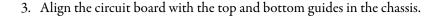
WARNING: When you insert or remove the module while backplane power is on, an electric arc can occur. This could cause an explosion in hazardous location installations.

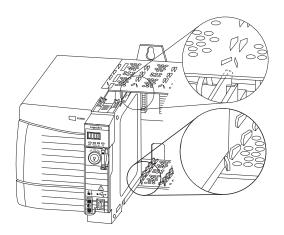
Be sure that power is removed or the area is nonhazardous before proceeding. Repeated electric arcing causes excessive wear to contacts on both the module and its mating connector. Worn contact can create electrical resistance that can affect module operation.


IMPORTANT


The ESM begins charging when one of these actions occurs:

- The controller and ESM are installed into a powered chassis.
- Power is applied to the chassis that contains a controller with the ESM installed.
- An ESM is installed into a powered controller.


After power is applied, the ESM charges for up to two minutes as indicated by CHRG or ESM Charging on the controller's status display.


- 1. Insert the key into the primary controller.
- 2. Turn the key to the PROG position.

The safety partner does not have a key switch.

4. Slide the controller into the chassis.

The controller is fully installed when it is flush with the power supply or other installed modules and the top and bottom latches are engaged.

IMPORTANT

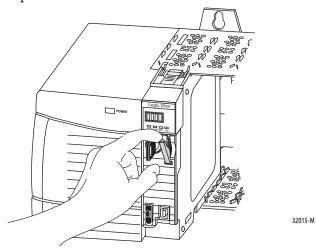
You must install the safety partner in the slot immediately to the right of the primary controller. Follow steps $\underline{3}$ and $\underline{4}$ above to install the safety partner.

After you have inserted the controller into the chassis, see <u>Chapter 9</u> for information on interpreting the status indicators on the primary controller and safety partner.

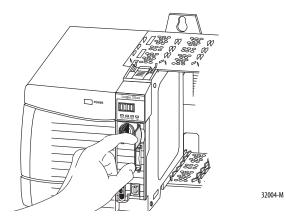
Insert or Remove a Memory Card

WARNING: When you insert or remove the memory card when power is on, an electric arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding.

ATTENTION: If you are **not** sure of the contents of the memory card, **before** you install the card, turn the key switch of the controller to the PROG position. Depending on the contents of the card, a power cycle or fault could cause the card to load a different project or firmware into the controller.


The controller ships with an SD card installed. We recommend that you leave an SD card installed.

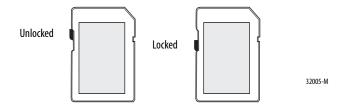
Remove the SD Card


Follow these steps to remove the SD card.

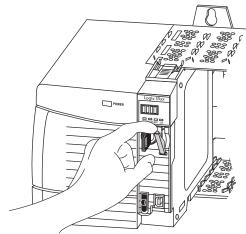
IMPORTANT Verify that the SD card status indicator is off and that the card is not in use before removing it.

- 1. Turn the key switch to the PROG position.
- 2. Open the door to access the SD card.

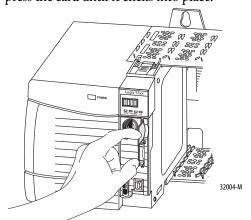
3. Press and release the SD card to eject it.

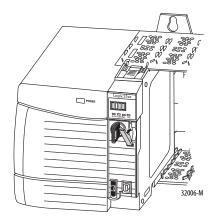


4. Remove the SD card and close the door.


Install the SD Card

Follow these steps to install the SD card.


1. Verify that the SD card is locked or unlocked according to your preference.


2. Open the door for the SD card.

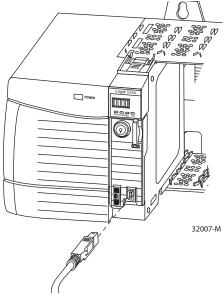
- 3. Insert the SD card into the SD card slot.
- 4. Gently press the card until it clicks into place.

5. Close the SD card door.

Make Communication Connections

The controller has a USB port that uses a Type B receptacle. The connection is USB 2.0-compatible and runs at 12 M.

To use the USB port of the controller, you must have RSLinx* software, version 2.59 or later, installed on your workstation. Use a USB cable to connect your workstation to the USB port. With this connection, you can update firmware and download programs to the controller directly from your workstation.


ATTENTION: Use the USB port for temporary local programming purposes. Do not use the USB port as a permanent connection.

The USB cable must not exceed 3.0 m (9.84 ft) and must not contain hubs.

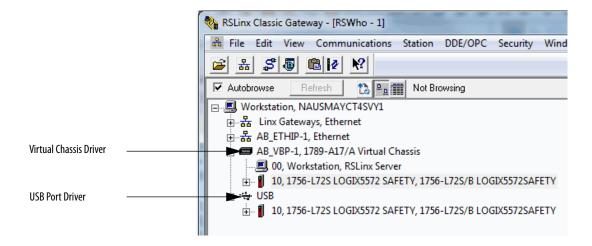
WARNING: Do not use the USB port in hazardous locations.

Figure 3 - USB Port

To configure RSLinx software to use a USB port, you need to first set up a USB driver. To set up a USB driver, perform this procedure.

- 1. Connect your controller and workstation by using a USB cable.
- 2. On the Found New Hardware Wizard dialog box, click any of the Windows Update connection options and click Next.

- **TIP** If the software for the USB driver is not found and the installation is canceled, verify that you have installed RSLinx Classic software, version 2.59 or later.
- 3. Click Install the software automatically (Recommended) and click Next.


The software is installed.

- 4. Click Finish to set up your USB driver.
- 5. To browse to your controller in RSLinx software, click RSWho

In the RSLinx Workstation organizer, your controller appears under two different drivers, a virtual chassis and the USB port. You can use either driver to browse to your controller.

Update the Controller

The controllers ship without firmware. Controller firmware is packaged with Studio 5000° environment. In addition, controller firmware is also available for download from the Rockwell Automation Technical Support website at: http://www.rockwellautomation.com/support/.

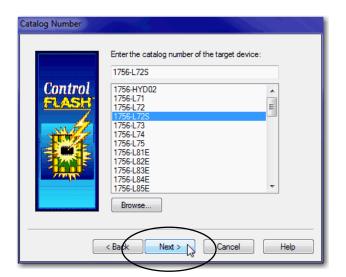
You can update your firmware by using either ControlFLASH™ software or by using the AutoFlash feature of the Logix Designer application.

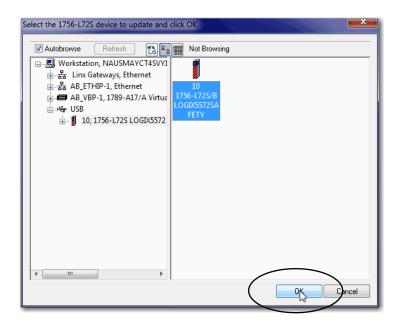
Using ControlFLASH Software to Update Firmware

The safety partner updates automatically when the primary controller is updated.

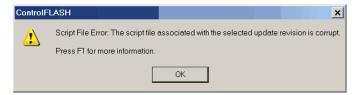
IMPORTANT

If the SD card is locked and the stored project's Load Image option is set to On Power Up, the controller firmware is not updated as a result of these steps. Any previously-stored firmware and projects are loaded instead.


- 1. Verify that the network connection is made and the network driver has been configured in RSLinx software.
- 2. Start ControlFLASH software.


3. Click Next to begin the upgrade process.

4. Select your controller and click Next.


- 5. Expand the network driver to locate your controller.
- 6. Select the controller and click OK.

7. Select the desired firmware revision and click Next.

TIP If you experience a Script File Error after selecting the firmware revision number (see the following example), there is likely an anomaly with your firmware files.

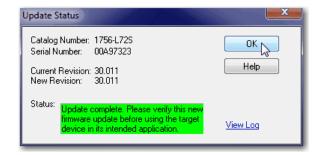
To recover, perform the following:

- Go to http://www.rockwellautomation.com/support/ and download the firmware revision you are trying to upgrade. Replace the firmware revision that you have previously installed with that posted on the Technical Support website.
- If the replacement firmware revision does not resolve the anomaly, contact Rockwell Automation Technical Support.
- 8. Click Finish.

9. When a confirmation dialog box appears, click Yes.

Before the firmware update begins, this dialog box appears. Take the required action for your application. In this example, the upgrade continues when you click OK.

A progress dialog box indicates the progress of the firmware upgrade.



WARNING: Let the firmware update to fully complete before cycling power or otherwise interrupting the upgrade.

TIP If the ControlFLASH upgrade of the controller is interrupted, the controllers revert to boot firmware, that is firmware revision 1.xxx.

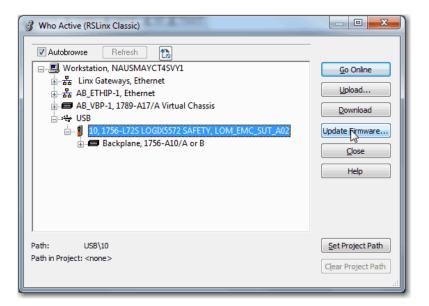
When the upgrade is complete, the Update Status dialog box indicates that the upgrade is complete.

10. Click OK.

11. Close ControlFLASH software.

Using AutoFlash to Update Firmware

To upgrade your controller firmware with the AutoFlash feature, complete these steps.


IMPORTANT

If the SD card is locked and the Load Image option of the stored project is set to On Power Up, the controller firmware is not updated as a result of these steps. The previously stored firmware and project are loaded instead.

- 1. Verify the following:
 - The network connection is made.
 - The network driver has been configured in RSLinx Classic software.
 - The controller is in Remote Program or Program mode and all major recoverable faults are cleared.
- 2. Create a controller project in the Logix Designer application.
- 3. On the Path bar, click Who Active.

4. Select your controller and click Update Firmware.

Choose Firmware Revision 1756-L72S GuardLogix® 5570 Safety Controlle Type: 00A97323 Serial Number: Revision 29.11 Comm. Path: USB\10 Look for Firmware Update Files In: C:\Program Files (x86)\ControlFLASH Browse... Update Type File 29.11.36 .\1756-L72S_29.011.dmk Installed Firmware Update File Directory C:\Program Files (x86)\ControlFLASH Update Cancel Help

5. Select the firmware revision to upgrade to and click Update.

6. On the Update Firmware dialog box, click Yes.

7. On the ControlFLASH dialog box, click OK.

When the upgrade is complete, the Update Status dialog box indicates that the upgrade is complete.

A progress dialog box indicates the progress of the firmware upgrade.

WARNING: Let the firmware update to fully complete before cycling power or otherwise interrupting the upgrade.

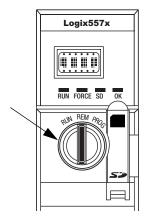
If the ControlFLASH upgrade of the controller is interrupted, the controllers revert to boot firmware, that is firmware revision 1.xxx.

When the upgrade is complete, click OK on the Who Active dialog box.

Choose the Operating Mode of the Controller

Use this table as a reference when determining your controller Operation mode.

Table 14 - Controller Operation Modes

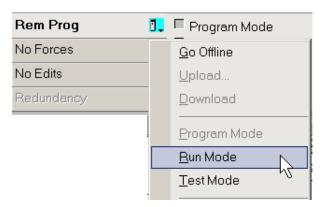

	Select one of these modes				
If you want to	Run	Remote			D
		Run	Test	Program	—— Program m
Turn outputs to the state commanded by the logic of the project	Х	Х			
Turn outputs to their configured state for Program mode			Х	Х	Х
Execute (scan) tasks	Х	Х	Х		
Change the mode of the controller through software		Х	Х	Х	
Download a project		Х	Х	Х	Х
Schedule a ControlNet™ network				Х	Х
While online, edit the project		Х	Х	Х	Х
Send messages	Х	Х	Х		
Send and receive data in response to a message from another controller	Х	Х	Х	Х	Х
Produce and consume tags	Х	Х	Х	Х	Х

Use the Key Switch to Change the Operation Mode

The key switch on the front of the controller can be used to change the controller to one of these modes:

- Program (PROG)
- Remote (REM)
- Run (RUN)

Figure 4 - Controller Key Switch


Use the Logix Designer Application to Change the Operation Mode

Depending on the mode of the controller you specify by using the key switch, you can change the operation mode of the controller by using the Logix Designer application.

After you are online with the controller and the controller key switch is set to Remote (REM or the center position), you can use the Controller Status menu in the upper-left corner of the Logix Designer application window to specify these operation modes:

- Remote Program
- Remote Run
- Remote Test

Figure 5 - Operation Mode via the Logix Designer Application

TIP For this example, the controller key switch is set to Remote Mode. If your controller key switch is set to Run Mode or Program Mode, the menu options change.

Uninstall an Energy Storage Module (ESM)

The controllers ship with an ESM installed.

Controller	Installed ESM Cat. No.
1756-L7xS controller	1756-ESMCAP
1756-L7xSXT extreme temperature controller	1756-ESMCAPXT
1756-L7SP safety partner	1756-SPESMNSE
1756-L7SPXT extreme temperature safety partner	1756-SPESMNSEXT

Consider these points before removing the ESM:

 After the controller loses power, either because the chassis power is turned off or the controller has been removed from a powered chassis, do not remove the ESM immediately.

Wait until the controller's OK status indicator transitions from Green to Solid Red to OFF before you remove the ESM.

- Use the 1756-ESMNSE module if your application requires that the installed ESM deplete its residual stored energy to 40 µJ or less before transporting it into or out of your application.
- Once it is installed, you cannot remove the 1756-ESMNRM module from the controller.

IMPORTANT Before you remove an ESM, make necessary adjustments to your program to account for potential changes to the WallClockTime attribute.

 The Armor[™] controller energy storage modules (ESM) cannot be removed or replaced. Follow these steps to remove a 1756-ESMCAP(XT), 1756-ESMNSE(XT), or 1756-SPESMNSE(XT) module.

WARNING: If your application requires the ESM to deplete its residual stored energy to 40 μ Joule or less before you transport it into or out of the application, you must use the 1756-ESMNSE(XT) module for the primary controller and the 1756-SPESMNSE(XT) for the safety partner. In this case, complete these steps before you remove the ESM.

- a. Turn power off to the chassis.
 After you turn power off to the chassis, the controller's OK status indicator transitions from Green to Solid Red to OFF.
- b. Wait **at least 20 minutes** for the residual stored energy to decrease to 40 μJ or less before you remove the ESM.

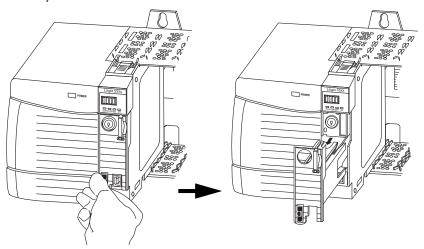
There is no visual indication of when the 20 minutes has expired. **You must track that time period**.

WARNING: When you insert or remove the energy storage module while backplane power is on, an electric arc can occur. This could cause an explosion in hazardous location installations.

Be sure that power is removed or the area is nonhazardous before proceeding. Repeated electric arcing causes excessive wear to contacts on both the module and its mating connector.

1. Remove the key from the key switch.

IMPORTANT


The next step depends on the conditions that apply to your application:

- If you are removing the ESM from a powered controller, go to step 2.
- If you are removing the ESM from a controller that is not powered, either because the chassis power is turned off or the controller has been removed from a powered chassis, do not remove the ESM immediately.

Wait until the controller's OK status indicator transitions from Green to Solid Red to OFF before you remove the ESM.

After the OK status indicator transitions to OFF, go to step 2.

2. Use your thumb to press down on the black release and pull the ESM away from the controller.

Install an Energy Storage Module (ESM)

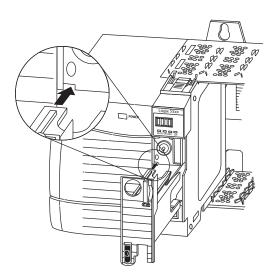

<u>Table 15</u> lists the ESMs and the compatible GuardLogix[®] controllers.

Table 15 - Compatible Energy Storage Modules

Cat. No.	Compatible ESMs
1756-L7 <i>x</i> S	1756-ESMCAP, 1756-ESMNSE, 1756-ESMNRM
1756-L7 <i>x</i> SXT	1756-ESMCAPXT, 1756-ESMNSEXT, 1756-ESMNRMXT
1756-L7SP	1756-SPESMNSE, 1756-SPESMNRM
1756-L7SPXT	1756-SPESMNSEXT, 1756-SPESMNRMXT

To install an ESM, complete these steps. Follow the same steps for the safety partner.

1. Align the tongue-and-groove slots of the ESM and controller.

2. Slide the ESM into the chassis until it snaps into place.

ATTENTION: To avoid potential damage to the product when inserting the ESM, align the ESM in the track and slide forward with minimal force until the ESM snaps into place.

The ESM begins charging after installation. Charging status is indicated by one of these status messages:

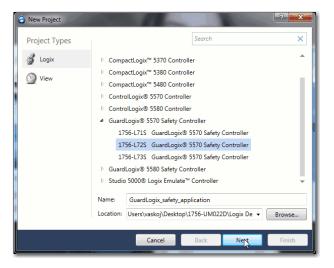
- ESM Charging
- CHRG

After you install the ESM, it can take up to 15 seconds for the charging status messages to display.

IMPORTANT Allow the ESM to finish charging before removing power from the controller. To verify that the ESM is fully charged, check the status display to confirm that messages 'CHRG' or 'ESM Charging' are no longer indicated.

TIP Check the WallClockTime object attributes after installing an ESM to verify that time of the controller is correct.

Notes:


Configure the Controller

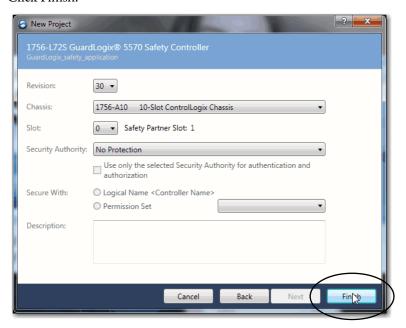
Topic	Page
Create a Controller Project	47
Electronic Keying	50
Set Passwords for Safety-locking and -unlocking	51
Protect the Safety Task Signature in Run Mode	52
Handling I/O Device Replacement	53
Enable Time Synchronization	54
Configure a Peer Safety Controller	55

Create a Controller Project

To configure and program your controller, use the Studio 5000 Logix Designer* application to create and manage a project for the controller.

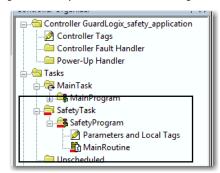
- 1. To create a project, click the New button an on the main toolbar.
- 2. To expand the list of controller options, double-click GuardLogix* 5570 Safety Controller.
- 3. Choose a GuardLogix controller:
 - 1756-L71S GuardLogix 5570 Safety Controller
 - 1756-L72S GuardLogix 5570 Safety Controller
 - 1756-L73S GuardLogix 5570 Safety Controller
- 4. In the Name field, type the name of the project.
- 5. To specify the folder for storing the safety controller project, click Browse.
- 6. Click Next.

- 7. Choose the controller firmware major revision.
- 8. Choose the chassis size.
- 9. Choose the slot number.


The New Project dialog box displays the slot location of the safety partner based on the slot number entered for the primary controller.

If you select a slot number for the primary controller that does not accommodate placement of the safety partner immediately to the right of the primary controller, you are prompted to re-enter a valid slot number.

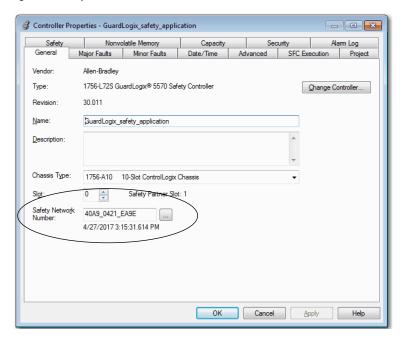
10. From the Security Authority pull-down menu, choose a security authority option.


For detailed information on security, refer to the Logix5000[™] Controllers Security Programming Manual, publication <u>1756-PM016</u>.

- 11. If you want to use the selected protection for authentication and authorization, check the box below Security Authority.
- 12. In the Description field, enter a description of the project.
- 13. Click Finish.

The Logix Designer application creates a safety task and a safety program. A main ladder logic safety routine called MainRoutine is also created within the safety program.

Figure 6 - Safety Task in the Controller Organizer


A red bar under the icon distinguishes safety programs and routines from standard project components in the Controller Organizer.

When a new safety project is created, the Logix Designer application also automatically creates a time-based safety network number (SNN).

This SNN defines the local chassis backplane as a safety subnet. It can be viewed and modified via the General tab on the Controller Properties dialog box.

For most applications, this automatic, time-based SNN is sufficient. However, there are cases when you need to enter a specific SNN.

Figure 7 - Safety Network Number

TIP You can use the Controller Properties dialog box to change the controller from standard to safety, or safety to standard, by clicking the Change Controller button. However, standard and safety projects are substantially affected.

See <u>Appendix B</u>, <u>Change Controller Type</u>, for details on the ramifications of changing controllers.

Table 16 - Additional Resources

Resource	Description
Chapter 6, Develop Safety Applications	Contains more information on the safety task, safety programs, and safety routines.
Chapter 4, Communicate over Networks	Provides more information on managing the SSN.

Electronic Keying

Electronic Keying reduces the possibility that you use the wrong device in a control system. It compares the device defined in your project to the installed device. If keying fails, a fault occurs. These attributes are compared.

Attribute	Description
Vendor	The device manufacturer.
Device Type	The general type of the product, for example, digital I/O module.
Product Code	The specific type of the product. The Product Code maps to a catalog number.
Major Revision	A number that represents the functional capabilities of a device.
Minor Revision	A number that represents behavior changes in the device.

The following Electronic Keying options are available.

Keying Option	Description
Compatible Module	Lets the installed device accept the key of the device that is defined in the project when the installed device can emulate the defined device. With Compatible Module, you can typically replace a device with another device that has the following characteristics: Same catalog number Same or higher Major Revision Minor Revision as follows: If the Major Revision is the same, the Minor Revision must be the same or higher. If the Major Revision is higher, the Minor Revision can be any number.
Exact Match	Indicates that all keying attributes must match to establish communication. If any attribute does not match precisely, communication with the device does not occur. Exact Match is required if you are using Firmware Manager.

Carefully consider the implications of each keying option when selecting one.

IMPORTANT

Changing Electronic Keying parameters online interrupts connections to the device and any devices that are connected through the device. Connections from other controllers can also be broken.

If an I/O connection to a device is interrupted, the result can be a loss of data.

For more detailed information about Electronic Keying, see Electronic Keying in Logix5000 Control Systems Application Technique, publication LOGIX-AT001.

Set Passwords for Safetylocking and -unlocking

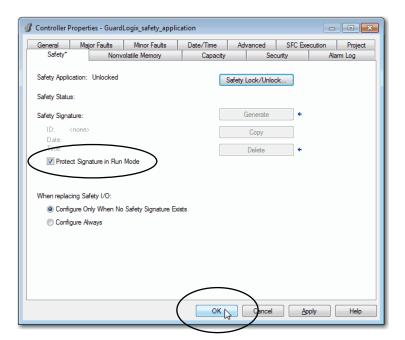
Safety-locking the controller helps to protect safety control components from modification. Only safety components, such as the safety task, safety programs, safety routines, and safety tags are affected. Standard components are unaffected. You can safety-lock or -unlock the controller project when online or offline.

The safety-lock and -unlock feature uses two separate passwords. Passwords are optional.

Follow these steps to set passwords.

- 1. Click Tools > Safety > Change Passwords.
- 2. From the What Password pull-down menu, choose either Safety Lock or Safety Unlock.

- 3. Type the old password, if one exists.
- 4. Type and confirm the new password.
- 5. Click OK.

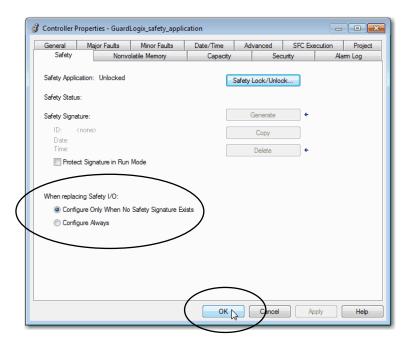

Passwords can be from 1...40 characters in length and are not case-sensitive. Letters, numerals, and the following symbols can be used: $^{\circ} \sim ! @ \# \% ^{\circ} * ()_+, -= {} [] \ | : ; ? / .$

Protect the Safety Task Signature in Run Mode

You can prevent the safety task signature from being either generated or deleted while the controller is in Run or Remote Run mode, regardless of whether the safety application is locked or unlocked.

Follow these steps to protect the safety task signature:

- 1. Open the Controller Properties dialog box.
- 2. Click the Safety tab.
- 3. Check Protect Signature in Run Mode.
- 4. Click OK.


Handling I/O Device Replacement

The Safety tab of the Controller Properties dialog box lets you define how the controller handles the replacement of an I/O device in the system. This option determines whether the controller sets the safety network number (SNN) of an I/O device that it is connected to and has configuration data for when a safety task signature⁽¹⁾ exists.

Follow these steps to configure how the controller handles the replacement of an I/O device in the system.

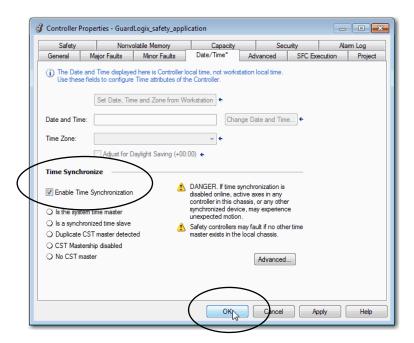
- 1. Open the Controller Properties dialog box.
- 2. Click the Safety tab.
- 3. Select the configure option for the controller to use when replacing safety I/O.
- 4. Click OK.

Figure 8 - I/O Device Replacement Options

ATTENTION: Enable the Configure Always feature only if the entire routable CIP safety control system is not being relied on to maintain SIL 3 during the replacement and functional testing of a device.

See <u>Chapter 5</u>, <u>Add</u>, <u>Configure</u>, <u>Monitor</u>, <u>and Replace CIP Safety I/O</u> Devices for more information.

⁽¹⁾ The safety task signature is a number used to uniquely identify each project's logic, data, and configuration, thereby protecting the system's safety integrity level (SIL). See <u>Safety Task Signature on page 14</u> and <u>Generate a Safety Task Signature on page 120</u> for more information.


Enable Time Synchronization

In a GuardLogix controller system, one device in the local chassis must be designated as the coordinated system time (CST) master. Time synchronization provides a standard mechanism to synchronize clocks across a network of distributed devices.

Follow these steps to configure the controller to become the CST master.

- 1. Open the Controller Properties dialog box.
- 2. Click the Date/Time tab.
- 3. Check Enable Time Synchronization.
- 4. Click OK.

Figure 9 - Date/Time Tab

For more information on time synchronization, refer to the Integrated Architecture and CIP Sync Configuration Application Solution, publication <u>IA-AT003</u>.

Configure a Peer Safety Controller

You can add a peer safety controller to the I/O configuration folder of your safety project to allow standard or safety tags to be consumed. To share safety data between peer controllers, you produce and consume controller-scoped safety tags.

For details on configuring the peer safety controllers and producing and consuming safety tags, see Produced/Consumed Safety Tags on page 109.

Notes:

Communicate over Networks

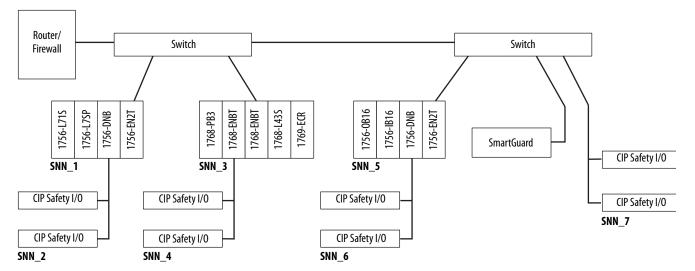
Торіс	Page
The Safety Network	57
EtherNet/IP Communication	65
ControlNet Communication	70
DeviceNet Communication	73

The Safety Network

The CIP Safety protocol is an end-node to end-node safety protocol that provides routing of CIP Safety messages to and from safety I/O devices through bridges, switches, and routers.

To maintain high integrity when routing through standard bridges, switches, or routers, each end node within a routable CIP Safety Control System must have a unique reference. This unique reference is a combination of a safety network number (SNN) and the node address of the network device.

Manage the Safety Network Number (SNN)


The SNN assigned to safety devices on a network segment must be unique. You must be sure that a unique SNN is assigned to the following:

- Each CIP Safety network that contains safety devices
- Each chassis that contains one or more GuardLogix® controllers
 - TIP Multiple safety network numbers can be assigned to a CIP Safety subnet or a ControlBus chassis that contains more than one safety device.

 However, for simplicity, we recommend that each CIP Safety subnet has only one unique SNN.

<u>Figure 10</u> shows a CIP safety system with seven different subnets where each subnet has one unique SNN.

Figure 10 - CIP Safety Example with More Than One SNN

The SNN can be software-assigned (time-based) or user-assigned (manual). These two formats of the SNN are described in the following sections.

Time-based Safety Network Number

If the time-based format is selected, the SNN value is the date and time when the number was generated, according to the computer running the configuration software.


Figure 11 - Time-based Format

Manual Safety Network Number

If the manual format is selected, the SNN is entered as values from 1...9999 decimal.

Figure 12 - Manual Entry

Assign the Safety Network Number (SNN)

You can allow the Logix Designer application to automatically assign an SNN, or you can assign the SNN manually.

Automatic Assignment

When a new controller or device is created, a time-based SNN is automatically assigned. Subsequent new safety device additions to the same CIP safety network are assigned the same SNN defined within the lowest address on that CIP safety network.

Manual Assignment

The manual option is intended for routable CIP safety systems where the number of network subnets and interconnecting networks is small, and where you can manage and assign the SNN in a logical manner for your specific application.

See Change the Safety Network Number (SNN) on page 60.

IMPORTANT

If you assign an SNN manually, make sure that system expansion does not result in a duplication of SNN and node address combinations.

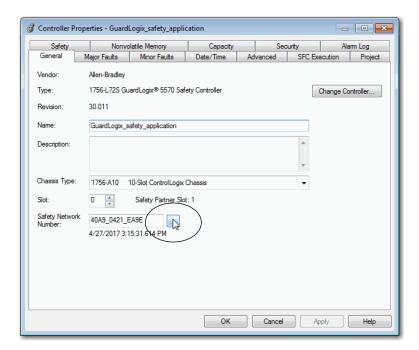
In Logix Designer version 24, a verification error occurs if your project contains duplicate SNN and node address combinations.

In Logix Designer version 26, a warning appears if your project contains duplicate SNN and node address combinations. You can still verify the project but Rockwell Automation recommends that you resolve the duplicate combinations.

Automatic Versus Manual

For typical users, the automatic assignment of an SNN is sufficient. However, manual manipulation of the SNN is required if the following is true:

- Safety consumed tags are used.
- The project consumes safety input data from a module whose configuration is owned by some other device.
- A safety project is copied to another hardware installation within the same routable CIP safety system.

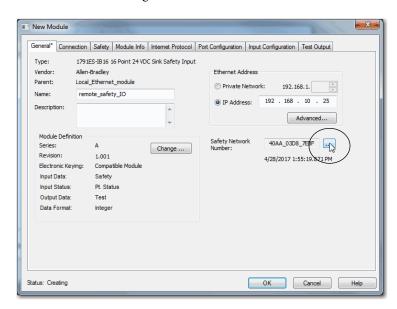

Change the Safety Network Number (SNN)

Before changing the SNN you must do the following:

- Unlock the project, if it is safety-locked.
 See <u>Safety-lock the Controller on page 118</u>.
- Delete the safety task signature, if one exists.
 See <u>Delete the Safety Task Signature on page 122</u>.

Change the Safety Network Number (SNN) of the Controller

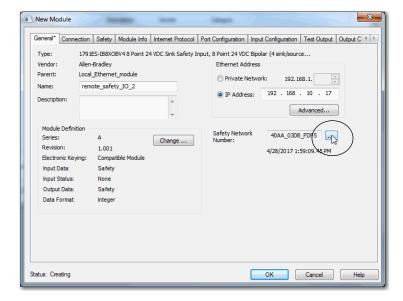
- 1. In the Controller Organizer, right-click the controller and choose Properties.
- 2. On the General tab of the Controller Properties dialog box, click ____ to the right of the safety network number to open the Safety Network Number dialog box.


- 3. Click Time-based and then Generate.
- 4. Click OK.

Change the Safety Network Number (SNN) of Safety I/O Devices on the CIP Safety Network

This example uses an EtherNet/IP[™] network.

- 1. Find the first EtherNet/IP communication module in the I/O Configuration tree.
- 2. Expand the safety I/O devices available through the EtherNet/IP communication module.
- 3. Double-click the first safety I/O device to view the General tab.
- 4. Click ____ to the right of the safety network number to open the Safety Network Number dialog box.



5. Choose Time-based and click Generate to generate a new SNN for that EtherNet/IP network.

6. Highlight the Number and click Copy to copy the new SNN to the Windows Clipboard.

- 7. Click OK to close the Safety Network Number dialog box.
- 8. Click OK to close the Module Properties dialog box.
- 9. Open the General Tab of the Module Properties dialog box for the next safety I/O device under that EtherNet/IP module.
- 10. Click ____ to the right of the safety network number to open the Safety Network Number dialog box.

11. Choose Time-based and click Paste to paste that EtherNet/IP network's SNN into that device.

- 12. Click OK.
- 13. Repeat steps 2...11 for the remaining safety I/O devices under that EtherNet/IP communication module.
- 14. Repeat steps 2...11 for any remaining network communication modules under the I/O Configuration tree.

Copy and Paste a Safety Network Number (SNN)

If the module's configuration is owned by another controller, you can copy and paste the SNN from the configuration owner into the module in your I/O configuration tree.

1. In the software configuration tool of the module's configuration owner, open the Safety Network Number dialog box for the module.

2. Click Copy.

- 3. Click OK to close the dialog box.
- 4. Click the General tab on the Module Properties dialog box of the I/O device in the I/O Configuration tree of the consuming controller project.

This consuming controller is not the configuration owner.

- 5. Click ____ to the right of the safety network number to open the Safety Network Number dialog box.
- 6. Click Paste.

7. Click OK.

EtherNet/IP Communication

For EtherNet/IP network communication in a GuardLogix system, you have several modules to choose from. For CIP safety communication, including safety I/O device control, choose any of the modules shown in <u>Table 17</u>, except the 1756-EWEB module that does not support CIP safety communication.

Table 17 lists the modules and their primary features.

Table 17 - EtherNet/IP Communication Modules and Capabilities

Module	Features
1756-ENBT	 Connect controllers to I/O devices (requires an adapter for distributed I/O). Communicate with other EtherNet/IP devices (messages). Serve as a pathway for data sharing between Logix5000™ controllers (produce/consume). Bridge EtherNet/IP nodes to route messages to devices on other networks.
1756-EN2T	 Perform the same functions as a 1756-ENBT module, with twice the capacity for more demanding applications. Provide a temporary configuration connection via the USB port. Configure IP addresses quickly by using rotary switches.
1756-EN2F	 Perform the same functions as a 1756-EN2T module. Connect fiber media by an LC fiber connector on the module.
1756-EN2TXT	 Perform the same functions as a 1756-EN2T module. Operate in extreme environments with -2570 °C (-13158 °F) temperatures.
1756-EN2TR	Perform the same functions as a 1756-EN2T module. Support communication on a ring topology for a Device Level Ring (DLR) single-fault tolerant ring network.
1756-EN2TRXT	 Perform the same functions as a 1756-EN2T module. Support communication on a ring topology for a Device Level Ring (DLR) single-fault tolerant ring network. Operate in extreme environments with -2570 °C (-13158 °F) temperatures.
1756-EN3TR	Perform the same functions as the 1756-EN2TR module. Two ports for DLR connection.
1756-EWEB	 Provide customizable web pages for external access to controller information. Provide remote access via an Internet browser to tags in a local ControlLogix® controller. Communicate with other EtherNet/IP devices (messages). Bridge EtherNet/IP nodes to route messages to devices on other networks. Support Ethernet devices that are not EtherNet/IP-based with a socket interface. This module does not provide support for I/O or produced/consumed tags, and does not support CIP safety communication.

EtherNet/IP™ communication modules provide the following features:

- Support for messaging, produced/consumed tags, HMI, and distributed I/O
- Encapsulated messages within standard TCP/UDP/IP protocol
- A common application layer with ControlNet[™] and DeviceNet[™] networks
- Interface via RJ45, category 5, unshielded, twisted-pair cable
- Support for half/full duplex 10 M or 100 M operation
- Work with standard switches
- No network scheduling required
- No routing tables required

These products are available for EtherNet/IP networks.

Table 18 - Product for EtherNet/IP Modules

Product	Is Used to	Required
Studio 5000® environment	Configure the controller project Define EtherNet/IP communication	Yes
BOOTP/DHCP utility ⁽¹⁾	Assign IP addresses to devices on an EtherNet/IP network	No
RSNetWorx™ for EtherNet/IP software	Configure EtherNet/IP devices by IP addresses and/or host names	No
RSLinx® software	Configure devices Establish communication between devices Provide diagnostics	Yes

⁽¹⁾ This utility comes with the Studio 5000 environment.

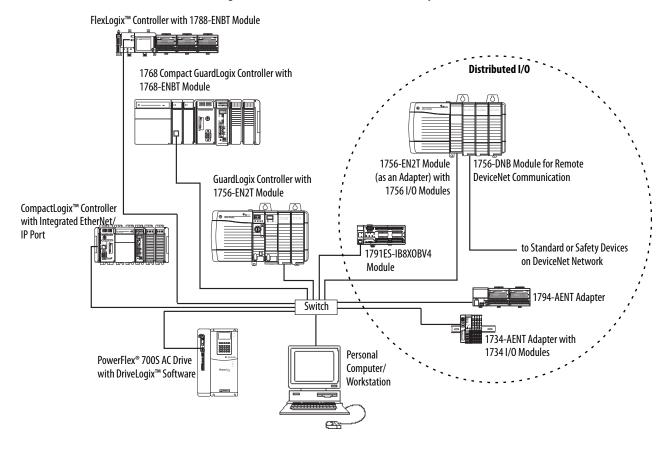
Producing and Consuming Data via an EtherNet/IP Network

The controller supports the ability to produce (send) and consume (receive) tags over an EtherNet/IP network. Produced and consumed tags each require connections. The total number of tags that can be produced or consumed is limited by the number of available connections.

Connections over the EtherNet/IP Network

You indirectly determine the number of connections the safety controller uses by configuring the controller to communicate with other devices in the system. Connections are allocations of resources that provide more reliable communication between devices compared to unconnected messages (message instructions).

EtherNet/IP connections are unscheduled. An unscheduled connection is triggered by the requested packet interval (RPI) for I/O control or the program (such as an MSG instruction). Unscheduled messaging lets you send and receive data when needed.


The 1756-ENBT EtherNet/IP communication module supports 128 Common Industrial Protocol (CIP) connections over an EtherNet/IP network. The 1756-EN2T, 1756-EN2TR, and 1756-EN3TR communication modules support 256 CIP connections.

EtherNet/IP Communication Examples

Figure 13 illustrates the following communication functions:

- The controllers can produce and consume standard or safety tags between each other.
- The controllers can initiate MSG instructions that send/receive standard data or configure devices. (1)
- The EtherNet/IP communication module is used as a bridge, letting the safety controller produce and consume standard and safety data.
- The workstation can upload/download projects to the controllers.
- The workstation can configure devices on the EtherNet/IP network.

Figure 13 - EtherNet/IP Communication Example

⁽¹⁾ GuardLogix controllers do not support MSG instructions for safety data.

In the Logix Designer application, version 24 and later, the controller supports both standard and safety via a single connection.

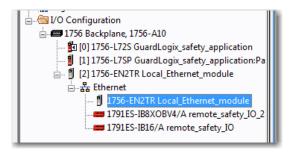
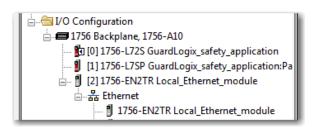

1768 Compact GuardLogix Controller with Distributed I/O 1768-ENBT Module 1756-EN2T Module 1756-DNB Module for Remote PowerFlex 527 GuardLogix Controller with (as an adapter) with **DeviceNet Communication AC Drive** 1756-EN2T Module 1756 I/O Modules Ø to Standard or Safety Devices on DeviceNet Network 1791ES-IB8XOBV4 Module 1794-AENT Adapter Switch 1734-AENT Adapter with 1734 I/O Modules Personal Computer/ Workstation PowerFlex 700S AC Drive with Kinetix® 5500 or Kinetix 5700 DriveLogix Software Servo Drive (multi-axis sharedbus configuration)

Figure 14 - EtherNet/IP Communication with Standard and Safety Connection Example

EtherNet/IP Connections for Safety I/O Devices

Safety I/O devices on EtherNet/IP networks are added to the project under the EtherNet/IP communication module as described in <u>Add Safety I/O</u> <u>Devices on page 75</u>. When you add a safety I/O device, the Logix Designer application automatically creates controller-scoped safety data tags for that device.

Figure 15 - Adding EtherNet/IP Modules to the Project


Standard EtherNet/IP Connections

To use a standard EtherNet/IP module with the safety controller, add the module to the safety controller project and download the project to the GuardLogix controller.

1. To configure the module, define the IP address, subnet mask, and gateway.

EtherNet/IP Parameter	Description
IP address	The IP address uniquely identifies the module. The IP address is in the form xxx.xxx.xxx.xxx. where each xxx is a number between 0 and 255. However, there are some values that you cannot use as the first octet in the address:
	000.xxx.xxx.xxx 127.xxx.xxx.xxx 223255.xxx.xxx.xxx
Subnet mask	Subnet addressing is an extension of the IP address scheme that lets a site use one network ID for multiple physical networks. Routing outside of the site continues by dividing the IP address into a net ID and a host ID via the class. Inside a site, the subnet mask is used to redivide the IP address into a custom network ID portion and host ID portion. This field is set to 0.0.0.0 by default.
	If you change the subnet mask of an already-configured module, you must cycle power for the change to take effect.
Gateway	A gateway connects individual physical networks into a system of networks. When a node needs to communicate with a node on another network, a gateway transfers the data between the two networks. This field is set to 0.0.0.0 by default.

 After you physically install an EtherNet/IP module and set its IP address, add the module to the Controller Organizer in your GuardLogix controller project.

3. Use the Logix Designer application to download the project.

ControlNet Communication

For ControlNet communication, choose a 1756-CNB or 1756-CNBR module for standard communication, or a 1756-CN2, 1756-CN2R, or 1756-CN2RXT module for safety communication.

Table 19 - ControlNet Modules

If your application	Select
 Controls standard I/O devices Requires an adapter for distributed I/O on ControlNet links Communicates with other ControlNet devices (messages) Shares standard data with other Logix5000 controllers (produce/consume) Bridges ControlNet links to route messages to devices on other networks 	1756-CNB
 Performs same functions as a 1756-CNB module Also supports redundant ControlNet media 	1756-CNBR
Performs the same functions supported by the 1756-CNB module with higher performance Supports CIP safety communication	1756-CN2
 Performs same functions as a 1756-CN2 module Also supports redundant ControlNet media 	1756-CN2R
 Perform the same functions as a 1756-CN2R module Operate in extreme environments with -2570 °C (-13158 °F) temperatures 	1756-CN2RXT

These products are available for ControlNet networks.

Table 20 - Products for ControlNet Modules

Product	Is Used to	Required
Studio 5000 environment	Configure the GuardLogix project Define ControlNet communication	Yes
RSNetWorx for ControlNet software	Configure the ControlNet network Define the network update time (NUT) Schedule the ControlNet network	Yes
RSLinx software	Configure devices Establish communication between devices Provide diagnostics	Yes

The ControlNet communication modules provide the following:

- Support for messaging, produced/consumed safety and standard tags, and distributed I/O
- They support the use of coax and fiber repeaters for isolation and increased distance.

Producing and Consuming Data via a ControlNet Network

The GuardLogix controller supports the ability to produce (send) and consume (receive) tags over ControlNet networks. The total number of tags that can be produced or consumed is limited by the number of available connections in the GuardLogix controller.

Connections over the ControlNet Network

The number of connections the controller uses is determined by how you configure the controller to communicate with other devices in the system. Connections are allocations of resources that provide more reliable communication between devices compared to unconnected messages.

ControlNet connections can be scheduled or unscheduled.

Table 21 - ControlNet Connections

Connection Type	Description	
Scheduled (unique to the ControlNet network)	A scheduled connection is unique to ControlNet communication. A scheduled connection lets you send and receive data repeatedly at a predetermined interval that is the requested packet interval (RPI). For example, a connection to an I/O device is a scheduled connection because you repeatedly receive data from the module at a specified interval. Other scheduled connections include connections to the following: - Communication devices - Produced/consumed tags On a ControlNet network, you must use RSNetWorx for ControlNet software to enable scheduled connections and establish a network update time (NUT). Scheduling a connection reserves network bandwidth to specifically handle the connection.	
Unscheduled	An unscheduled connection is a message transfer between controllers that is triggered by the requested packet interval (RPI) or to program (such as an MSG instruction). Unscheduled messaging lets you send and receive data when needed. Unscheduled connections use the remainder of network bandwidth after scheduled connections are allocated. Safety produced/consumed connections are unscheduled.	

The 1756-CNB and 1756-CNBR communication modules support 64 CIP connections over a ControlNet network. However, we recommend that you configure no more than 48 connections to maintain optimal performance.

The 1756-CN2 module supports 128 CIP connections over the ControlNet network.

ControlNet Communication Example

This example illustrates the following:

- GuardLogix controllers can produce and consume standard or safety tags between each other.
- GuardLogix controllers can initiate MSG instructions that send/receive standard data or configure devices.⁽¹⁾
- The 1756-CN2 module can be used as a bridge, letting the GuardLogix controller produce and consume standard and safety data to and from I/ O devices.
- The personal computer can upload/download projects to the controllers.
- The personal computer can configure devices on the ControlNet network, and it can configure the network itself.

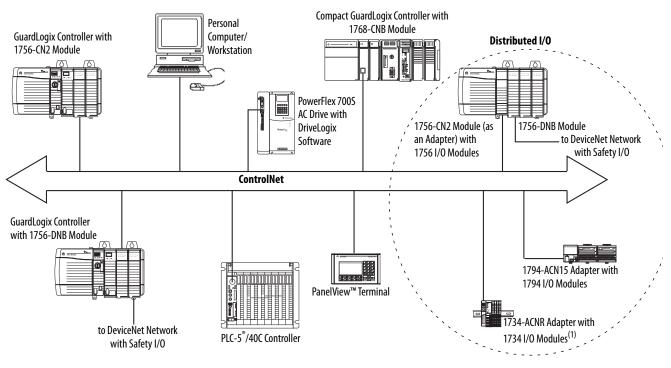


Figure 16 - ControlNet Communication Example

(1) The 1734-ACN adapter does not support POINT Guard Safety I/O modules.

ControlNet Connections for Distributed I/O

To communicate with distributed I/O devices over a ControlNet network, add a ControlNet bridge, a ControlNet adapter, and I/O devices to the controller's I/O Configuration folder.

⁽¹⁾ GuardLogix controllers do not support MSG instructions for safety data.

DeviceNet Communication

To communicate and exchange data with safety I/O devices on DeviceNet networks, you need a 1756-DNB module in the local chassis.

For information on how to install your 1756-DNB module, refer to the ControlLogix DeviceNet Scanner Module Installation Instructions, publication 1756-IN566.

The 1756-DNB module supports communication with DeviceNet Safety devices and standard DeviceNet devices. You can use both types.

These products are used with the DeviceNet networks and 1756-DNB module.

Table 22 - Product for Use with DeviceNet Networks

Product	Is used to	Required
Studio 5000 environment	Configure ControlLogix projects. Define DeviceNet communication.	Yes
RSNetWorx for DeviceNet software	Configure DeviceNet devices. Define the scan list for those devices.	Yes
RSLinx Classic or RSLinx Enterprise software	Configure communication devices. Provide diagnostics. Establish communication between devices.	Yes

DeviceNet Connections for Safety I/O Devices

To access safety I/O devices on DeviceNet networks, add a 1756-DNB to the I/O Configuration tree of the GuardLogix controller project.

Safety I/O devices on DeviceNet networks are added to the project under the 1756-DNB module, as described in <u>Chapter 5</u>, <u>Add, Configure, Monitor, and Replace CIP Safety I/O Devices</u>. When you add a safety I/O device, the Logix Designer application automatically creates controller-scoped safety data tags for that device.

| I/O Configuration | I/O Configuration | I/O |

Figure 17 - DeviceNet Module in Controller in the I/O Configuration Tree

Standard DeviceNet Connections

If you use standard DeviceNet I/O with your GuardLogix controller, you need to allocate two connections for each 1756-DNB module. One connection is for module status and configuration. The other connection is a rack-optimized connection for the DeviceNet I/O data.

To use the 1756-DNB module to access standard data via the DeviceNet network, you must use RSNetWorx for DeviceNet software to do the following:

- Create a configuration file for the network.
- Configure each standard device on the network.
- Configure the 1756-DNB.
- Add the standard I/O devices to the 1756-DNB scan list.

When you add the 1756-DNB module to the I/O Configuration of the controller, the Logix Designer application automatically creates a set of standard tags for the input, output, and status data of the network.

Add, Configure, Monitor, and Replace CIP Safety I/O Devices

Topic	Page
Add Safety I/O Devices	75
Configure Safety I/O Devices	76
Set the IP Address by Using Network Address Translation (NAT)	78
Set the Safety Network Number (SNN)	79
Use Unicast Connections on EtherNet/IP Networks	79
Set the Connection Reaction Time Limit	79
Understanding the Configuration Signature	85
Reset Safety I/O Device Ownership	86
Address Safety I/O Data	86
Monitor Safety I/O Device Status	88
Reset a Module to Out-of-box Condition	89
Replace a Device by Using the Logix Designer Application	90
Replace a POINT Guard I/O Module by Using RSNetWorx for DeviceNet Software	97

For more information on installation, configuration, and operation of safety I/O devices, refer to <u>Additional Resources on page 11</u>.

Add Safety I/O Devices

When you add a safety I/O device to the system, you must define a configuration for the device, including the following:

- Node address for DeviceNet[™] networks
 - You cannot set the node address of a safety I/O device on DeviceNet networks via the Studio 5000 Logix Designer* application. Node addresses are set via rotary switches on the devices.
- IP address for EtherNet/IP[™] networks
 - To set the IP address you can adjust the rotary switches on the device; use DHCP software (available from Rockwell Automation); use the Logix Designer application; or retrieve the default address from nonvolatile memory.
- Safety network number (SNN)
 - See page <u>79</u> for information on setting the SNN.

Configuration signature

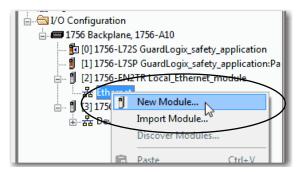
See page <u>85</u> for information on when the configuration signature is set automatically and when you need to set it.

• Reaction time limit

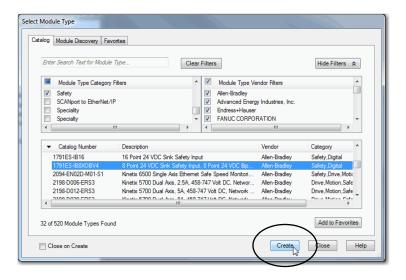
See page 79 for information on setting the reaction time limit.

 Safety input, output, and test parameters complete the module configuration

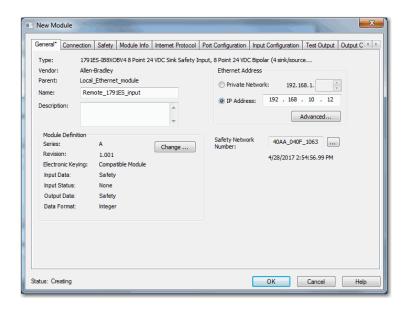
You can configure safety I/O devices via the GuardLogix® controller by using the Logix Designer application.


TIP Safety I/O devices support standard and safety data. Device configuration defines what data is available.

Configure Safety I/O Devices


Add the safety I/O device to the communication module under the I/O Configuration folder of the controller project.

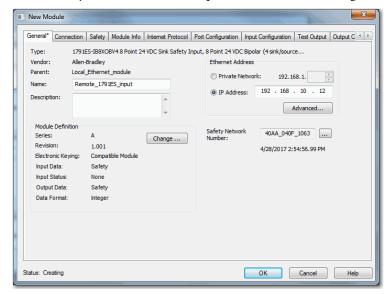
TIP You cannot add or delete a safety I/O device while online.


 Right-click the DeviceNet or Ethernet network and choose New Module.

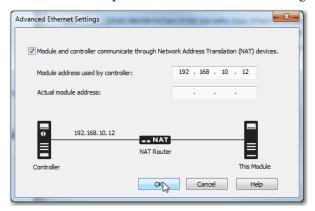
- 2. From the Catalog tab, select the safety I/O device.
 - **TIP** Use the filters to reduce the list of modules to choose from.

- 3. Click Create.
- 4. Type a name for the new device.

- 5. To modify the Module Definition settings, click Change (if required).
- 6. Enter the node address for DeviceNet networks, or the IP address for EtherNet/IP networks.
 - Only unused node numbers are included in the pull-down menu.
 - If your network uses network address translation (NAT), see <u>Set the IP</u> <u>Address by Using Network Address Translation (NAT) on page 78</u>.
- 7. To modify the Safety Network Number, click the ____ button (if required).
 - See page 79 for details.
- 8. Set the Connection Reaction Time Limit by using the Safety tab. See page 79 for details.
- 9. To complete configuration of the safety I/O device, refer to its user documentation and the Logix Designer application's online help.


Set the IP Address by Using Network Address Translation (NAT)

NAT translates one IP address to another IP address via a NAT-configured router or switch. The router or switch translates the source and destination addresses within data packets as traffic passes between subnets.


This service is useful if you need to reuse IP addresses throughout a network. For example, NAT makes it possible for devices to be segmented into multiple identical private subnets while maintaining unique identities on the public subnet.

If you are using NAT, follow these steps to set the IP address.

In the IP Address field, type the IP address that the controller will use.
 This is usually the IP address on the public network when using NAT.

2. Click Advanced to open the Advanced Ethernet Settings dialog box.

- 3. Check the checkbox to indicate that this module and the controller communicate through NAT devices.
- 4. Type the Actual module address.
 - **TIP** If you configured the IP address using the rotary switches, this is the address you set on the device. Alternately, the Actual module address is the same address shown on the device's Internet Protocol tab.

5. Click OK.

The controller uses the translated address but CIP Safety protocol requires the actual address of the device.

Set the Safety Network Number (SNN)

The assignment of a time-based SNN is automatic when adding new safety I/O devices. Subsequent safety device additions to the same network are assigned the same SNN defined within the lowest address on that CIP Safety network.

For most applications, the automatic, time-based SNN is sufficient. However, there are cases when the manipulation of an SNN is required.

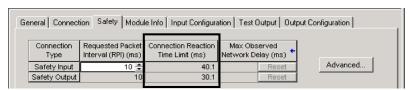
See Assign the Safety Network Number (SNN) on page 59.

Use Unicast Connections on EtherNet/IP Networks

Unicast connections are point-to-point connections between a source and a destination node. You do not have to enter a minimum or maximum RPI range or default value for this type of connection.

To configure unicast connections, choose the Connection tab and check Use Unicast Connection over EtherNet/IP.

Set the Connection Reaction Time Limit

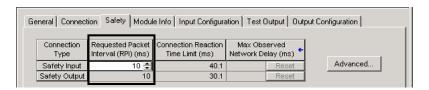

The Connection Reaction Time Limit is the maximum age of safety packets on the associated connection. If the age of the data used by the consuming device exceeds the Connection Reaction Time Limit, a connection fault occurs. The Connection Reaction Time Limit is determined by the following equations:

Input Connection Reaction Time Limit =
Input RPI x [Timeout Multiplier + Network Delay Multiplier]

Output Connection Reaction Time Limit = Safety Task Period x [Timeout Multiplier + Network Delay Multiplier - 1]

The Connection Reaction Time Limit is shown on the Safety tab of the Module Properties dialog box.

Figure 18 - Connection Reaction Time Limit


Specify the Requested Packet Interval (RPI)

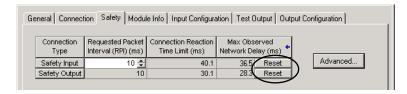
The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign.

For safety input connections, you can set the RPI on the Safety tab of the Module Properties dialog box. The RPI is entered in 1 ms increments, with a range of 1...100 ms. The default is 10 ms.

The Connection Reaction Time Limit is adjusted immediately when the RPI is changed via the Logix Designer application.

Figure 19 - Requested Packet Interval

For safety output connections, the RPI is fixed at the safety task period. If the corresponding Connection Time Reaction Limit is not satisfactory, you can adjust the safety task period via the Safety Task Properties dialog box.

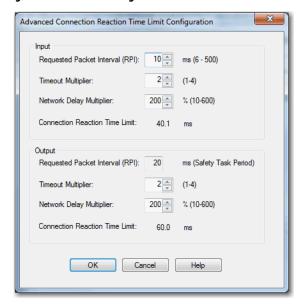

See <u>Safety Task Period Specification on page 102</u> for more information on the safety task period.

For typical applications, the default RPI is usually sufficient. For more complex requirements, use the Advanced button to modify the Connection Reaction Time Limit parameters, as described on page <u>82</u>.

View the Maximum Observed Network Delay

When the GuardLogix controller receives a safety packet, the software records the maximum observed network delay. For safety inputs, the Maximum Observed Network Delay displays the round-trip delay from the input module to the controller and the acknowledge back to the input module. For safety outputs, it displays the round-trip delay from the controller to the output module and the acknowledge back to the controller. The Maximum Observed Network Delay is shown on the Safety tab of the Module Properties dialog box. When online, click Reset to reset the Maximum Observed Network Delay.

Figure 20 - Reset the Max Observed Network Delay


IMPORTANT

The actual Maximum Network Delay time from the producer to the consumer is less than the value displayed in the Maximum Network Delay field on the Safety tab. In general, the actual maximum message delay is approximately one-half the Maximum Network Delay value that is displayed.

Set the Advanced Connection Reaction Time Limit Parameters

Configure connection parameters like the timeout multiplier and network delay multiplier on the Advanced Connection Reaction Time Limit dialog box.

Figure 21 - Advanced Configuration

Timeout Multiplier

The Timeout Multiplier determines the number of RPIs to wait for a packet before declaring a connection timeout. This translates into the number of messages that can be lost before a connection error is declared.

For example, a timeout multiplier of 1 indicates that messages must be received during each RPI interval. A Timeout Multiplier of 2 indicates that 1 message can be lost as long as at least 1 message is received in 2 times the RPI (2 x RPI).

Network Delay Multiplier

The Network Delay Multiplier defines the message transport time that is enforced by the CIP Safety protocol. The Network Delay Multiplier specifies the round-trip delay from the producer to the consumer and the acknowledge back to the producer. You can use the Network Delay Multiplier to reduce or increase the Connection Reaction Time Limit in cases where the enforced message transport time is significantly less or more than the RPI. For example, adjusting the Network Delay Multiplier can be helpful when the RPI of an output connection is the same as a lengthy safety task period.

For cases where the input RPI or output RPI are relatively slow or fast as compared to the enforced message delay time, the Network Delay Multiplier can be approximated by using one of the two methods.

Method 1: Use the ratio between the input RPI and the safety task period. Use this method only when all of the following conditions apply:

- If the path or delay is approximately equal to the output path or delay.
- The input RPI has been configured so that the actual input message transport time is less than the input RPI.
- The safety task period is slow relative to the Input RPI.

Under these conditions, the Output Network Delay Multiplier can be approximated as follows:

Input Network Delay Multiplier x [Input RPI ÷ Safety Task Period]

EXAMPLE Calculate the Approximate Output Network Delay Multiplier

lf:

Input RPI = 10 ms Input Network Delay Multiplier = 200% Safety Task Period = 20 ms

Then, the Output Network Delay Multiplier equals:

 $200\% \text{ x } [10 \div 20] = 100\%$

Method 2: Use the Maximum Observed Network Delay. If the system is run for an extended period of time through its worst-case loading conditions, the Network Delay Multiplier can be set from the Maximum Observed Network Delay. This method can be used on an input or output connection. After the system has been run for an extended period of time through its worst-case loading conditions, record the Maximum Observed Network Delay.

The Network Delay Multiplier can be approximated by the following equation:

[Maximum Observed Network Delay + Margin_Factor] ÷ RPI

EXAMPLE Calculate the Network Delay Multiplier from Maximum Observed Network Delay

lf:

 $RPI = 50 \, ms$

Maximum Observed Network Delay = 20 ms

Margin_Factor = 10

Then, the Network Delay Multiplier equals:

 $[20 + 10] \div 50 = 60\%$

Table 23 - Additional Resources

Resource	Description	
GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication <u>1756-RM099</u>		
Guard I/O™ DeviceNet Safety Modules User Manual, publication 1791DS-UM001	Provides information on calculating reaction times.	
Guard I/O EtherNet/IP Safety Modules User Manual, publication 1791ES-UM001		

Understanding the Configuration Signature

Each safety device has a unique configuration signature that defines the module configuration. The configuration signature is composed of an ID number, date, and time, and is used to verify a module's configuration.

Configuration via the Logix Designer Application

When the I/O device is configured by using the Logix Designer application, the configuration signature is generated automatically. You can view and copy the configuration signature via the Safety tab on the Module Properties dialog box.

Figure 22 - View and Copy the Configuration Signature

Different Configuration Owner (listen-only connection)

When the I/O device configuration is owned by another controller, you need to copy the module configuration signature from its owner's project and paste it into the Safety tab of the Module Properties dialog box.

TIP If the device is only configured for inputs, you can copy and paste the configuration signature. If the device has safety outputs, they are owned by the controller that owns the configuration, and the configuration signature text box is unavailable.

Reset Safety I/O Device Ownership

When the controller project is online, the Safety tab of the Module Properties dialog box displays the current configuration ownership. When the opened project owns the configuration, Local is displayed. When a second device owns the configuration, Remote is displayed, along with the safety network number (SNN), and node address or slot number of the configuration owner. Communication error is displayed if the device read fails.

When online, click Reset Ownership to reset the device to its out-of-box configuration.

TIP You cannot reset ownership when there are pending edits to the module properties, when a safety task signature exists, or when safety-locked.

Address Safety I/O Data

When you add a device to the I/O configuration folder, the Logix Designer application automatically creates controller-scoped tags for the device.

I/O information is presented as a set of tags. Each tag uses a structure of data, depending on the type and features of the I/O device. The name of a tag is based on the device's name in the system.

Safety I/O Modules Address Format

A Safety I/O module address follows this example.

EXAMPLE Modulename:Type.Member

Table 24 - Safety I/O Device Address Format

Where	Is		
Modulename	The name of the safety	The name of the safety I/O device	
Туре	Type of data Input: I Output: 0		
Member	Specific data from the I/O device		
	Input-only module	Modulename:I.RunMode Modulename:I.ConnectionFaulted Modulename:I.Input Members	
	Output-only module	Modulename:1.RunMode Modulename:1.ConnectionFaulted Modulename:0.Output Members	
	Combination I/O	Modulename:1.RunMode Modulename:1.ConnectionFaulted Modulename:1.Input Members Modulename:0.Output Members	

Kinetix 5500, Kinetix 5700, and PowerFlex 527 Drive Address Format

A Kinetix* 5500, Kinetix 5700, and PowerFlex* 527 drive address follows this example.

EXAMPLE Drivename:Type.Member

Table 25 - Drive Safety I/O Device Address Format

Where	Is	Is	
Drivename	The name of the Kine	The name of the Kinetix or PowerFlex drive	
Туре	Type of data	Input: SI Output: SO	
Member	Specific data from the	1/0 device	
The model	Input-only module	Drivename:SI.ConnectionStatus Drivename:SI.RunMode Drivename:SI.ConnectionFaulted Drivename:SI.Status Drivename:SI.TorqueDisabled Drivename:SI.SafetyFault Drivename:SI.ResetRequired	
	Output-only module	Drivename:SO.Command Drivename:SO.SafeTorqueOff Drivename:SO.Reset	

Table 26 - Additional Resources

Resource	Description
Chapter 9, Monitor Status and Handle Faults	Contains information on monitoring safety tag data
Logix5000™ Controllers I/O and Tag Data Programming Manual, publication <u>1756-PM004</u>	Provides information on addressing standard I/O devices

Monitor Safety I/O Device Status

You can monitor safety I/O device status via Explicit Messaging or via the status indicators on the I/O modules. Refer to the Guard I/O manuals listed in Additional Resources on page 11 for information on I/O module troubleshooting.

Table 27 - Status Indicator Operation for Guard I/O Modules

Indicator	Status	Description		
		Guard I/O DeviceNet Modules	Guard I/O EtherNet/IP Modules	POINT Guard I/O™ Modules
	Off	No power.		
Green, on Green, flashing		Operating under normal conditions.		
		Device is idle.		
Module Status (MS) Red, flashing	A recoverable fault exists.	A recoverable fault exists or a firmware upda	te is in progress.	
	Red, on	An unrecoverable fault exists.		
	Red/Green, flashing	Self-tests in progress. Self-tests are in progress or the module is not configured properly. See the network state indicator for more information.		
	Off	Device is not online or does not have power.		
	Green, on	Device is online; connections are established.		
letwork	Green, flashing	Device is online; no connections established.		
Status (NS)	Red, flashing	Communication timeout.	Communication timeout or a firmware updat	te is in progress.
	Red, on	Communication failure. The device has detect	ed an error that has prevented network comm	unication.
	Red/Green, flashing	Device is in Communication Faulted state or safety network number (SNN) is being set.	Self-test in progress.	Not applicable.
	Off	Safety input is OFF.		•
nput Points	Yellow, on	Safety input is ON.		
IŃx)	Red, on	An error has occurred in the input circuit.		
	Red, flashing	When dual-channel operation is selected, an	error has occurred in the partner input circuit.	
	Off	Safety output is OFF.		
Output Points	Yellow, on	Safety output is ON.		
0x)	Red, on	An error has occurred in the output circuit.		
	Red, flashing	When dual-channel operation is selected, an	error has occurred in the partner output circuit	•
est Output	Off		The output is OFF.	
Points (Tx)	Yellow, on	Not applicable.	The output is ON.	Not applicable.
	Red, on		An error has occurred in the output circuit.	
OCK	Yellow, on	Device configuration is locked.		
	Yellow, flashing	Device configuration is valid, but device is not locked.	The Logix Designer application does not supp	port this function.
	Yellow, off	Invalid, no configuration data, or device has been configured.		
N PWR	Green, off	No input power.		
	Green, on	Input power voltage is within specification.		
	Yellow, on	Input power voltage is out of specification.	nput power voltage is out of specification.	
OUT PWR Green, off Green, on		No output power.		Not applicable.
		Output power voltage is within specification.		
	Yellow, on	Output power voltage is out of specification.		
PWR	Green, off			No power.
	Green, on	Not applicable.		Power voltage is within specification.
	Yellow, on			Power voltage is out of specification.

See <u>page 11</u> for more information on the Kinetix 5500, Kinetix 5700, and PowerFlex 527 drive status indicators.

Reset a Module to Out-of-box Condition

If a Guard I/O module was used previously, clear the existing configuration before installing it on a safety network by resetting the module to its out-of-box condition.

When the controller project is online, the Safety tab of the Module Properties dialog box displays the current configuration ownership. When the opened project owns the configuration, Local is displayed. When a second device owns the configuration, Remote is displayed, along with the safety network number (SNN), and node address or slot number of the configuration owner. Communication error is displayed if the module read fails.

If the connection is Local, you must inhibit the module connection before resetting ownership. Follow these steps to inhibit the module.

- 1. Right-click the module and choose Properties.
- 2. Click the Connection tab.
- 3. Check Inhibit Connection.
- 4. Click Apply and then OK.

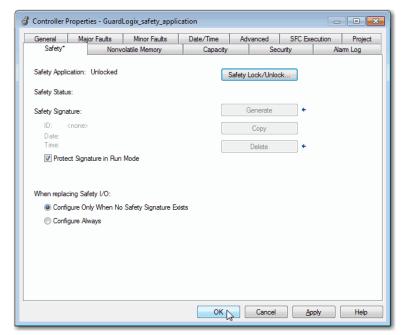
Follow these steps to reset the module to its out-of-box configuration when online.

- 1. Right-click the module and choose Properties.
- 2. Click the Safety tab.
- 3. Click Reset Ownership.

Replace a Device by Using the Logix Designer Application

You can use the Logix Designer application to replace a safety I/O device on an Ethernet network. To replace a Guard I/O module on a DeviceNet network, your choice depends on the type of module.

Table 28 - Software


If you are using a	Use	See
1791DS Guard I/O module with 1756-DNB adapter	The Logix Designer application	Below
1734 POINT Guard I/O module with a 1734-PDN adapter	RSNetWorx™ for DeviceNet software	Replace a POINT Guard I/O Module by Using RSNetWorx for DeviceNet Software on page 97

If you are relying on a portion of the CIP Safety system to maintain SIL 3 behavior during device replacement and functional testing, the Configure Always feature cannot be used. Go to Replacement with 'Configure Only When No Safety Signature Exists' Enabled on page 91.

If the entire routable CIP Safety control system is not being relied on to maintain SIL 3/PLe during the replacement and functional testing of a device, the Configure Always feature can be used. Go to Replacement with 'Configure Always' Enabled on page 96.

Safety I/O device replacement is configured on the Safety tab of the GuardLogix controller.

Figure 23 - Safety I/O Device Replacement

Replacement with 'Configure Only When No Safety Signature Exists' Enabled

When a safety I/O device is replaced, the configuration is downloaded from the safety controller if the DeviceID of the new device matches the original. The DeviceID is a combination of the node/IP address and the Safety Network Number (SNN) and is updated whenever the SNN is set.

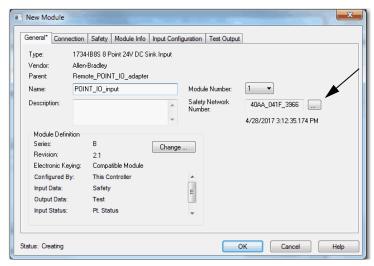
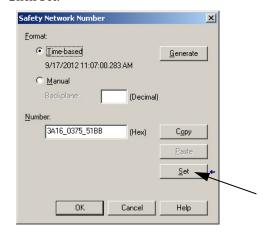
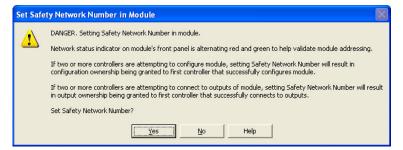

If the project is configured as 'Configure Only When No Safety Signature Exists', follow the appropriate steps in <u>Table 29</u> to replace a safety I/O device based on your scenario. Once you have completed the steps correctly, the DeviceID matches the original, enabling the safety controller to download the proper device configuration, and re-establish the safety connection.

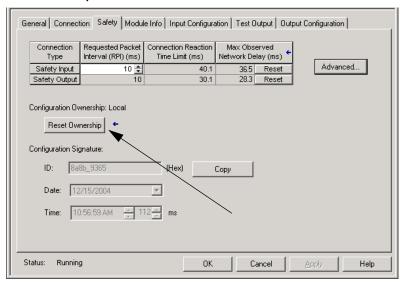
Table 29 - Replacing a Module

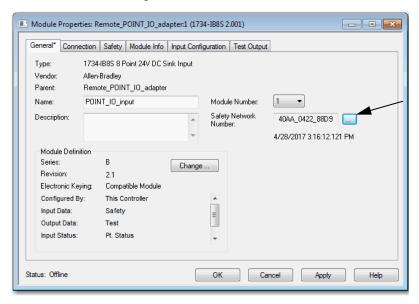

GuardLogix Safety Signature Exists	Replacement Module Condition	Action Required
No	No SNN (Out-of-box)	None. The device is ready for use.
Yes or No	Same SNN as original safety task configuration	None. The device is ready for use.
Yes	No SNN (Out-of-box)	See Scenario 1 - Replacement Device Is Out-of-box and Safety Signature Exists on page 92.
Yes	Different SNN from original safety task	See Scenario 2 - Replacement Device SNN Is Different from Original and Safety Signature Exists on page 93.
No	configuration	See Scenario 3 - Replacement Device SNN Is Different from Original and No Safety Signature Exists on page 95.

Scenario 1 - Replacement Device Is Out-of-box and Safety Signature Exists

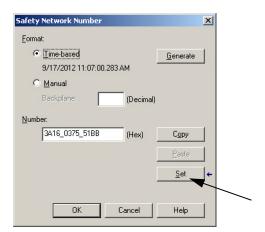

- 1. Remove the old I/O device and install the new device.
- 2. Right-click the replacement safety I/O device and choose Properties.
- 3. Click ____ to the right of the safety network number to open the Safety Network Number dialog box.

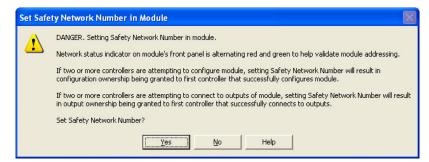
4. Click Set.


5. Verify that the Network Status (NS) status indicator is alternating red/ green on the correct device before clicking Yes on the confirmation dialog box to set the SNN and accept the replacement device.

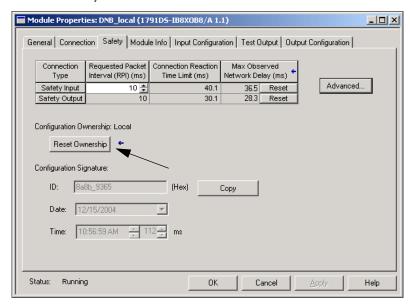

6. Follow your company-prescribed procedures to functionally test the replaced I/O device and system and to authorize the system for use.

Scenario 2 - Replacement Device SNN Is Different from Original and Safety Signature Exists


- 1. Remove the old I/O device and install the new device.
- 2. Right-click your safety I/O device and choose Properties.
- 3. Click the Safety tab.


- 4. Click Reset Ownership.
- 5. Click OK.
- 6. Right-click the device and choose Properties.
- 7. Click ____ to the right of the safety network number to open the Safety Network Number dialog box.

8. Click Set.


9. Verify that the Network Status (NS) status indicator is alternating red/green on the correct device before clicking Yes on the confirmation dialog box to set the SNN and accept the replacement device.

10. Follow your company-prescribed procedures to functionally test the replaced I/O device and system and to authorize the system for use.

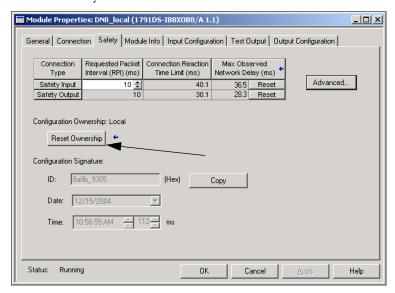
Scenario 3 - Replacement Device SNN Is Different from Original and No Safety Signature Exists

- 1. Remove the old I/O device and install the new device.
- 2. Right-click your safety I/O device and choose Properties.
- 3. Click the Safety tab.

- 4. Click Reset Ownership.
- 5. Click OK.
- 6. Follow your company-prescribed procedures to functionally test the replaced I/O device and system and to authorize the system for use.

Replacement with 'Configure Always' Enabled

ATTENTION: Enable the 'Configure Always' feature only if the entire CIP Safety Control System is **not** being relied on to maintain SIL 3 behavior during the replacement and functional testing of a device.

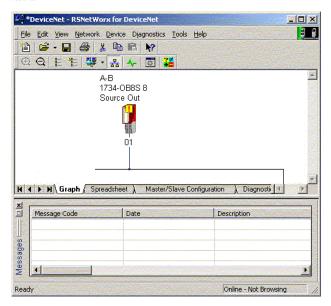

Do not place devices that are in the out-of-box condition on a CIP Safety network when the Configure Always feature is enabled, except while following this replacement procedure.

When the 'Configure Always' feature is enabled in the controller project, the controller automatically checks for and connects to a replacement device that meets all of the following requirements:

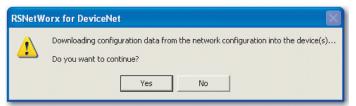
- The controller has configuration data for a compatible device at that network address.
- The device is in out-of-box condition or has an SNN that matches the configuration.

If the project is configured for 'Configure Always', follow the appropriate steps to replace a safety I/O device.

- 1. Remove the old I/O device and install the new device.
 - a. If the device is in out-of-box condition, go to step <u>6</u>.
 No action is needed for the GuardLogix controller to take ownership of the device.
 - b. If an SNN mismatch error occurs, go to the next step to reset the device to out-of-box condition.
- 2. Right-click your safety I/O device and choose Properties.
- 3. Click the Safety tab.


- 4. Click Reset Ownership.
- 5. Click OK.
- 6. Follow your company-prescribed procedures to functionally test the replaced I/O device and system and to authorize the system for use.

Replace a POINT Guard I/O Module by Using RSNetWorx for DeviceNet Software

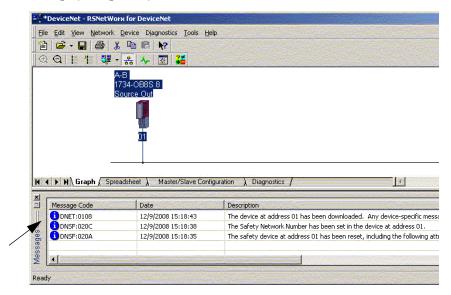

Follow these steps to replace a POINT Guard I/O module when the module and the controller are on a DeviceNet network.

- 1. Replace the module and match the node number of the original module.
- 2. In RSNetWorx for DeviceNet software, open your project.

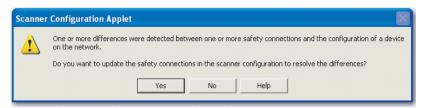
If the replacement module is out-of-box or has an SNN that does not match the original module, the module appears with an exclamation mark.

3. Right-click the module and choose Download to Device.

- 4. Click Yes to confirm.
- 5. Click Download on the Safety Network Number Mismatch dialog box to set the SNN on the replacement module.


6. Verify that the (NS) network status indicator is flashing on the correct module and click OK to set the SNN on that device.

RSNetWorx for DeviceNet software confirms that the SNN has been set.



Once the download is completes successfully, the main project view displays this message: 'The device at address xx has been downloaded. Any device-specific messages related to the download operation are displayed separately.'

Assuming this is the proper configuration from the original DNT file, the SNN and configuration signature now match that of the original. If you are already connected to the controller, a connection is made. The controller does not need to be taken out of Run mode to download to the replacement module.

If you download this configuration to a temporary setup, place the module on the network and it automatically connects to the controller. If the configuration downloaded to the module is not from the original DNT file, the configuration signature does not match the original. Even if you recreate the same parameters in a new DNT file, the time and date portions of the signature are different so the connection to the controller is not made. If this occurs, click the Safety Connection tab for the controller that prompted you that the configuration signature is different and provides you with the option to match the new configuration signature. However, first re-validate the safety system, because it is not using the original DNT file.

7. Click Yes.

This takes the controller out of Run mode and prompts you to download the changes.

- 8. Click Yes to download the new connection configuration to the controller.
 - After the download is complete, place the controller back in Run mode and the connection to the replacement module is established.
- 9. Follow your company-prescribed procedures to functionally test the replaced I/O module and system and to authorize the system for use.

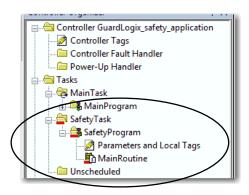
Notes:

Develop Safety Applications

Торіс	Page
The Safety Task	102
Safety Programs	103
Safety Routines	104
Safety Tags	104
Produced/Consumed Safety Tags	109
Safety Tag Mapping	116
Safety Application Protection	118
Programming Restrictions	122

This chapter explains the components that make up a safety project and provides information on using features that help protect safety application integrity, such as the safety task signature and safety-locking.

For guidelines and requirements for developing and commissioning SIL 3 and PLe safety applications, refer to the GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication 1756-RM099.

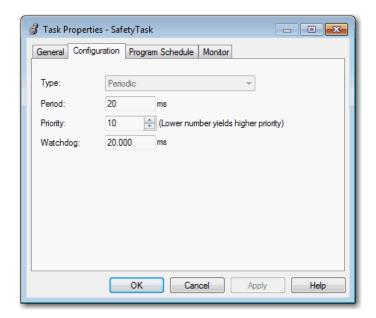

The Safety Reference Manual addresses the following topics:

- Creating a detailed project specification
- Writing, documenting, and testing the application
- Generating the safety task signature to identify and protect the project
- Confirming the project by printing or displaying the uploaded project and manually comparing the configurations, safety data, and safety program logic
- Verifying the project through test cases, simulations, functional verification tests, and an independent safety review, if required
- Locking the safety application
- Calculating system reaction time

The Safety Task

When you create a safety controller project, the Studio 5000 Logix Designer® application automatically creates a safety task with a safety program and a main (safety) routine.

Figure 24 - Safety Task in the Controller Organizer


Within the safety task, you can use multiple safety programs, composed of multiple safety routines. The GuardLogix controller supports one safety task. The safety task cannot be deleted.

You cannot schedule standard programs or execute standard routines within the safety task.

Safety Task Period Specification

The safety task is a periodic timed task. You set the task priority and watchdog time via the Task Properties - Safety Task dialog box. To open the dialog box, right-click the Safety Task and choose Properties.

Figure 25 - Configure the Safety Task Period

The safety task is a high priority. You specify the safety task period (in ms) and the safety task watchdog (in ms). The safety task period is the period that the safety task executes. The safety task watchdog is the maximum time allowed from the start of safety task execution to its completion.

The safety task period is limited to a maximum of 500 ms and cannot be modified online. Be sure that the safety task has enough time to finish logic execution before it is triggered again. If a safety task watchdog timeout occurs, a nonrecoverable safety fault is generated in the safety controller.

TIP Prescan Execution

Beginning with firmware revision 30, the safety task watchdog does not trip if the safety task prescan execution time exceeds the configured safety task watchdog time. However, all safety I/O connections are closed and then reopened once the controller is in Run mode.

The safety task period directly affects system reaction time.

The GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication <u>1756-RM099</u>, provides detailed information on calculating system reaction time.

Safety Task Execution

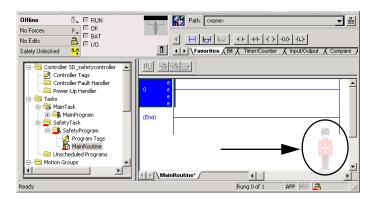
The safety task executes in the same manner as a standard periodic task, with the following exceptions:

- The safety task does not begin executing until the primary controller and safety partner establish their control partnership. (Standard tasks begin executing as soon as the controller transitions to Run mode.)
- All safety input tags (inputs, consumed, and mapped) are updated and frozen at the beginning of safety task execution.

See page <u>116</u> for information on safety tag mapping.

• Safety output tag (output and produced) values are updated at the conclusion of safety task execution.

Safety Programs


Safety programs have all the attributes of standard programs, except that they can only be scheduled in the safety task and can only contain safety components. Safety programs can only contain safety routines. One safety routine must be designated as the main routine, and another safety routine can be designated as the fault routine.

Safety programs cannot contain standard routines or standard tags.

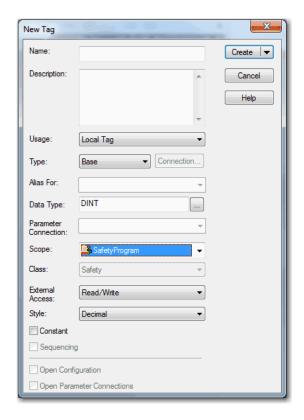
Safety Routines

Safety routines have all the attributes of standard routines, except that they exist only in a safety program. At this time, only ladder diagram is supported for safety routines.

TIP A watermark feature visually distinguishes a safety routine from a standard routine.

Safety Tags

A tag is an area of a controller's memory where data is stored. Tags are the basic mechanism for allocating memory, referencing data from logic, and monitoring data. Safety tags have all the attributes of standard tags with the addition of mechanisms certified to provide SIL 3 data integrity.


When you create a tag, you assign the following properties:

- Name
- Description (optional)
- Tag type
- Data type
- Scope
- Class
- Style
- External Access

You can also specify if the tag value is a constant.

To create a safety tag, open the New Tag dialog box by right-clicking Controller Tags or Program Tags and choose New Tag.

Figure 26 - Creating a New Tag

Tag Type

Table 30 defines the four types of tags.

Table 30 - Four Tag Types

Tag Type	Description
Base tag	These tags store values for use by logic within the project.
Alias tag	A tag that references another tag. An alias tag can refer to another alias tag or a base tag. An alias tag can also refer to a component of another tag by referencing a member of a structure, an array element, or a bit within a tag or member. IMPORTANT: Do not use alias tags between standard and safety tags in safety applications. Instead, standard tags can be mapped to safety tags using safety tag mapping. See Safety Tag Mapping on page 116.
Produced tag	A tag that a controller makes available for use by other controllers. A maximum of 15 controllers can simultaneously consume (receive) the data. A produced tag sends its data to one or more consuming tags without using logic. Produced tag data is sent at the RPI of the consuming tag.
Consumed tag	A tag that receives the data of a produced tag. The data type of the consumed tag must match the data type of the produced tag. The requested packet interval (RPI) of the consumed tag determines the period when the data updates.

Data Type

The data type defines the type of data that the tag stores, such as bit or integer.

Data types can be combined to form structures. A structure provides a unique data type that matches a specific need. Within a structure, each individual data type is called a member. Like tags, members have a name and data type. You can create your own structures, as user-defined data types.

Logix controllers contain predefined data types for use with specific instructions.

These data types are permitted for safety tags.

Table 31 - Valid Data Types for Safety Tags

AUX_VALVE_CONTROL	DCI_STOP_TEST_MUTE	MANUAL_VALVE_CONTROL
BOOL	DINT	MUTING_FOUR_SENSOR_BIDIR
CAM_PROFILE	DIVERSE_INPUT	MUTING_TWO_SENSOR_ASYM
CAMSHAFT_MONITOR	EIGHT_POS_MODE_SELECTOR	MUTING_TWO_SENSOR_SYM
CB_CONTINUOUS_MODE	EMERGENCY_STOP	MOTION_INSTRUCTION
CB_CRANKSHAFT_POS_MONITOR	ENABLE_PENDANT	PHASE
CB_INCH_MODE	EXT_ROUTINE_CONTROL	PHASE_INSTRUCTION
CB_SINGLE_STROKE_MODE	EXT_ROUTINE_PARAMETERS	REDUNDANT_INPUT
CONFIGURABLE_ROUT	FBD_BIT_FIELD_DISTRIBUTE	REDUNDANT_OUTPUT
CONNECTION_STATUS	FBD_CONVERT	SAFETY_MAT
CONTROL	FBD_COUNTER	SERIAL_PORT_CONTROL
COUNTER	FBD_LOGICAL	SFC_ACTION
DCA_INPUT	FBD_MASK_EQUAL	SFC_STEP
DCAF_INPUT	FBD_MASKED_MOVE	SFC_STOP
DCI_MONITOR	FBD_TIMER	SINT
DCI_START	FIVE_POS_MODE_SELECTOR	STRING
DCI_STOP	INT	THRS_ENHANCED
DCI_STOP_TEST	LIGHT_CURTAIN	TIMER
DCI_STOP_TEST_LOCK	MAIN_VALVE_CONTROL	TWO_HAND_RUN_STATION
	-	·

Scope

A tag's scope determines where you can access the tag data. When you create a tag, you define it as a controller tag (global data) or a program tag for a specific safety or standard program (local data). Safety tags can be controller-scoped or safety program-scoped.

Controller-scoped Tags

When safety tags are controller-scoped, all programs have access to the safety data. Tags must be controller-scoped if they are used in the following ways:

- More than one program in the project
- To produce or consume data
- To communicate with a PanelView™ terminal
- In safety tag mapping
 See <u>Safety Tag Mapping on page 116</u> for more information.

Controller-scoped safety tags can be read, but not written to, by standard routines.

IMPORTANT	Controller-scoped safety tags are readable by any standard routine. The		
	safety tag's update rate is based on the safety task period.		

Tags associated with safety I/O and produced or consumed safety data must be controller-scoped safety tags. For produced/consumed safety tags, you must create a user-defined data type with the first member of the tag structure reserved for the status of the connection. This member is a predefined data type called CONNECTION_STATUS.

Table 32 - Additional Resources

Resource	Description
Safety Connections on page 143	Provides more information on the CONNECTION_STATUS member
Logix5000™ Controllers I/O and Tag Data Programming Manual, publication 1756-PM004	Provides instructions for creating user-defined data types

Program-scoped Tags

When tags are program-scoped, the data is isolated from the other programs. Reuse of program-scoped tag names is permitted between programs.

Safety-program-scoped safety tags can only be read by or written to via a safety routine scoped in the same safety program.

Class

Tags can be classified as standard or safety. Tags classified as safety tags must have a data type that is permitted for safety tags.

When you create program-scoped tags, the class is automatically specified, depending upon whether the tag was created in a standard or safety program.

When you create controller-scoped tags, you must manually select the tag class.

Constant Value

When you designate a tag as a constant value, it cannot be modified by logic in the controller, or by an external application such as an HMI. Constant value tags cannot be forced.

The Logix Designer application can modify constant standard tags, and safety tags provided a safety task signature is not present. Safety tags cannot be modified if a safety task signature is present.

External Access

External Access defines the level of access that is allowed for external devices, such as an HMI, to see or modify tag values. Access via the Logix Designer application is not affected by this setting. The default value is read/write.

Table 33 - External Access Levels

External Access Setting	Description
None	Tags are not accessible from outside the controller.
Read Only	Tags can be browsed or read, but not written to from outside the controller.
Read/Write	Standard tags can be browsed, read, and written to from outside the controller.

For alias tags, the External Access type is equal to the type configured for the base target tag.

Produced/Consumed Safety Tags

To transfer safety data between GuardLogix controllers, you use produced and consumed safety tags. Produced and consumed tags require connections. The default connection type for produced and consumed tags is unicast.

Table 34 - Produced and Consumed Connections

Tag	Connection Description
Produced	A GuardLogix controller can produce (send) safety tags to other 1756 or 1768 GuardLogix controllers. The producing controller uses a single connection for each consumer.
Consumed	GuardLogix controllers can consume (receive) safety tags from other 1756 or 1768 GuardLogix controllers. Each consumed tag consumes one connection.

Produced and consumed safety tags are subject to the following restrictions:

- Only controller-scoped safety tags can be shared.
- Produced and consumed safety tags are limited to 128 bytes.
- Produced/consumed tag pairs must be of the same user-defined data type.
- The first member of that user-defined data type must be the predefined CONNECTION_STATUS data type.
- The requested packet interval (RPI) of the consumed safety tag must match the safety task period of the producing GuardLogix controller.

To properly configure produced and consumed safety tags to share data between peer safety controllers, you must properly configure the peer safety controllers, produce a safety tag, and consume a safety tag, as described below.

Configure the Peer Safety Controllers' Safety Network Numbers

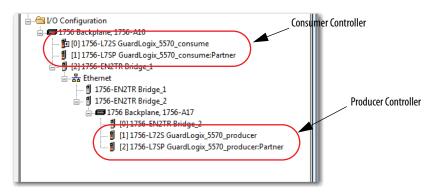
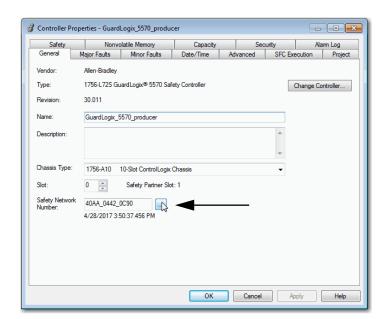
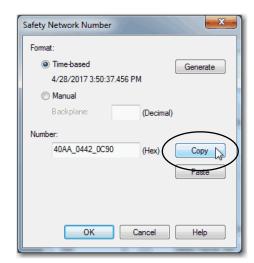

The peer safety controller is subject to the same configuration requirements as the local safety controller. The peer safety controller must also have a safety network number (SNN). The SNN of the peer safety controller depends on its placement in the system.

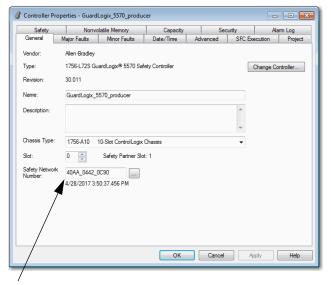
Table 35 - SNN and Controller Placement

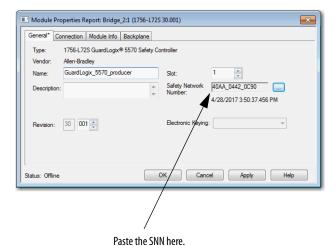

Peer Safety Controller Location	SNN
Placed in the local chassis	GuardLogix controllers in a common chassis have the same SNN.
Placed in another chassis	The controller must have a unique SNN.


Follow these steps to copy and paste the SNN.

- 1. Add the producer controller to the consumer-controller I/O tree.
 - **TIP** The same producing controller must not appear more than once in your controller I/O tree or a verification error occurs.

- 2. In the producer-controller project, right-click the producer controller and choose Controller Properties.
- 3. Click ____ to open the Safety Network Number dialog box.

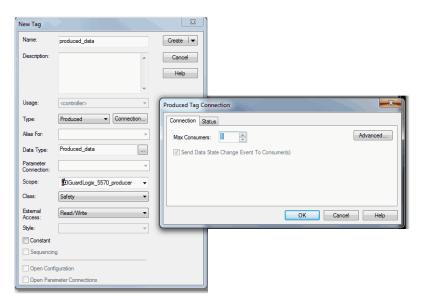



4. Copy the producer-controller SNN.

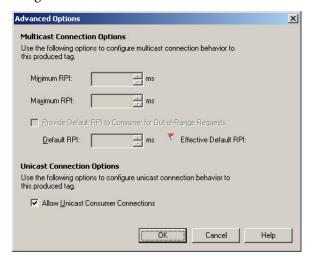
- 5. In the consumer-controller project, right-click the producer controller and choose Module Properties.
- 6. Click ____ to open the Safety Network Number dialog box.
- 7. Paste the producer controller's SNN into the SNN field and click OK. The safety network numbers match.

Producer Controller Properties Dialog Box in Producer Project

Module Properties Dialog Box in Consumer Project



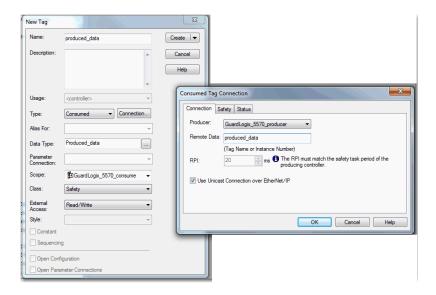
Copy this SNN.


Produce a Safety Tag

Follow this procedure to produce a safety tag.

- 1. In the producing controllers project, create a user-defined data type defining the structure of the data to be produced.
 - Make sure that the first data member is of the CONNECTION_STATUS data type.
- 2. Right-click Controller Tags and choose New Tag.
- 3. Set the type as Produced, the class as Safety, and the Data Type to the user-defined type you created in step 1.
- 4. Click Connection and enter the number of consumers.

5. Click Advanced if you want to change the type of connection by unchecking 'Allow Unicast Consumer Connections'.



6. Click OK.

Consume Safety Tag Data

Follow these steps to consume data produced by another controller.

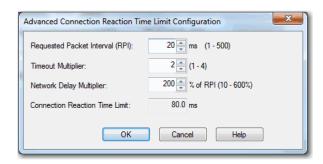
- 1. In the consumer controller's project, create a user-defined data type identical to the one created in the producer project.
 - TIP The user-defined type can be copied from the producer project and pasted into the consumer project.
- 2. Right-click Controller Tags and choose New Tag.
- 3. Set the Type as Consumed, the Class as Safety, and the Data Type to the user-defined data type you created in step <u>1</u>.
- 4. Click Connection to open the Consumed Tag Connection dialog box.
- 5. From the Producer pull-down menus, select the controller that produces the data.
- 6. In the Remote Data field, enter the name of the produced tag.

7. Click the Safety tab.


8. In the Requested Packet Interval (RPI) field, enter the RPI for the connection in 1 ms increments.

The default is 20 ms.

Consumer's Project


Producer's Project

The RPI specifies the period when data updates over a connection. The RPI of the consumed safety tag must match the safety task period of the producing safety project.

The Connection Reaction Time Limit is the maximum age of safety packets on the associated connection. For simple timing constraints, an acceptable Connection Reaction Time Limit can be achieved by adjusting the RPI.

The Max Network Delay is the maximum observed transport delay from the time the data was produced until the time the data was received. When online, click Reset Max to reset the Max Network Delay. If the Connection Reaction time limit is acceptable, click OK; or for more complex requirements, click Advanced to set the Advanced Connection Reaction Time Limit parameters.

The Timeout Multiplier determines the number of RPIs to wait for a packet before declaring a connection timeout.

The Network Delay Multiplier defines the message transport time that is enforced by the CIP Safety protocol. The Network Delay Multiplier specifies the round-trip delay from the producer to the consumer and back to the producer. You can use the Network Delay Multiplier to increase or decrease the Connection Reaction Time Limit.

Table 36 - More Resources

Resource	Description
Pages <u>8082</u>	Provides more information on setting the RPI and understanding how the Max. Network Delay, Timeout Multiplier, and Network Delay Multipliers affect the Connection Reaction Time
<u>Chapter 9</u>	Contains information on the CONNECTION_STATUS predefined data type
Logix5000 Controllers Produced and Consumed Tags Programming Manual, publication 1756-PM011	Provides detailed information on using produced and consumed tags

Safety Tag Mapping

Controller-scoped standard tags cannot be directly accessed by a safety routine. To allow standard tag data to be used within safety task routines, the GuardLogix controllers provide a safety tag mapping feature that lets standard tag values be copied into safety task memory.

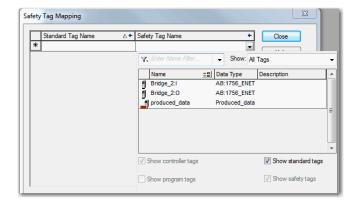
Restrictions

Safety tag mapping is subject to these restrictions:

- The safety tag and standard tag pair must be controller-scoped.
- The data types of the safety and standard tag pair must match.
- Alias tags are not allowed.
- Mapping must take place at the whole tag level. For example, myTimer.pre is not allowed if myTimer is a TIMER tag.
- A mapping pair is one standard tag mapped to one safety tag.
- You cannot map a standard tag to a safety tag that has been designated as
 a constant.
- Tag mapping cannot be modified when the following is true:
 - The project is safety-locked.
 - A safety task signature exists.
 - The key switch is in RUN position.
 - A nonrecoverable safety fault exists.
 - An invalid partnership exists between the primary controller and safety partner.

ATTENTION: When using standard data in a safety routine, you must verify that the data is used in an appropriate manner. Using standard data in a safety tag does not make it safety data. You must not directly control a SIL 3/PLe safety output with standard tag data.

Refer to the GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication <u>1756-RM099</u>, for more information.


Create Tag Mapping Pairs

1. Choose Map Safety Tags from the Logic menu to open the Safety Tag Mapping dialog box.

2. Add an existing tag to the Standard Tag Name or Safety Tag Name column by typing the tag name into the cell or choosing a tag from the pull-down menu.

Click the arrow to display a filtered tag browser dialog box. If you are in the Standard Tag Name column, the browser shows only controller-scoped standard tags. If you are in the Safety Tag Name column, the browser shows controller-scoped safety tags.

- 3. Add a new tag to the Standard Tag Name or Safety Tag Name column by right-clicking in the empty cell and selecting New Tag and typing the tag name into the cell.
- 4. Right-click in the cell and choose New tagname, where tagname is the text you entered in the cell.

Monitor Tag Mapping Status

The leftmost column of the Safety Tag Mapping dialog box indicates the status of the mapped pair.

Table 37 - Tag Mapping Status Icons

Cell Contents	Description
Empty	Tag mapping is valid.
×	When offline, the X icon indicates that tag mapping is invalid. You can move to another row or close the Safety Tag Mapping dialog box. ⁽¹⁾ When online, an invalid tag map results in an error message explaining why the mapping is invalid. You cannot move to another row or close the Safety Tag Mapping dialog box if a tag mapping error exists.
F	Indicates the row that currently has the focus.
*	Represents the Create New Mapped Tag row.
0	Represents a pending edit.

⁽¹⁾ Tag mapping is also checked during project verification. Invalid tag mapping results in a project verification error.

For more information, see the tag mapping restrictions on page <u>116</u>.

Safety Application Protection

You can protect your application program from unauthorized changes by safety-locking the controller and by generating and recording the safety task signature.

Safety-lock the Controller

The GuardLogix controller can be safety-locked to protect safety-related control components from modification. The safety-lock feature applies only to safety components, such as the safety task, safety programs, safety routines, safety Add-On Instructions, safety tags, safety I/O, and the safety task signature.

The following actions are not permitted in the safety portion of the application when the controller is safety-locked:

- Online/offline programming or editing (including safety Add-On Instructions)
- Forcing safety I/O
- Changing the inhibit state of safety I/O or produced connections
- Safety data manipulation (except by safety routine logic)
- Generating or deleting the safety task signature
 - **TIP** The text of the online bar's safety status button indicates the safety-lock status.

The application tray also displays the following icons to indicate the safety controller's safety-lock status.

- ____ = controller safety-locked
- **____** = controller safety-unlocked

You can safety-lock the controller project regardless of whether you are online or offline and regardless of whether you have the original source of the program. However, no safety forces or pending online safety edits can be present.

Safety-locked or -unlocked status cannot be changed when the key switch is in the RUN position.

TIP Safety-lock or -unlock actions are logged in the controller log.

For more information about accessing the controller log, refer to Logix5000
Controllers Controller Information and Status Programming Manual, publication 1756-PM015.

You can safety-lock and -unlock the controller from the Safety tab of the Controller Properties dialog box, or by choosing Tools>Safety>Safety Lock/Unlock.

Figure 27 - Safety-locking the Controller

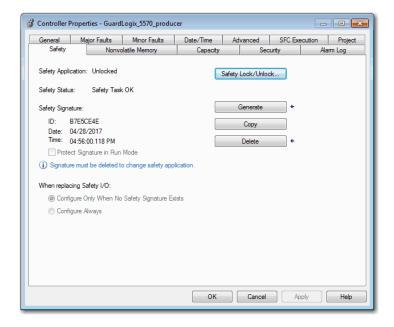
If you set a password for the safety-lock feature, you must type it in the Enter Password field. Otherwise, click Lock.

You can also set or change the password from the Safety Lock dialog box. See page <u>51</u>.

The safety-lock feature, described in this section, and standard security measures in the Logix Designer application are applicable to GuardLogix controller projects.

Refer to the Logix5000 Controllers Security Programming Manual, publication <u>1756-PM016</u>, for information on Logix Designer security features.

Generate a Safety Task Signature


Before verification testing, you must generate the safety task signature. You can generate the safety task signature only when online with the safety-unlocked GuardLogix controller in Program mode, and with no safety forces, pending online safety edits, or safety faults. The safety status must be Safety Task OK.

In addition, you cannot generate a safety task signature if the controller is in Run mode with run mode protection enabled.

TIP You can view the safety status via the safety status button on the online bar (see page 142) or on the Safety tab of the Controller Properties dialog box, as shown on page 121.

Click Generate to generate the safety task signature from the Safety tab of the Controller Properties dialog box. You can also choose Tools>Safety>Generate Signature.

Figure 28 - Safety Tab

If a previous signature exists, you are prompted to overwrite it.

TIP Safety task signature creation and deletion is logged in the controller log.

For more information on accessing the controller log, refer to Logix5000

Controllers Controller Information and Status Programming Manual, publication 1756-PM015.

When a safety task signature exists, the following actions are not permitted in the safety portion of the application:

- Online/offline programming or editing (including safety Add-On Instructions)
- Forcing safety I/O
- Changing the inhibit state of safety I/O or producer controllers
- Safety data manipulation (except by safety routine logic)

Copy the Safety Task Signature

You can use the Copy button to create a record of the safety task signature for use in safety project documentation, comparison, and validation. Click Copy, to copy the ID, Date, and Time components to the Windows clipboard.

Delete the Safety Task Signature

Click Delete to delete the safety task signature. The safety task signature cannot be deleted when the following is true:

- The controller is safety-locked.
- The controller is in Run mode with the key switch in RUN.
- The controller is in Run or Remote Run mode with run mode protection enabled.

ATTENTION: If you delete the safety task signature, you must retest and revalidate your system to meet SIL 3/PLe.

Refer to the GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Safety Reference Manual, publication <u>1756-RM099</u>, for more information on SIL 3/PLe requirements.

Programming Restrictions

Restrictions limiting the availability of some menu items and features (that is, cut, paste, delete, search and replace) are imposed by the Logix Designer application to protect safety components from being modified whenever the following is true:

- The controller is safety-locked.
- A safety task signature exists.
- Safety faults are present.
- Safety status is as follows:
 - Partner missing
 - Partner unavailable
 - Hardware incompatible
 - Firmware incompatible

If even one of these conditions apply, you cannot do the following:

• Create or modify safety objects, including safety programs, safety routines, safety tags, safety Add-On Instructions, and safety I/O devices.

IMPORTANT The scan times of the safety task and safety programs can be reset when online.

- Apply forces to safety tags.
- Create new safety tag mappings.
- Modify or delete tag mappings.
- Modify or delete user-defined data types that are used by safety tags.
- Modify the controller name, description, chassis type, slot, and safety network number.
- Modify or delete the safety task signature, when safety-locked.

Notes:

Go Online with the Controller

Торіс	Page
Connect the Controller to the Network	125
Understanding the Factors that Affect Going Online	127
Download	129
Upload	130
Go Online	132

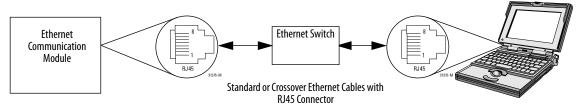
Connect the Controller to the Network

If you have not done so, connect the controller to the network.

Table 38 - Communication Connections

For this type of connection	Use	See
USB	USB 2.0 cable	Make Communication Connections on page 31
EtherNet/IP™	EtherNet/IP device in an open slot in the same chassis as the controller	Connect Your EtherNet/IP Device and Computer on page 126
DeviceNet™	1756-DNB module in an open slot in the same chassis as the controller	Connect Your ControlNet Communication Module or DeviceNet Scanner and Your
ControlNet™	1756-CN2 module in an open slot in the same chassis as the controller	Computer on page 126

Connect Your EtherNet/IP Device and Computer



WARNING: If you connect or disconnect the communication cable with power applied to this module or any device on the network, an electric arc can occur. This could cause an explosion in hazardous location installations.

Be sure that power is removed or the area is nonhazardous before proceeding.

Connect your EtherNet/IP device and computer by using an Ethernet cable.

Figure 29 - Ethernet Connections

Connect Your ControlNet Communication Module or DeviceNet Scanner and Your Computer

To access the ControlNet or DeviceNet network, you can do either of the following:

- Connect directly to the network.
- Connect to a serial or EtherNet/IP network and browse (bridge) to the desired network. This requires no additional programming.

Configure an EtherNet/IP, ControlNet, or DeviceNet Driver

For information on configuring a driver, refer to the appropriate publication:

- EtherNet/IP Modules in Logix5000[™] Control Systems, publication <u>ENET-UM001</u>
- ControlNet Modules in Logix5000 Control Systems User Manual, publication <u>CNET-UM001</u>
- DeviceNet Modules in Logix5000 Control Systems, publication DNET-UM004

Understanding the Factors that Affect Going Online

The Studio 5000 Logix Designer* application determines whether you can go online with a target controller based on whether the offline project is new or whether changes occurred in the offline project. If the project is new, you must first download the project to the controller. If changes occurred to the project, you are prompted to upload or download. If no changes occurred, you can go online to monitor the execution of the project.

Numerous factors affect these processes, including Project to Controller Match feature, the safety status and faults, the existence of a safety task signature, and the safety-lock/-unlock status of the project and the controller.

Project to Controller Matching

The Project to Controller Match feature affects the download, upload, and go online processes of standard and safety projects.

If the Project to Controller Match feature is enabled in the offline project, the Logix Designer application compares the serial number of the controller in the offline project to that of the connected controller. If they do not match, you must cancel the download/upload, connect to the correct controller, or confirm that you are connected to the correct controller that updates the serial number in the project to match the target controller.

Firmware Revision Matching

Firmware revision matching affects the download process. If the revision of the controller does not match the revision of the project, you are prompted to update the firmware of the controller. The Logix Designer application lets you update the firmware as part of the download sequence if the controller is safety-unlocked.

IMPORTANT

To update the firmware of the controller, first install a firmware upgrade kit. An upgrade kit ships on a supplemental DVD along with the Studio 5000° environment or can be downloaded from the Product Compatibility and Download Center (PCDC).

TIP You can also update the firmware by choosing ControlFLASH™ from the Tools menu in the Logix Designer application.

Safety Status/Faults

Uploading program logic and going online is allowed regardless of safety status. Safety status and faults only affect the download process.

You can view the safety status via the Safety tab on the Controller Properties dialog box.

Safety Task Signature and Safety-locked and -unlocked Status

The existence of a safety task signature and the safety-locked or -unlocked status of the controller affect both the upload and download processes.

On Upload

If the controller has a safety task signature, the safety task signature and the safety task lock status are uploaded with the project. For example, if the project in the controller was safety-unlocked, the offline project remains safety-unlocked following the upload, even if it was locked prior to the upload.

Following an upload, the safety task signature in the offline project matches the controller's safety task signature.

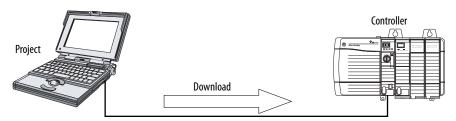
On Download

The existence of a safety task signature, and the controller's safety-lock status, determines whether or not a download can proceed.

Table 39 - Effect of Safety-lock and Safety Task Signature on Download Operation

Safety-lock Status	Safety Task Signature Status	Download Functionality
Controller safety-unlocked	Safety task signature in the offline project matches the safety task signature in the controller.	All standard project components are downloaded. Safety tags are reinitialized to the values they had when the safety task signature was created. The safety task is not downloaded. Safety lock status matches the status in the offline project.
	Safety task signatures do not match.	If the controller had a safety task signature, it is automatically deleted, and the entire project is downloaded. Safety lock status matches the status in the offline project.
Controller safety-locked	Safety task signatures match.	If the offline project and the controller are safety-locked, all standard project components are downloaded and the safety task is re initialized to the values they had when the safety task signature was created. If the offline project is not safety-locked, but the controller is, the download is blocked and you must first unlock the controller to allow the download to proceed.
	Safety task signatures do not match.	You must first safety-unlock the controller to allow the download to proceed. If the controller had a safety task signature, it is automatically deleted, and the entire project is downloaded. Safety lock status matches the status in the offline project.

IMPORTANT


During a download to a controller that is safety-unlocked, if firmware in the controller is different than in the offline project, do one of the following:

- Update the controller so that it matches the offline project. Once the update is completed, the entire project is downloaded.
- Update the project to the controller version.

If you update the project, the safety task signature is deleted, and the system requires revalidation.

Download

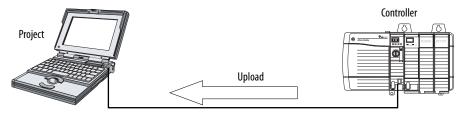
Follow these steps to transfer your project from your computer to your controller.

- 1. Turn the key switch of the controller to REM.
- 2. Open the controller project that you want to download.
- 3. Define the path to the controller.
 - a. Click Who Active 器
 - b. Select the controller.
 To open a level, click the + sign. If a controller is already selected, make sure that it is the correct controller.
- 4. Click Download.

The Logix Designer application compares the following information in the offline project and the controller:

- Controller serial number (if project to controller match is selected)
- Firmware major and minor revisions
- Safety status
- Safety task signature (if one exists)
- Safety-lock status

5. Follow the directions in this table to complete the download based on the Logix Designer application's response.


If the software indicates	Then
Download to the controller.	Choose Download. The project downloads to the controller and goes online.
Unable to download to the controller. Mismatch between the offline project and the controller serial number. Selected controller may be the wrong controller.	Connect to the correct controller or verify that this is the correct controller. If it is the correct controller, check the Update project serial number checkbox to allow the download to proceed. The project serial number is modified to match the controller serial number.
Unable to download to the controller. The major revision of the offline project and the controller's firmware are not compatible.	Choose Update Firmware. (1) Choose the required revision and click Update. Click Yes to confirm your selection.
Unable to download to controller. The safety partner is missing or unavailable.	Cancel the download process. Install a compatible safety partner before attempting to download.
Unable to download to controller. The firmware revision of the safety partner is not compatible with the primary controller.	Update the firmware revision of the safety partner. Choose Update Firmware. (1) Choose the required revision and click Update. Click Yes to confirm your selection.
Unable to download to controller. Safety partnership has not been established.	Cancel this download process and attempt a new download.
Unable to download to controller. Incompatible safety task signature cannot be deleted while the project is safety-locked.	Cancel the download. To download the project, you must safety-unlock the offline project, delete the safety task signature, and download the project.
	IMPORTANT: The safety system requires revalidation.
Cannot download in a manner that preserves the safety task signature. Controller's firmware minor revision is not compatible with safety task signature in offline project.	If the firmware minor revision is incompatible, to preserve the safety task signature, update the firmware revision in the controller to exactly match the offline project. Then download the offline project.
	To proceed with the download despite the safety task signature incompatibility, click Download. The safety task signature is deleted. To proceed with the download despite the safety task signature incompatibility, click Download. The safety task signature is deleted.
	IMPORTANT: The safety system requires revalidation.
Unable to download to controller. Controller is locked. Controller and offline project safety task signatures do not match.	Choose Unlock. The Safety Unlock for Download dialog box appears. If the Delete Signature checkbox is selected and you choose Unlock, click Yes to confirm the deletion.
A nonrecoverable safety fault will occur in the safety controller. No designated coordinated system time (CST) master exists.	Check Enable Time Synchronization and click Download to proceed.

(1) The controller must be unlocked.

Following a successful download, the safety-locked status and safety task signature of the controller match the project that was downloaded. Safety data is initialized to the values that existed when the safety task signature was created.

Upload

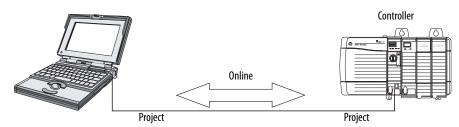
Follow these steps to transfer a project from the controller to your computer.

- 1. Define the path to the controller.
 - a. Click Who Active 器
 - Select the controller.
 To expand a level, click the + sign. If a controller is already selected, make sure that it is the correct controller.
- 2. Click Upload.

- 3. If the project file does not exist, choose File>Select>Yes.
- 4. If the project file exists, select it.

If the project to controller match is enabled, the Logix Designer application checks whether the serial number of the open project and the serial number of the controller match.

If the controller serial numbers do not match, you can do one of the following:


- Cancel the upload and connect to a matching controller. Then, start the upload procedure again.
- Select a new project to upload into or select another project by choosing Select File.
- Update the project serial number to match the controller by checking the Update Project Serial Number checkbox and choosing Upload.
- 5. The Logix Designer application checks whether the open project matches the controller project.
 - a. If the projects do not match, you must select a matching file or cancel the upload process.
 - b. If the projects match, the software checks for changes in the offline (open) project.
- 6. The Logix Designer application checks for changes in the offline project.
 - a. If there are no changes in the offline project, you can go online without uploading. Click Go Online.
 - b. If there are changes in the open project that are not present in the controller, you can choose to upload the project, cancel the upload, or select another file.

If you choose Upload, the standard and safety applications are uploaded. If a safety task signature exists, it is also uploaded. The safety-lock status of the project reflects the original status of the online (controller) project.

TIP Prior to the upload, if an offline safety task signature exists, or the offline project is safety-locked but the controller is safety-unlocked or has no safety task signature, the offline safety task signature and safety-locked state are replaced by the online values (safety-unlocked with no safety task signature). If you do not want to make these changes permanent, do not save the offline project following the upload.

Go Online

Follow these steps to go online to monitor a project that the controller is executing.

- 1. Define the path to the controller.
 - a. Click Who Active 器
 - b. Select the controller.
 To expand a level, click the + sign. If a controller is already selected, make sure that it is the correct controller.

2. Click Go Online.

The Logix Designer application checks for the following:

- Do the offline project and controller serial numbers match (if Project to Controller Match is selected)?
- Does the offline project contain changes that are not in the controller project?
- Do the revisions of the offline project and controller firmware match?
- Are either the offline project or the controller safety-locked?
- Do the offline project and the controller have compatible safety task signatures?

3. Follow the directions in the table below to connect to the controller.

Table 40 - Connect to the Controller

If the software indicates	Then
Unable to connect to controller. Mismatch between the offline project and the controller serial number. Selected controller may be the wrong controller.	Connect to the correct controller, select another project file, or choose the Update project serial number checkbox and choose Go Online to connect to the controller and update the offline project serial number to match the controller.
Unable to connect to controller. The revision of the offline project and the controller's firmware are not compatible.	Choose one of the following options: Choose Update Firmware. Choose the required revision and click Update. Click Yes to confirm your selection. IMPORTANT: The online project is deleted. To preserve the online project, cancel the online process and install a version of the Studio 5000 environment that is compatible with the firmware revision of your controller.
You need to upload or download to go online by using the open project.	Choose one of the following options: Upload to update the offline project. Download to update the controller project. Choose File to select another offline project.
Unable to connect in a manner that preserves safety task signature. Controller's firmware minor revision is not compatible with safety task signature in offline project.	 To preserve the safety task signature when the firmware minor revision is incompatible, update the firmware revision in the controller to exactly match the offline project. Then go online to the controller. To proceed with the download despite the safety task signature incompatibility, click Download. The safety task signature is deleted. IMPORTANT: The safety system requires revalidation.
Unable to connect to controller. Incompatible safety task signature cannot be deleted while project is safety-locked.	Cancel the online process. You must safety-unlock the offline project before attempting to go online.

When the controller and the Logix Designer application are online, the safety-locked status and safety task signature of the controller match the controller's project. The safety-lock status and safety task signature of the offline project are overwritten by the controller. If you do not want the changes to the offline project to be permanent, do not save the project file following the go online process.

Notes:

Store and Load Projects Using Nonvolatile Memory

Торіс	Page
Use Memory Cards for Nonvolatile Memory	135
Store a Safety Project	136
Load a Safety Project	137
Use Energy Storage Modules	138
Estimate the ESM Support of the WallClockTime	140
Manage Firmware with Firmware Supervisor	140

Use Memory Cards for Nonvolatile Memory

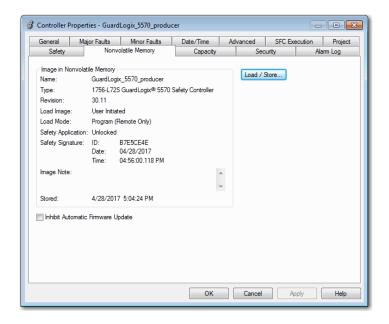
GuardLogix* 5570 controllers support a memory card for nonvolatile memory. Nonvolatile memory lets you keep a copy of your project on the controller. The controller does not need power or a battery to keep this copy.

You can load the stored project from nonvolatile memory to the user memory of the controller:

- On every powerup
- Whenever there is no project in the controller and it powers up
- Anytime through the Studio 5000 Logix Designer® application

IMPORTANT

Nonvolatile memory stores the contents of the user memory at the time that you store the project:


- Changes that you make after you store the project are not reflected in nonvolatile memory.
- If you make changes to the project but do not store those changes, you
 overwrite them when you load the project from nonvolatile memory. If
 this occurs, you have to upload or download the project to go online.
- If you want to store changes such as online edits, tag values, or a ControlNet™ network schedule, store the project again after you make the changes.

ATTENTION: Do not remove the memory card while the controller is reading from or writing to the card, as indicated by a flashing green OK status indicator. This could corrupt the data on the card or in the controller, as well as corrupt the latest firmware in the controller. Leave the card in the controller until the OK status indicator turns solid green.

If a memory card is installed, you can view the contents of the card on the Nonvolatile Memory tab of the Controller Properties dialog box. If a safety application is stored on the card, the safety-lock status and the safety task signature are shown.

Figure 30 - Nonvolatile Memory Tab

For detailed information on using nonvolatile memory, refer to the Logix5000™ Controllers Nonvolatile Memory Programming Manual, publication 1756-PM017.

Store a Safety Project

You cannot store a safety project if the safety task status is Safety Task Inoperable. When you store a safety project, the firmware of both the primary controller and the safety partner are saved to the memory card.

If no application project exists in the controller, you can save only the firmware of the safety controller if a valid partnership exists. A firmware-only load does not clear a Safety Task Inoperable condition.

If a safety task signature exists when you store a project, the following occurs:

- Safety tags are stored with the value they had when the signature was first created.
- Standard tags are updated.
- The current safety task signature is saved.

When you store a safety application project on a memory card, we recommend that you select Program (Remote Only) as the Load mode, that is, the mode that the controller enters following the load.

Load a Safety Project

You can initiate a load from nonvolatile memory when the following is true:

- The controller type specified by the project stored in nonvolatile memory matches the controller type.
- The major and minor revision of the project in nonvolatile memory matches the major and minor revision of the controller.
- Your controller is not in Run mode.

You have several options for when (under what conditions) to load a project into the user memory of the controller.

Table 41 - Options for Loading a Project

If you want to load the project	Then select this Load Image option	Notes
Whenever you turn on or cycle power	On Power Up	 During a power cycle, you lose any online changes, tag values, and network schedule that you have not stored in the nonvolatile memory. The controller loads the stored project and firmware at every powerup regardless of the firmware or application project on the controller. The load occurs whether or not the controller is safety-locked or has a safety task signature. You can always use the Logix Designer application to load the project.
Whenever there is no project in the controller and you turn on or cycle chassis power	On Corrupt Memory	 For example, if the battery becomes discharged and the controller loses power, the project is cleared from memory. When power is restored, this load option loads the project back into the controller. The controller updates the firmware on the primary controller or the safety partner, if required. The application project stored in nonvolatile memory is also loaded and the controller enters the selected mode, either Program or Run. You can always use the Logix Designer application to load the project.
Only through the Logix Designer application	User Initiated	 If the controller type as well as the major and minor revisions of the project in nonvolatile memory match the controller type and major and minor revisions of the controller, you can initiate a load, regardless of the Safety Task status. You can load a project to a safety-locked controller only when the safety task signature of the project stored in nonvolatile memory matches the project on the controller. If the signatures do not match or the controller is safety-locked without a safety task signature, you are prompted to first unlock the controller. IMPORTANT: When you unlock the controller and initiate a load from nonvolatile memory, the safety-lock status, passwords, and safety task signature are set to the values contained in nonvolatile memory once the load is complete. If the firmware on the primary controller matches the revision in nonvolatile memory, the safety partner firmware is updated, if required, the application stored in nonvolatile memory is loaded so that the Safety Task status becomes Safety Task Operable and the controller enters the selected mode, either Program or Run.

IMPORTANT

Before using ControlFLASH™ software, make sure the SD card is unlocked if set to load On Power Up. Otherwise the updated data can be overwritten by firmware on the memory card.

Use Energy Storage Modules

You can use the GuardLogix ESMs to execute either of the following tasks:

 Provide power to the controller to save the program to the controller's on-board non-volatile storage (NVS) memory after power is removed from the chassis or the controller is removed from a powered chassis.

IMPORTANT	When you are using an ESM to save the program to on-board NVS
	memory, you are not saving the program to the SD card installed in
	the controller.

• Clear the program from the controller's on-board NVS memory. For more information, see <u>Clear the Program from On-board NVS Memory</u>

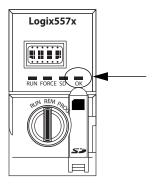
The following table describes the ESMs.

Table 42 - Energy Storage Modules

Cat. No.	Description
1756-ESMCAP(XT)	Capacitor-based ESM
	The controllers come with this ESM installed.
1756-ESMNSE(XT)	Capacitor-based ESM without WallClockTime backup power
	Use this ESM if your application requires that the installed ESM depletes its residual stored energy to 40 μJ or less before transporting it into or out of your application. Also, you can only use this ESM with a 1756-L73S (8MB) or smaller memory-sized controller.
1756-ESMNRM(XT)	Secure capacitor-based ESM (non-removable)
	This ESM provides your application an enhanced degree of security by preventing physical access to the USB connector and the SD card.
1756-SPESMNSE(XT)	Capacitor-based ESM without WallClockTime backup power for the safety partner
	Use this ESM if your application requires that the installed ESM deplete its residual stored energy to 40 μ J or less before transporting it into or out of your application.
	The 1756-L7SPXT extreme temperature safety partner ships with the 1756-SPESMNSEXT installed.
1756-SPESMNRM(XT)	Secure capacitor-based ESM (non-removable) for the safety partner

Save the Program to On-board NVS Memory

Follow these steps to save the program to NVS memory when the controller loses power.


1. Remove power from the controller.

You can remove power in either of two ways:

- Turn power off to the chassis while the controller is installed in the chassis.
- Remove the controller from a powered chassis.

Immediately after the controller is no longer powered, the OK status indicator transitions to solid red and remains that way long enough to save the program.

Figure 31 - OK Status Indicator.

- 2. Leave the ESM on the controller until the OK status indicator is off.
- 3. If necessary, remove the ESM from the controller after the OK status indicator transitions from solid red to off.

Clear the Program from On-board NVS Memory

If your application lets you clear programs, follow these steps to clear the program from the controller's on-board NVS memory.

- 1. Remove the ESM from the controller.
- 2. Remove power from the controller by turning off power to the chassis while the controller is installed in the chassis, or by removing the controller from a powered chassis.
- 3. Reinstall the ESM into the controller.
- 4. Restore power to the controller.
 - a. If the controller is already installed in the chassis, turn power to the chassis back on.
 - b. If the controller is not installed into the chassis, reinstall the controller into the chassis and turn chassis power back on.

Estimate the ESM Support of the WallClockTime

The ESM provides support for the maintenance of the WallClockTime attribute of the controller when power is not applied. Use this table to estimate the hold-up time of the ESM, based on the temperature of the controller and installed ESM.

Table 43 - Temperature vs. Hold-up Time

Temperature	Hold-up Time (in days)		
	1756-ESMCAP(XT)	1756-ESMNRM(XT) 1756-SPESMNRM(XT)	1756-ESMNSE(XT) 1756-SPESMNSE(XT)
20 °C (68 °F)	12	12	0
40 °C (104 °F)	10	10	0
60 °C (140 °F)	7	7	0

Manage Firmware with Firmware Supervisor

You can use the Firmware Supervisor feature to manage firmware on controllers. Firmware Supervisor lets controllers automatically update devices:

- Local and remote modules can be updated while in Program or Run modes.
- Electronic keying must be configured for Exact Match.
- The firmware kit for the target device must reside on the controller's memory card.
- The device must support firmware updates via ControlFLASH software.

Firmware Supervisor supports non-modular distributed I/O products that sit directly on the network without an adapter, including safety I/O devices on EtherNet/IP™ networks. Safety I/O devices on DeviceNet™ networks and POINT Guard I/O™ modules are not yet supported.

Follow these steps to enable Firmware Supervisor.

- 1. On the Controller Properties dialog box, click the Nonvolatile Memory tab.
- 2. Click Load/Store.
- 3. From the Automatic Firmware Updates pull-down menu, choose Enable and Store Files to Image.

The Logix Designer application moves the firmware kits from your computer to the controller memory card for Firmware Supervisor to use.

TIP If you disable Firmware Supervisor, you disable only the firmware supervisor updates. This does not include the controller firmware updates that occur when the controller image is reloaded from the memory card.

Monitor Status and Handle Faults


Торіс	Page
View Status via the Online Bar	141
Monitor the Connections	142
Monitor the Status Flags	143
Monitor the Safety Status	144
Controller Faults	145
Developing a Fault Routine	147

See <u>Appendix A</u>, <u>Status Indicators</u> for information on interpreting the controller's status indicators and display messages.

View Status via the Online Bar

The online bar displays project and controller information, including the controller's status, force status, online edit status, and safety status.

Figure 32 - Status Buttons

When the Controller Status button is selected as shown above, the online bar shows the controller's mode (RUN) and status (OK). The BAT indicator combines the status of the primary controller and the safety partner. If either or both have a battery fault, the status indicator illuminates. The I/O indicator combines the status of standard and safety I/O and behaves just like the status indicator on the controller. The I/O with the most significant error status is displayed next to the status indicator.

When the Safety Status button is selected as shown below, the online bar displays the safety task signature.

Figure 33 - Safety Signature Online Display

The Safety Status button itself indicates whether the controller is safety-locked or -unlocked, or faulted. It also displays an icon that shows the safety status.

Table 44 - Safety Status Icon

If the safety status is	This icon is displayed
Safety Task OK	1-1
Safety Task Inoperable	<u> </u>
Partner Missing Partner Unavailable Hardware Incompatible Firmware Incompatible	क्रव
Offline	doğ

Icons are green when the controller is safety-locked, yellow when the controller is safety-unlocked, and red when the controller has a safety fault. When a safety task signature exists, the icon includes a small checkmark.

Monitor the Connections

You can monitor the status of standard and safety connections.

All Connections

If communication with a device in the I/O configuration of the controller does not occur for 100 ms, communication times out and the controller produces the following warnings:

- The I/O indicator on the front of the controller flashes green.
- An alert symbol shows over the I/O configuration folder and over the device that has timed out.
- A device fault is produced that you can access through the Connections tab of the Module Properties dialog box for the device or via the GSV instruction.

ATTENTION: Safety I/O and produce/consume connections cannot be configured to automatically fault the controller when a connection is lost. Therefore, you need to monitor for connection faults to be sure that the safety system maintains SIL 3/PLe integrity.

See <u>Safety Connections on page 143</u>.

Safety Connections

For tags associated with produced or consumed safety data, you can monitor the status of safety connections by using the CONNECTION_STATUS member. For monitoring input and output connections, safety I/O tags have a connection status member called SafetyStatus. Both data types contain two bits: RunMode and ConnectionFaulted.

The RunMode value indicates if consumed data is actively being updated by a device that is in the Run Mode (1) or Idle State (0). Idle state is indicated if the connection is closed, the safety task is faulted, or the remote controller or device is in Program mode or Test mode.

The ConnectionFaulted value indicates whether the safety connection between the safety producer and the safety consumer is Valid (0) or Faulted (1). If ConnectionFaulted is set to Faulted (1) as a result of a loss of the physical connection, the safety data is reset to zero.

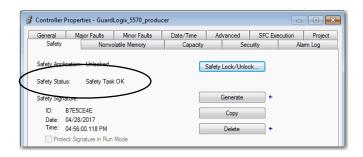
The following table describes the combinations of the RunMode and ConnectionFaulted states.

Table 45 - Safet	y Connection Status
------------------	---------------------

RunMode Status	ConnectionFaulted Status	Safety Connection Operation
1 = Run	0 = Valid	Data is actively being controlled by the producing device. The producing device is in Run mode.
0 = Idle	0 = Valid	The connection is active and the producing device is in the Idle state. The safety data is reset to zero.
0 = Idle	1 = Faulted	The safety connection is faulted. The state of the producing device is unknown. The safety data is reset to zero.
1 = Run	1 = Faulted	Invalid state.

If a device is inhibited, the ConnectionFaulted bit is set to Faulted (1) and the RunMode bit is set to Idle (0) for each connection associated with the device. As a result, safety consumed data is reset to zero.

Monitor the Status Flags


Logix controllers, including GuardLogix® controllers, support status keywords that you can use in your logic to monitor certain events.

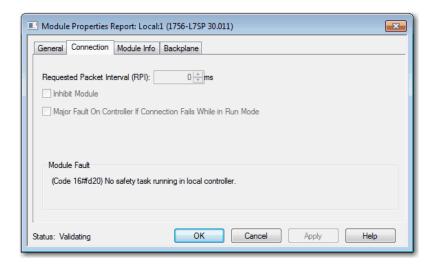
For more information on how to use these keywords, refer to the Logix5000™ Controllers Controller Information and Status Programming Manual, publication 1756-PM015.

Monitor the Safety Status

View controller safety status information on the safety status button on the online bar and on the Safety tab of the Controller Properties dialog box.

Figure 34 - Safety Task Status

These are the possible values for safety status:


- Safety partner is missing or unavailable.
- Safety partner hardware is incompatible with primary controller.
- Safety partner firmware is incompatible with the primary controller.
- Safety task inoperable.
- Safety task OK.

With the exception of safety task OK, the descriptions indicate that nonrecoverable safety faults exist.

See <u>Major Safety Faults (Type 14) on page 146</u> for fault codes and corrective actions.

The status of the safety partner can be viewed on the Connections tab of its Module Properties dialog box.

Figure 35 - Safety Partner Status

Controller Faults

Faults in the GuardLogix system can be nonrecoverable controller faults, nonrecoverable safety faults in the safety application, or recoverable safety faults in the safety application.

Nonrecoverable Controller Faults

These occur when the controller's internal diagnostics fail. If a nonrecoverable controller fault occurs, safety task execution stops and safety I/O devices are placed in the safe state. Recovery requires that you download the application program again.

Nonrecoverable Safety Faults in the Safety Application

If a nonrecoverable safety fault occurs in the safety application, safety logic and the safety protocol are terminated. Safety task watchdog and control partnership faults fall into this category.

When the safety task encounters a nonrecoverable safety fault that is cleared programmatically in the Controller Fault Handler, the standard application continues to execute.

ATTENTION: Overriding a safety fault does not clear the fault. If you override a safety fault it is your responsibility to prove that operation of your system is still safe.

You must provide proof to your certifying agency that your system can continue to operate safely after an override of a safety fault.

If a safety task signature exists, you can clear the fault to enable the safety task to run. If no safety task signature exists, the safety task cannot run again until the entire application is downloaded again.

Recoverable Faults in the Safety Application

If a recoverable fault occurs in the safety application, the system can halt the execution of the safety task, depending upon whether or not the fault is handled by the Program Fault Handler in the safety application.

When a recoverable fault is cleared programmatically, the safety task continues without interruption.

When a recoverable fault in the safety application is not cleared programmatically, a Type 14, Code 2 recoverable safety fault occurs. The safety program execution is stopped, and safety protocol connections are closed and reopened to re-initialize them. Safety outputs are placed in the safe state and the producer of safety-consumed tags commands the consumers to place them in a safe state, as well.

Recoverable faults let you edit the standard and safety application as required to correct the cause of the fault. However, if a safety task signature exists or the controller is safety-locked, you must first unlock the controller and delete the safety task signature before you can edit the safety application.

View Faults

The Recent Faults dialog box on the Major Faults tab of the Controller Properties dialog box contains two sub-tabs, one for standard faults and one for safety faults.

The status display on the controller also shows fault codes with a brief status message, as described beginning on page 149.

Fault Codes

Table 46 shows the fault codes specific to GuardLogix controllers. The type and code correspond to the type and code displayed on the Major Faults tab of the Controller Properties dialog box and in the PROGRAM object, MAJORFAULTRECORD (or MINORFAULTRECORD) attribute.

Table 46 - Major Safety Faults (Type 14)

Code	Cause	Status	Corrective Action
01	Task watchdog expired. User task has not completed in a specified period of time. A program error caused an infinite loop, the program is too complex to execute as quickly as specified, a higher priority task is keeping this task from finishing, or the safety partner has been removed.	Nonrecoverable	Clear the fault. If a safety task signature exists, safety memory is re-initialized and the safety task begins executing. If a safety task signature does not exist, you must re-download the program so the safety task can run. Reinsert the safety partner, if it was removed.
02	An error exists in a routine of the safety task.	Recoverable	Correct the error in the user-program logic.
03	Safety partner is missing.	Nonrecoverable	Install a compatible safety partner.
04	Safety partner is unavailable.	Nonrecoverable	Install a compatible safety partner.
05	Safety partner hardware is incompatible.	Nonrecoverable	Install a compatible safety partner.
06	Safety partner firmware is incompatible.	Nonrecoverable	Update the safety partner so that the firmware major and minor revision matches the primary controller.
07	Safety task is inoperable. This fault occurs when the safety logic is invalid, for example a mismatch in logic exists between the primary controller and safety partner, a watchdog timeout occurred, or memory is corrupt.	Nonrecoverable	Clear the fault. If a safety task signature exists, safety memory is re-initialized via the safety task signature and the safety task begins executing. If a safety task signature does not exist, you must download the program again so the safety task can run.
08	Coordinated system time (CST) not found.	Nonrecoverable	Clear the fault. Configure a device to be the CST master.
09	Safety partner nonrecoverable controller fault.	Nonrecoverable	Clear the fault and download the program. If the problem persists, replace the safety partner.

The Logix5000 Controllers Major and Minor Faults Programming Manual, publication <u>1756-PM014</u>, contains descriptions of the fault codes common to Logix controllers.

Developing a Fault Routine

If a fault condition occurs that is severe enough for the controller to shut down, the controller generates a major fault and stops the execution of logic.

Some applications do not want all safety faults to shut down the entire system. In those situations, use a fault routine to clear a specific fault and let the standard control portion of your system continue to operate or configure some outputs to remain ON.

ATTENTION: You must provide proof to your certifying agency that your system can continue to operate safely after an override of a safety fault.

The controller supports two levels for handling major faults:

- Program Fault Routine
- Controller Fault Handler

Both routines can use the GSV and SSV instructions as described on page $\underline{148}$.

Program Fault Routine

Each program can have its own fault routine. The controller executes the program's fault routine when an instruction fault occurs. If the program's fault routine does not clear the fault, or if a program fault routine does not exist, the controller proceeds to execute the controller fault handler, if one exists.

Controller Fault Handler

The controller fault handler is an optional component that executes when the program fault routine cannot clear the fault or does not exist.

You can create one program for the controller fault handler. After you create that program, you must configure a routine as the main routine.

The Logix5000 Controllers Major and Minor Faults Programming Manual, publication <u>1756-PM014</u>, provides details on creating and testing a fault routine.

Use GSV/SSV Instructions

Logix controllers store system data in objects rather than in status files. You can use the Get System Value (GSV) and Set System Value (SSV) instructions to retrieve and set controller data.

The GSV instruction retrieves the specified information and places it in the specified destination. The SSV instruction changes the specified attribute with data from the source of the instruction. When you enter a GSV or SSV instruction, the programming software displays the object classes, object names, and attribute names for each instruction.

For standard tasks, you can use the GSV instruction to get values for the available attributes. When using the SSV instruction, the software displays only the attributes that you can set.

For the safety task, the GSV and SSV instructions are more restricted. Note that SSV instructions in safety and standard tasks cannot set bit 0 (major fault on error) in the mode attribute of a safety I/O device.

For safety objects, the <u>Table 47</u> shows the attributes that you can get values for by using the GSV instruction, and the attributes that you can set by using the SSV instruction, in the safety and standard tasks.

ATTENTION: Use the GSV/SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

Table 47 - GSV/SSV Accessibility

Safety Object	Attribute Name	Data Type	Attribute Description	Accessible from the Safety Task		Accessible from Standard Tasks	
			**************************************		ssv	GSV ⁽⁴⁾	SSV
	Instance	DINT	Provides instance number of this task object. Valid values are 031.			Х	
	MaximumInterval	DINT[2]	The max time interval between successive executions of this task.			Х	Х
	MaximumScanTime	DINT	Max recorded execution time (ms) for this task.			Х	Χ
Safety Task	MinimumInterval	DINT[2]	The min time interval between successive executions of this task.			Х	Χ
,	Priority	INT	Relative priority of this task as compared to other tasks. Valid values are 0 15.	Х		Х	
	Rate	DINT	Period for the task (in ms), or timeout value for the task (in ms).	Х		Х	
	Watchdog	DINT	Time limit (in ms) for execution of all programs associated with this task.	Х		Х	
	Instance	DINT	Provides the instance number of the program object.			Х	
Safety Program	MajorFaultRecord ⁽¹⁾	DINT[11]	Records major faults for this program.		Х	Х	
	MaximumScanTime	DINT	Max recorded execution time (ms) for this program.			Х	Х
Safety Routine	Instance	DINT	Provides the instance number for this routine object. Valid values are 065,535.				

Table 47 - GSV/SSV Accessibility (Continued)

Safety	Attribute Name	Data Type	Attribute Description	Accessible from the Safety Task		Accessible from Standard Tasks	
Object					ssv	GSV ⁽⁴⁾	SSV
	SafetyLocked	SINT	Indicates whether the controller is safety-locked or -unlocked.			Х	
	SafetyStatus ⁽²⁾	INT	Specifies the safety status as the following:			Х	
Safety Controller			 Safety task OK. (100000000000000) Safety task inoperable. (1000000000000001) Partner missing. (0000000000000000) Partner unavailable. (00000000000000001) Hardware incompatible. (0000000000000001) Firmware incompatible. (00000000000000011) 				
	SafetySignatureExists	SINT	Indicates whether the safety task signature is present.	Х		Х	
	SafetySignatureID	DINT	32-bit identification number.			Х	
	SafetySignature	String ⁽³⁾	32-bit identification number.			Х	
	SafetyTaskFaultRecord ⁽¹⁾⁽²⁾	DINT[11]	Records safety task faults.			Х	
	LastEditDate	LINT	Date and time stamp of the last edit to an Add-On Instruction definition.			Х	
AOI (Safety)	SignatureID	DINT	ID number.			Х	
	SafetySignatureID	DINT	32-bit identification number.			Х	

⁽¹⁾ See $\underline{\text{Access FaultRecord Attributes on page 149}}$ for information on how to access this attribute.

Access FaultRecord Attributes

Create a user-defined structure to simplify access to the MajorFaultRecord and SafetyTaskFaultRecord attributes.

Table 48 - Parameters for Accessing FaultRecord Attributes

Name	Data Type	Style	Description
TimeLow	DINT	Decimal	Lower 32 bits of the fault timestamp value
TimeHigh	DINT	Decimal	Upper 32 bits of the fault timestamp value
Туре	INT	Decimal	Fault type (program, I/O, or other)
Code	INT	Decimal	Unique code for this fault (dependent on fault type)
Info	DINT[8]	Hexadecimal	Fault-specific information (dependent on fault type and code)

For more information on using the GSV and SSV instructions, refer to the Input/Output Instructions chapter of the Logix5000 Controllers General Instructions Reference Manual, publication <u>1756-RM003</u>.

⁽²⁾ See <u>Capture Fault Information on page 150</u> for information on how to access this attribute.

⁽³⁾ Length = 37.

⁽⁴⁾ From the standard task, GSV accessibility of safety object attributes is the same as for standard object attributes.

Capture Fault Information

The SafetyStatus and SafetyTaskFaultRecord attributes can capture information about non-recoverable faults. Use a GSV instruction in the controller fault handler to capture and store fault information. The GSV instruction can be used in a standard task in conjunction with a controller fault handler routine that clears the fault and lets the standard tasks continue executing.

Status Indicators

Торіс	Page
Controllers Status Indicators	151
Controller Status Display	152

Controllers Status Indicators

The status of the primary controller is displayed via four status indicators.

Table 49 - Primary Controller Status Indicator Descriptions

Indicator	Status	Description		
RUN	Off	No user tasks running. Controller is in PROGram mode.		
	Green	Controller is in RUN mode.		
FORCE	Off	No forces, standard or safety, are enabled on the controller.		
	Amber	Standard and/or safety forces have been enabled. Use caution if you install (add) a force. If you install a force, it takes immediate effect.		
	Amber, Flashing	One or more I/O addresses, standard and/or safety, have been forced to an on or off state, but forces are not enabled. Use caution if you enable I/O forces. If you enable I/O forces, all existing I/O forces also take effect.		
SD	Off	No activity is occurring with the memory card.		
	Green, Flashing	The controller is reading from or writing to the memory card. Do not		
	Green	remove the memory card while the controller is reading or writing.		
	Red, Flashing	The memory card does not have a valid file system.		
	Red	The memory card is not recognized by the controller.		
OK	Off	No power is applied.		
	Green	The controller is operating with no faults.		
	Red, Flashing	Nonrecoverable fault or recoverable fault not handled in the fault handler. All user tasks, both standard and safety, are stopped. If the controller is new, out-of-the-box, it requires a firmware update. The status display indicates Firmware Installation Required.		
	Red	The controller is completing power-up diagnostics A nonrecoverable major fault occurred and the program was cleared from memory. The charge of the capacitor in the Energy Storage Module (ESM) is being discharged upon powerdown. The controller is powered but inoperable. The controller is loading a project to nonvolatile memory.		

The safety partner has an OK status indicator.

Table 50 - 1756-L7SP Status Indicator

Indicator	licator Status Description	
OK Off No pow		No power is applied.
	Green	The safety partner is operating with no faults.
	Red	Powering up or nonrecoverable controller fault.

Controller Status Display

The controller status display scrolls messages that provide information about the controller's firmware revision, energy storage module (ESM) status, project status, and major faults.

Safety Status Messages

The primary controller display can show the following messages. The safety partner displays 'L7SP'.

Table 51 - Safety Status Display

Message	Interpretation	
No Safety Signature	Safety Task is in Run mode without a safety task signature.	
Safety Partner Missing	The safety partner is missing or unavailable.	
Hardware Incompatible	The safety partner and primary controller hardware is incompatible.	
Firmware Incompatible	The safety partner and primary controller firmware revision levels are incompatible.	
No CST Master	A coordinated system time (CST) master has not been found	
Safety Task Inoperable	The safety logic is invalid. For example, a mismatch occurred between the primary controller and the safety partner, a watchdog timeout occurred, or memory is corrupt.	
Safety Unlocked	The controller is in Run mode with a safety signature, but is not safety-locked.	

General Status Messages

The messages described in <u>Table 52</u> are typically indicated upon powerup, powerdown, and while the controller is running. These messages indicate the status of the controller and the ESM.

Table 52 - General Status Display

Message	Interpretation		
No message is indicated	The controller is off, or a major nonrecoverable fault (MNRF) has occurred. Check the OK indicator to determine if the controller is powered and determine the state of the controller.		
TEST	Power-up tests are being conducted by the controller.		
PASS	Power-up tests have been successfully completed.		
SAVE	A project is being saved to the SD card at powerdown. You can also view the SD Indicator (see page 151) for additional status information. Let the save complete before removing the SD card or disconnecting power.		
LOAD	A project is being loaded from the SD card at controller powerup. You can also view the SD Indicator (see page 151) for additional status information. Let the load complete before removing the SD card, removing the ESM module, or disconnecting power.		
UPDT	A firmware update is being conducted from the SD card upon powerup. You can also view the SD Indicator (see page 151) for additional status information. If you do not want the firmware to update upon powerup, change the controller's Load Image property.		
CHRG	The capacitor-based ESM is being charged.		
1756-L7 <i>x/X</i>	The controller catalog number and series.		
Rev XX.xxx	The major and minor revision of the controller's firmware.		
No Project	No project is loaded on the controller. To load a project, use the Logix Designer application to download the project to the controller, or use an SD card to load a project to the controller.		
Project Name	The name of the project that is currently loaded on the controller. The name indicated is based on the project name specified in the Logix Designer application.		
BUSY	The I/O devices associated with the controller are not yet fully-powered. Allow time for powerup and I/O device self-testing.		
Corrupt Certificate Received	The security certificate associated with the firmware is corrupted. Go to http://www.rockwellautomation.com/support/ and download the firmware revision you are trying to upgrade to. Replace the firmware revision you have previously installed with that posted on the Technical Support website.		
Corrupt Image Received	The firmware file is corrupted. Go to http://www.rockwellautomation.com/support/ and download the firmware revision you are trying to upgrade to. Replace the firmware revision you have previously installed with that posted on the Technical Support website.		
ESM Not Present	An ESM is not present and the controller cannot save the application at powerdown. Insert a compatible ESM, and, if a capacitor-based ESM is used, do not remove power until the ESM is charged.		
ESM Incompatible	The ESM is incompatible with the memory size of the controller. Replace the incompatible ESM with a compatible ESM.		
ESM Hardware Failure	A failure with the ESM has occurred and the controller is incapable of saving of the program in the event of a powerdown. Replace the ESM before removing power to the controller so the controller program is saved.		
ESM Energy Low	The capacitor-based ESM does not have sufficient energy to enable the controller to save the program in the event of a powerdown. Replace the ESM.		
ESM Charging	The capacitor-based ESM is charging. Do not remove power until charging is complete.		
Flash in Progress	A firmware update initiated via ControlFLASH™ or AutoFlash software is in progress. Allow the firmware update to complete without interruption.		
Firmware Installation Required	The controller is using boot firmware (that is revision 1.xxx) and requires a firmware update. Update the controller firmware.		
SD Card Locked	An SD card that is locked is installed.		

Fault Messages

If the controller is faulted, these messages can be indicated on the status display.

Table 53 - Fault Messages⁽¹⁾

Message	Interpretation		
Major Fault T <i>XX</i> :C <i>XX message</i>	A major fault of Type XX and Code XX has been detected. For example, if the status display indicates Major Fault T04:C42 Invalid JMP Target, then a JMP instruction is programmed to jump to an invalid LBL instruction.		
I/O Fault Local:X #XXXX message	An I/O fault has occurred on a module in the local chassis. The slot number and fault code are indicated along with a brief description. For example, I/O Fault Local:3 #0107 Connection Not Found indicates that a connection to the local I/O module in slot three is not open. Take corrective action specific to the type of fault indicated.		
I/O Fault ModuleName #XXXX message	An I/O fault has occurred on a module in a remote chassis. The name of the faulted module, as configured in the I/O Configuration tree of the Logix Designer application, is indicated with the fault code and brief description of the fault. For example, I/O Fault My_Module #0107 Connection Not Found indicates that a connection to the module named 'My_Module' is not open. Take corrective action specific to the type of fault indicated.		
I/O Fault ModuleParent:X #XXXX message	An I/O fault has occurred on a module in a remote chassis. The module's parent name is indicated because no module name is configured in the I/O Configuration tree of the Logix Designer application. In addition, the fault code is indicated with a brief description of the fault. For example, I/O Fault My_CNet:3 #0107 Connection Not Found indicates that a connection to a module in slot 3 of the chassis with the communication module named 'My_CNet' is not open. Take corrective action specific to the type of fault indicated.		
X I/O Faults	I/O faults are present and X = the number of I/O faults present. In the event of multiple I/O faults, the controller indicates the first fault reported. As each I/O fault is resolved, the number of faults indicated decreases and the next fault reported is indicated by the I/O Fault message. Take corrective action specific to the type of fault indicated.		

⁽¹⁾ For details about fault codes, see the Logix5000™ Major, Minor, and I/O Fault Codes Programming Manual, publication 1756-PM014.

Major Recoverable Fault Messages

Major recoverable faults are indicated by Major Fault TXX:CXX message on the controller status display. <u>Table 54</u> lists specific fault types, codes, and the associated messages as they are shown on the status display.

For detailed descriptions and suggested recovery methods for major recoverable faults, see the Logix5000 Major, Minor, and I/O Fault Codes Programming Manual, publication 1756-PM014.

Table 54 - Major Recoverable Fault Messages

Туре	Code	Message	Туре	Code	Message
1	1	Run Mode Powerup	7	41	Bad Restore Type
1	60	Non-recoverable	7	42	Bad Restore Revision
1	61	Non-recoverable — Diagnostics Saved	7	43	Bad Restore Checksum
1	62	Non-recoverable — Program Saved	8	1	key switch Change Ignored
3	16	I/O Connection Failure	11	1	Positive Overtravel Limit Exceeded
3	20	Chassis Failure		2	Negative Overtravel Limit Exceeded
3	21		11	3	Position Error Tolerance Exceeded
3	23	Connection Failure	11	4	Encoder Channel Connection Fault
4	16	Unknown Instruction		5	Encoder Noise Event Detected
4	20	Invalid Array Subscript	11	6	SERCOS Drive Fault
4	21	Control Structure LEN or POS < 0	11	7	Synchronous Connection Fault
4	31	Invalid JSR Parameter		8	Servo Module Fault
4	34	Timer Failure	11	9	Asynchronous Connection Fault
4	42	Invalid JMP Target	11	10	Motor Fault
4	82	SFC Jump Back Failure		11	Motor Thermal Fault
4	83	Value Out of Range		12	Drive Thermal Fault
4	84	Stack Overflow		13	SERCOS Communications Fault
4	89	Invalid Target Step		14	Inactive Drive Enable Input Detected
4	90	Invalid Instruction		15	Drive Phase Loss Detected
4	91	Invalid Context		16	Drive Guard Fault
4	92	Invalid Action		32	Motion Task Overlap Fault

Table 54 - Major Recoverable Fault Messages

Туре	Code	Message	
4	990		
4	991		
4	992		
4	993		
4	994	User-defined	
4	995	User-defined	
4	996		
4	997		
4	998		
4	999		
6	1	Task Watchdog Expired	
7	40	Save Failure	

Туре	Code	Message
11	33	CST Reference Loss Detected
18	1	CIP Motion [™] Initialization Fault
18	2	CIP Motion Initialization Fault Mfg
18	3	CIP Motion Axis Fault
18	4	CIP Motion Axis Fault Mfg
18	5	CIP Motion Fault
18	6	CIP Module Fault
18	7	Motion Group Fault
18	8	CIP Motion Configuration Fault
18	9	CIP Motion APR Fault
18	10	CIP Motion APR Fault Mfg
18	128	CIP Motion Guard Fault

I/O Fault Codes

I/O faults indicated by the controller are indicated on the status display in one of these formats:

- I/O Fault Local: X #XXXX message
- I/O Fault ModuleName #XXXX message
- I/O Fault ModuleParent:X #XXXX message

The first part of the format is used to indicate the location of the faulted module. How the location is indicated depends on your I/O configuration and the module's properties specified in the Studio 5000 Logix Designer® application.

The latter part of the format, #XXXX message, can be used to diagnose the type of I/O fault and potential corrective actions. For details about each I/O fault code, see the Logix5000 Major, Minor, and I/O Fault Codes Programming Manual, publication 1756-PM014.

Code	Message	Code	Message
#0001	Connection Failure	#0115	Wrong Device Type
#0002	Insufficient Resource	#0116	Wrong Revision
#0003	Invalid Value	#0117	Invalid Connection Point
#0004	IOI Syntax	#0118	Invalid Configuration Format
#0005	Destination Unknown	#0119	Module Not Owned
#0006	Partial Data Transferred	#011A	Out of Connection Resources
#0007	Connection Lost	#0203	Connection Timeout
#0008	Service Unsupported	#0204	Unconnected Message Timeout
#0009	Invalid Attribute Value	#0205	Invalid Parameter
#000A	Attribute List Error	#0206	Message Too Large
#000B	State Already Exists	#0301	No Buffer Memory
#000C	Object Mode Conflict	#0302	Bandwidth Not Available
#000D	Object Already Exists	#0303	No Bridge Available
#000E	Attribute Not Setable	#0304	ControlNet™ Schedule Error
#000F	Permission Denied	#0305	Signature Mismatch
#0010	Device State Conflict	#0306	CCM Not Available
#0011	Reply Too Large	#0311	Invalid Port
#0012	Fragment Primitive	#0312	Invalid Link Address
#0013	Insufficient Command Data	#0315	Invalid Segment Type
#0014	Attribute Not Supported	#0317	Connection Not Scheduled
#0015	Data Too Large	#0318	Invalid Link Address
#0100	Connection In Use	#0319	No Secondary Resources Available
#0103	Transport Not Supported	#031E	No Available Resources
#0106	Ownership Conflict	#031F	No Available Resources
#0107	Connection Not Found	#0800	Network Link Offline

Code	Message
#0108	Invalid Connection Type
#0109	Invalid Connection Size
#0110	Module Not Configured
#0111	RPI Out of Range
#0113	Out of Connections
#0114	Wrong Module

Code	Message
#0801	Incompatible Multicast RPI
#0802	Invld Safety Conn Size
#0803	Invld Safety Conn Format
#0804	Invld Time Correct Conn Format
#0805	Invld Ping Intrvl EPI Multiplier
#0806	Time Coord Msg Min Multiplier

I/O Fault Messages (continued)

#0807 Time Expectation Multiplier #0808 Timeout Multiplier #0809 Invld Max Consumer Number #080A Invld CPCR #080B Time Correction Conn ID Invld #080C Safety Cfg Signature Mismatch #080D Safety Netwk Num Not Set OutOfBx #080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 SERCOS Init Node Fault #FD00 No Safety Task Running #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Connection #FE06 Invalid Input Force Pointer #FE07 Invalid Output Connection	Code	Message
#0809 Invld Max Consumer Number #080A Invld CPCRC #080B Time Correction Conn ID Invld #080C Safety Cfg Signature Mismatch #080D Safety Netwk Num Not Set OutOfBx #080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD00 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Input Connection #FE03 Invalid Input Data Pointer #FE04 Invalid Input Data Pointer #FE05 Invalid Input Force Pointer	#0807	Time Expectation Multiplier
#080A Invld CPCRC #080B Time Correction Conn ID Invld #080C Safety Cfg Signature Mismatch #080D Safety Netwk Num Not Set OutOfBx #080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 SERCOS Init Node Fault #FD00 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#0808	Timeout Multiplier
#080B Time Correction Conn ID InvId #080C Safety Cfg Signature Mismatch #080D Safety Netwk Num Not Set OutOfBx #080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Omm Fault #FD09 SERCOS Init Node Fault #FD00 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 InvId Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#0809	Invld Max Consumer Number
#080C Safety Cfg Signature Mismatch #080D Safety Netwk Num Not Set OutOfBx #080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#080A	Invld CPCRC
#080D Safety Netwk Num Not Set OutOfBx #080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 SERCOS Init Node Fault #FD00 No Safety Task Running #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#080B	Time Correction Conn ID Invld
#080E Safety Netwk Number Mismatch #080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 SERCOS Init Node Fault #FD00 No Safety Data Fault #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Data Pointer #FE04 Invalid Input Data Size #FE05 Invalid Input Force Pointer	#080C	Safety Cfg Signature Mismatch
#080F Cfg Operation Not Allowed #0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 SERCOS Init Node Fault #FD00 No Safety Data Fault #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#080D	Safety Netwk Num Not Set OutOfBx
#0814 Data Type Mismatch #FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#080E	Safety Netwk Number Mismatch
#FD01 Bad Backplane EEPROM #FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD00 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invlld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#080F	Cfg Operation Not Allowed
#FD02 No Error Code #FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD09 Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#0814	Data Type Mismatch
#FD03 Missing Required Connection #FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD01	Bad Backplane EEPROM
#FD04 No CST Master #FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD02	No Error Code
#FD05 Axis or GRP Not Assigned #FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD03	Missing Required Connection
#FD06 SERCOS Transition Fault #FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD04	No CST Master
#FD07 SERCOS Init Ring Fault #FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD05	Axis or GRP Not Assigned
#FD08 SERCOS Comm Fault #FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD06	SERCOS Transition Fault
#FD09 SERCOS Init Node Fault #FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD07	SERCOS Init Ring Fault
#FD0A Axis Attribute Reject #FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD08	SERCOS Comm Fault
#FD1F Safety Data Fault #FD20 No Safety Task Running #FD21 Invlid Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD09	SERCOS Init Node Fault
#FD20 No Safety Task Running #FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD0A	Axis Attribute Reject
#FD21 Invld Safety Conn Parameter #FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD1F	Safety Data Fault
#FE01 Invalid Connection Type #FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD20	No Safety Task Running
#FE02 Invalid Update Rate #FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FD21	Invld Safety Conn Parameter
#FE03 Invalid Input Connection #FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FE01	Invalid Connection Type
#FE04 Invalid Input Data Pointer #FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FE02	Invalid Update Rate
#FE05 Invalid Input Data Size #FE06 Invalid Input Force Pointer	#FE03	Invalid Input Connection
#FE06 Invalid Input Force Pointer	#FE04	Invalid Input Data Pointer
· · · · · · · · · · · · · · · · · · ·	#FE05	Invalid Input Data Size
#FE07 Invalid Output Connection	#FE06	Invalid Input Force Pointer
	#FE07	Invalid Output Connection

Code	Message
#FE08	Invalid Output Data Pointer
#FE09	Invalid Output Data Size
#FE0A	Invalid Output Force Pointer
#FEOB	Invalid Symbol String
#FEOC	Invalid Scheduled P/C Instance
#FEOD	Invalid Symbol Instance
#FE0E	Module Firmware Updating
#FEOF	Invalid Firmware File Revision
#FE10	Firmware File Not Found
#FE11	Firmware File Invalid
#FE12	Automatic Firmware Update Failed
#FE13	Update Failed - Active Connection
#FE14	Searching Firmware File
#FE22	Invalid Connection Type
#FE23	Invalid Unicast Allowed
#FF00	No Connection Instance
#FF01	Path Too Long
#FF04	Invalid State
#FF08	Invalid Path
#FF0B	Invalid Config
#FF0E	No Connection Allowed
#FE22	Invalid Connection Type
#FE23	Invalid Unicast Allowed
#FF00	No Connection Instance
#FF01	Path Too Long
#FF04	Invalid State
#FF08	Invalid Path
#FF0B	Invalid Config
#FF0E	No Connection Allowed

Change Controller Type

Торіс	Page
Change from a Standard to a Safety Controller	159
Change from a Safety to a Standard Controller	160
Change Safety Controller Types	161

Because safety controllers have special requirements and do not support certain standard features, you must understand the behavior of the system when changing the controller type from standard to safety or from safety to standard in your controller project. Changing controller type affects the following:

- Supported features
- Physical configuration of the project (safety partner and safety I/O)
- Controller properties
- Project components such as tasks, programs, routines, and tags
- Safety Add-On Instructions

IMPORTANT GuardLogix® 5560 controllers and 1768 Compact GuardLogix controllers are not supported in Studio 5000® version 21 or later.

Change from a Standard to a Safety Controller

To successfully change the controller type from a standard controller to a safety controller, the chassis slot immediately to the right of the safety primary controller must be available for the safety partner.

Upon confirmation of a change from a standard controller to a safety controller project, safety components are created to meet the minimum requirements for a safety controller:

- The safety task is created only if the maximum number of downloadable tasks has not been reached. The safety task is initialized with its default values.
- Safety components are created (safety task, safety program, and so forth).
- A time-based safety network number (SNN) is generated for the local chassis.
- Standard controller features that are not supported by the safety controller, such as redundancy, are removed from the Controller Properties dialog box (if they existed).

Change from a Safety to a Standard Controller

Upon confirmation of a change from a safety controller project to a standard controller, some components are changed and others are deleted, as described below:

- The safety partner is deleted from the I/O chassis.
- Safety I/O devices and their tags are deleted.
- The safety task, programs, and routines are changed to a standard task, programs, and routines.
- All safety tags, except safety consume tags, are changed to standard tags. Safety consume tags are deleted.
- Safety tag mappings are deleted.
- The safety network number (SNN) is deleted.
- Safety-lock and -unlock passwords are deleted.
- If the standard controller supports features that were not available to the safety controller, those new features are visible in the Controller Properties dialog box.

TIP Peer safety controllers are not deleted, even if they have no connections remaining.

- Instructions can still reference modules that have been deleted and can produce verification errors.
- Consumed tags are deleted when the producing module is deleted.
- As a result of the above changes to the system, safety-specific instructions and safety I/O tags do not verify.

If the safety controller project contains safety Add-On Instructions, you must remove them from the project or change their class to standard before changing the controller type.

For more information about Add-On Instructions, see Logix5000™ Controllers Add-On Instructions Programming Manual, publication <u>1756-PM010</u>.

Change Safety Controller Types

IMPORTANT

1768 Compact GuardLogix controllers and GuardLogix 5560 controllers are not supported in the Logix Designer application, version 21.

When you change from one safety controller type to another, the class of tags, routines, and programs remain unaltered. Any I/O devices that are no longer compatible with the target controller are deleted.

The representation of the safety partner is updated to appear appropriately for the target controller:

- The safety partner is created in slot x (primary slot + 1) when changing from a 1768 Compact GuardLogix to a GuardLogix 5570 controller.
- When changing to a 1768 Compact GuardLogix controller, the safety partner is removed because it is internal to the Compact GuardLogix controller.

TIP A GuardLogix 5570 controller supports 100 safety programs in the safety task while a 1768 Compact GuardLogix controller supports 32.

Floating-point instructions, such as FAL, FLL, FSC, SIZE, CMP, SWPB, and CPT are supported in GuardLogix 5570 controllers, but not in GuardLogix 5560 and 1768 Compact GuardLogix controllers. If your safety program contains these instructions, verification errors can occur when changing from a GuardLogix 5570 controller to a GuardLogix 5560 or 1768 Compact GuardLogix controller.

Notes:

Numerics	В
1756-Axx 26	base tags 105
1756-CN2 70	BAT indicator 141
1756-CN2R 70	battery
1756-CN2RXT 70	fault 141
1756-CNB 70	
1756-CNBR 70	C
1756-DNB 73, 74, 125	-
1756-EN2F 65	changing controllers 160
1756-EN2T 65	chassis 17
1756-EN2TR 65	catalog numbers 26
1756-EN2TRXT 65	CIP Safety 11, 57, 96
1756-EN2TXT 65	CIP Safety I/O
1756-EN3TR 65	adding 75 configuration signature 85
1756-ENBT 65	monitor status 88
1756-ESMCAP 25, 42, 44, 138, 140	node address 75
1756-ESMCAPXT 25, 42, 44, 138, 140	reset ownership 86
1756-ESMNRM 25, 42, 44, 138, 140	status data 88 class 108
1756-ESMNRMXT 25, 44, 138, 140	1.435
1756-ESMNSE 25, 42, 44, 138, 140	clear
1756-ESMNSEXT 25, 44, 138, 140	faults 145 program 139
1756-EWEB 65	communication 18
1756-L72EROMS 9	ControlNet network 70
1756-L73EROMS 9	DeviceNet network 73
1756-PA72 26	EtherNet/IP network 65
1756-PA75 26	modules 18 Compact GuardLogix controller 161
1756-PAXT 26	configuration owner 85
1756-PB72 26	identifying 86
1756-PB75 26	resetting 86, 89
1756-PBXT 26	configuration signature
1756-SPESMCAP 25, 42	components 85
1756-SPESMNRM 25, 44, 138	copy 85
1756-SPESMNRMXT 25 , 44 , 138	definition 85
1756-SPESMNSE 25, 43, 44, 138	configure always 96 checkbox 53
1756-SPESMNSEXT 25, 42, 44, 138	connection
1768 Compact GuardLogix controller 161	ControlNet network 71
1784-SD1 25	EtherNet/IP network 66
1784-SD2 25	monitor 142
	scheduled 71
A	status 143 unscheduled 71
	USB 31
Add-On Instructions 19, 160 address	connection reaction time limit 79, 114
444.655	CONNECTION_STATUS 109, 143
Kinetix safety I/O device 87 advanced connection reaction time 82	ConnectionFaulted bit 143
alert symbol 142	constant value tag 108
alias tags 105	consume tag data 113
Armor GuardLogix controller	consumed tag 105, 109
1756-L72EROMS 9	control and information protocol
1756-L73EROMS 9	definition 11
attributes	ControlFLASH software 33, 127, 137, 140
safety object 148 automatic firmware updates 140	

controller	E
change type 159 161	editing 121
configuration 47	electronic keying 50, 140
extreme environment 10 fault handler 147	electrostatic discharge 22
feature differences 10	enclosure 21
installation 27	energy storage module 25
logging	1756-ESMCAP 25
safety lock, unlock 119	charging 27, 45
safety task signature 121	definition 11
match 127 mode 41	hold-up time 140
operating mode 40, 41	install 44
properties 49	non-volatile storage 138 uninstall 42
serial number 127	environment 21
serial number mismatch 130, 133	error
controller-scoped tags 107	script file 36
ControlNet	ESM
communication modules 18	See energy storage module
configure driver 126 connections 71, 126	EtherNet/IP
example 72	communication modules 18
module 71, 125	configure driver 126
overview 70	connection use 66
scheduled 71	connections 66, 126
software 70 unscheduled 71	device 125 example 67
coordinated system time 130, 152	module capability 65
•	modules 65
safety network number 63	network parameters 69
safety task signature 122	overview 65
create a project 47	safety I/O device 69
• •	standard I/O modules 69 external access 104, 108
•	extreme environment
D	chassis 26
data types	controller 10
CONNECTION_STATUS 109	power supply 26
delete	system components 10
safety task signature 122	
DeviceNet	F
communication 73	•
configure driver 126	fault
connections 74, 126 module 125	clear 145
software 73	messages 154, 155 nonrecoverable controller 145
diagnostic coverage 11	nonrecoverable safety 144, 145
DNT file 98, 99	recoverable 145, 155
download	routines 147 149
effect of controller match 127	fault codes
effect of firmware revision match 127	I/O messages 157
effect of safety status 127	major safety faults 146
effect of safety task signature 128 effect of safety-lock 128	status display 146 firmware
process 129 130	security certificate, error 36
driver	firmware revision
ControlNet 126	management 140
DeviceNet 126	match 127
EtherNet/IP 126	mismatch 128, 130, 133
USB 32	update 33
	Firmware Supervisor 140
	firmware upgrade kit 127, 140
	forcing 121

G	memory
gateway 69	capacity 16
general status messages 153	memory card 135, 136, 137, 140
get system value (GSV)	installation 28
accessibility 148	removal 28
definition 11	message
using 148	status display 153 messages
go online 132	fault 154
factors 127	general status 153
Guard I/O module	safety status 152
replacement 97 99	minor faults tab 146
GuardLogix controllers	mode
differences 10	operating 40
	module
Н	ControlNet 18
	DeviceNet 18
hazardous location approval	EtherNet/IP 18
Europe 24	properties connection tab 86
North America 23 HMI devices 15	status indicator 88
	modules
hold-up time	EtherNet/IP 65
energy storage module 140	monitor
	connections 142
I	status 88
1/0	multicast 11
fault codes 157	
indicator 142	M
module replacement 53	N
IP address 69, 75	network address translation (NAT)
	definition 11
W	set the IP address 78
K	supported features 19
K keyswitch 17, 41	supported features 19 network delay multiplier 83, 115
	supported features 19 network delay multiplier 83, 115 network status
keyswitch 17, 41	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98
keyswitch 17, 41 Kinetix 5500 servo drive 68	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47
keyswitch 17, 41	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75
keyswitch 17, 41 Kinetix 5500 servo drive 68	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145
keyswitch 17, 41 Kinetix 5500 servo drive 68	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock.	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock.	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment.	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146 Major Recoverable Fault	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership configuration 86
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146 Major Recoverable Fault messages 155	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146 Major Recoverable Fault messages 155 major recoverable faults 155	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership configuration 86
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146 Major Recoverable Fault messages 155 major recoverable faults 155 major safety faults 146	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership configuration 86
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146 Major Recoverable Fault messages 155 major recoverable faults 155 major safety faults 146 MajorFaultRecord 149	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership configuration 86
keyswitch 17, 41 Kinetix 5500 servo drive 68 L listen only connection 85 load a project 137 on corrupt memory 137 on power up 137 user initiated 137 lock See safety-lock. Logix-XT system components See extreme environment. M major faults tab 146 Major Recoverable Fault messages 155 major recoverable faults 155 major safety faults 146	supported features 19 network delay multiplier 83, 115 network status indicator 88, 92, 94, 98 new controller dialog box 47 node address 75 nonrecoverable controller fault 145 nonrecoverable safety fault 144, 145 re-starting the safety task 145 nonvolatile memory 135 140 tab 136 O online bar 141 operating mode 40 out-of-box 92 reset module 89 ownership configuration 86

P	reset
password	module 89
set 51	ownership 86, 89 reset module 89
valid characters 51	restrictions
paste	programming 122
safety network number 63	safety tag mapping 116
peer safety controller	software 122
configuration 55 location 109	when safety signature exists 121
sharing data 109	when safety-locked 119 RIUP
SNN 109, 110	See removal and insertion under power
Performance Level 11, 13	RPI
power supply	See requested packet interval
catalog numbers 17, 26 primary controller	RSLinx Classic software
description 16	version 19
hardware overview 16	RSLogix 5000 software restrictions 122
modes 17	RSNetWorx for DeviceNet software
user memory 16 probability of failure on demand (PFD)	replace module 97
definition 11	Run mode 40
probability of failure per hour (PFH)	run mode protection 120, 122
definition 11	RunMode bit 143
produce a tag 112	
produce and consume tags 66, 71, 109	S
produced tag 105, 109	-
program fault routine 147	safe state 13
Program mode 40	safety network number assignment 57
programming 121	automatic assignment 59
programming restrictions 122	changing controller SNN 60
program-scoped tags 107	changing I/O SNN 61
project to controller match 127 protect signature in run mode 52	copy 63 copy and paste 63
protecting the safety application 118 122	definition 11
safety task signature 120	description 14
safety-lock 118	managing 57 manual 59
security 120	manual assignment 59
	mismatch 97
R	modification 60
RAM capacity 16	paste 63 set 79
reaction time 103	time-based 58
reaction time limit	view 49
CIP Safety I/O 79	safety object
recoverable fault 145, 155	attributes 148
clear 145	safety partner configuration 17
Remote mode 40, 41	description 17
removal and insertion under power 22	status 144
replace	safety programs 103
configure always enabled 96 configure only enabled 91	safety projects
Guard I/O module 90 99	features 19
requested packet interval 109	safety routine 104
consumed tag 114	using standard data 116 safety status
consumed tags 105 definition 11	button 120, 142
produced tag data 105	effect on download 127
safety I/O 80	programming restrictions 122
	safety task signature 120 view 127, 141, 144

safety tab 120, 121, 144	software
configuration signature 85	ControlNet network 70
connection data 79	DeviceNet networks 73
generate safety task signature 121	restrictions 122
module replacement 90	USB 31
safety-lock 120 safety-lock controller 120	standard data in a safety routine 116
unlock 120	status
view safety status 127, 144	display 152 158
safety tags	fault messages 154
controller-scoped 107	messages 152 messages, display 153
create 105	safety partner 144
description 104	status flags 143
mapping 116 118	status indicators 151 152
safety-program-scoped 107	1/0 modules 88
valid data types 106	store a project 136
safety task 102	subnet mask 69
execution 103	Subilet illask 09
priority 102	
watchdog time 102	Ţ
safety task period 80, 103, 109	<u>-</u>
safety task signature 108	tags
copy 122	alias 105
delete 122	base 105
description 14	class 108
effect on download 128	constant value 108
effect on upload 128	consumed 105, 109 controller-scoped 107
generate 120 restricted operations 121	data type 106
restrictions 122	external access 104, 108
storing a project 137	naming 86
view 141	overview 104
safety-lock 118	produced 105, 109
controller 120	produced/consumed safety data 106, 107
effect on download 128	program-scoped 107
effect on upload 128	safety I/O 106, 107
icon 119	scope 107
password 120	See also, safety tags.
SafetyTaskFaultRecord 149	type 105 terminology 11
safety-unlock	time synchronization 54, 130
controller 120	
icon 119	timeout multiplier 82, 115
save program	
non-volatile memory 138	U
scan times	•
reset 123	unicast 11
scheduled connections 71	connections 109, 112
script file	unlock controller 120
error 36	unscheduled connections 71
SD card	update
See Secure Digital card.	firmware 33
Secure Digital card 25	upload
install 30	effect of controller match 127
remove 29	effect of safety task signature 128
See also memory card.	effect of safety-lock 128
security certificate	process 130
error 36	USB
serial number 127	cable 31, 125
set system value (SSV)	connection 31
accessibility 148	driver 32
using 148	port 31 software required 31
slot number 48	type 31
	9651

user memory 16 UV radiation 22

verification errors

changing controller type 161 **view**

safety status 127

W

WallClockTime 138, 140 energy storage module 140 object 45 watchdog time 102

X

XT

See extreme environment.

Notes:

Notes:

Rockwell Automation Support

Use the following resources to access support information.

Technical Support Center	Knowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates.	https://rockwellautomation.custhelp.com/	
Local Technical Support Phone Numbers	Locate the phone number for your country.	http://www.rockwellautomation.com/global/support/get-support-now.page	
Direct Dial Codes	Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.	http://www.rockwellautomation.com/global/support/direct-dial.page	
Literature Library	Installation Instructions, Manuals, Brochures, and Technical Data.	http://www.rockwellautomation.com/global/literature-library/overview.page	
Product Compatibility and Download Center (PCDC)	Get help determining how products interact, check features and capabilities, and find associated firmware.	http://www.rockwellautomation.com/global/support/pcdc.page	

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf.

 $Rockwell \ Automation \ maintains \ current \ product \ environmental \ information \ on \ its \ website \ at \ \underline{http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page.$

Allen-Bradley, Armor, ControlFLASH, ControlLogix, DriveLogix, FlexLogix, Guard I/O, GuardLogix, Integrated Architecture, Kinetix, Logix5000, PanelView, PhaseManager, PLC-5, POINT Guard I/O, PowerFlex, Rockwell Automation, Rockwell Software, RSLinx, RSLogix 5000, RSNetWorx, Studio 5000, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc.

CIP, CIP Motion, CIP Safety, CIP Sync, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846