
User
Manual

API Software for
1746 I/O PCI
Interface

(Cat. No. 1747-PCIDOS, -PCINT)

Allen-Bradley

Important User
Information

Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this control
equipment must satisfy themselves that all necessary steps have been
taken to assure that each application and use meets all performance and
safety requirements, including any applicable laws, regulations, codes
and standards.

The illustrations, charts, sample programs and layout examples shown
in this guide are intended solely for example. Since there are many
variables and requirements associated with any particular installation,
Allen-Bradley does not assume responsibility or liability (to include
intellectual property liability) for actual use based upon the examples
shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines For The
Application, Installation and Maintenance of Solid State Control
(available from your local Allen-Bradley office) describes some
important differences between solid-state equipment and
electromechanical devices which should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole
or in part, without written permission of Allen-Bradley Company, Inc.
is prohibited.

Throughout this manual we use notes to make you aware of safety
considerations:

Attention helps you to:

• identify a hazard

• avoid the hazard

• recognize the consequences

Important: Identifies information that is critical for successful
application and understanding of the product.

AMIBIOS is a trademark of American Megatrends, Inc.
SystemSoft and CardSoft are trademarks of SystemSoft Corporation.
Microsoft and MS-DOS are trademarks of Microsoft.

!
ATTENTION: Identifies information about practices
or circumstances that can lead to personal injury or
death, property damage or economic loss.

Preface
Using This Manual

Who Should Use
this Manual

Use this manual if you are responsible for developing control applications using the
1746 I/O PCI Interface API (application programming interface) software in an
MS-DOS or Windows NT environment.

This manual documents the 1746 I/O PCI Interface API software for DOS and the
API software for Windows NT. The APIs use most of the same calls. Differences
are noted as appropriate.

Terminology Throughout the language of this document, we refer to the 1746 I/O PCI Interface
card (1747-PCIS) as the scanner and the 1747-PCIL chassis interface module as the
adapter.

There are two versions of the PCI Bus Interface Card. 1747-PCIS has a 256k
memory capacity and the 1747-PCIS2 has a 1M capacity.

Reference
Material1746 I/O
PCI Interface

The following books might be useful as you develop your 1746 I/O PCI Interface
applications:

Support Due to the PC-based architecture of the 1746 I/O PCI Interface, the telephone
support provided with the purchase price of the 1746 I/O PCI Interface consists
primarily of determining if the system software and hardware is operating within
documented specifications. The tools for this support are:

• diagnostic utility disk that ships with the 1746 I/O PCI Interface

• 1746 I/O PCI Interface system diagnostic LEDs

The diagnostic utility disk uses the DOS API as its programming interface, which
provides examples of how to use the API. The diagnostic utility disk is a good tool
to help diagnose your API application software. See appendix B for more
information.

When you purchase a 1746 I/O PCI Interface system, you also receive firmware
upgrades during the 12-month warranty period.

You can purchase extended support in blocks of 5 hours by ordering support
contracts (1747-OCTS).

This document: By: Has this ISBN number:

PC System Architecture Series
PCI System Architecture

MindShare, Inc.
Addison-Wesley Publishing Company

ISBN: 0-201-40993-3

PCI Hardware and Software Architecture and Design Edward Solari and George Willse ISBN: 0-929392-28-0
Publication 1747-6.5.3 June 1998

Preface–2 Using This Manual
Publication 1747-6.5.3 June 1998

Table of Contents
Overview Chapter 1
Introduction . 1-1
Relationship to the Open Controller . 1-1
The 1746 I/O PCI Interface API . 1-2

API Software for DOS . 1-2
API Software for Windows NT. 1-2

Understanding the 1746 I/O PCI Interface Architecture 1-3
Scanner Modes. 1-4

Checking LED Indicators . 1-5
STATUS . 1-5

Installing the DOS API . 1-5
Installing the Windows NT API . 1-6

Installation Details . 1-7
Uninstalling the Windows NT API . 1-7

Using the API Chapter 2
Introduction . 2-1
Getting Started . 2-1
Programming Conventions . 2-1

DOS Considerations . 2-2
Windows NT Considerations. 2-3

Tools to Use . 2-4
Sample DOS MAKE file for Borland compilers 2-5
Sample DOS MAKE file for Microsoft compilers 2-6
Sample Windows NT MAKE file for Microsoft compilers. 2-7
Sample Windows NT MAKE file for Borland compilers. 2-9

Developing Applications Chapter 3
Introduction . 3-1
How the API Functions Are Organized . 3-1
Programming Sequence . 3-2

Access the scanner. 3-2
Initialize the scanner . 3-3
Configure the scanner. 3-3
Control scanner operation. 3-4
Scan I/O . 3-5

Programming Example for DOS . 3-6
Programming Example for Windows NT. 3-12
Handling Interrupt Messages . 3-18
Handling Errors . 3-18
Determining Partition Sizes for Shared Memory. 3-18

Using the API Structures Chapter 4
Introduction . 4-1
API Structures. 4-1
Publication 1747-6.5.3 June 1998

ii
Configuring I/O
Modules

Chapter 5
Introduction. 5-1
Configuring I/O . 5-1
Using M0-M1 Files and G Files . 5-3

M0-M1 files . 5-3
G files . 5-3

Supported I/O Modules . 5-4

Library of Routines Chapter 6
Introduction. 6-1
OC_CalculateCRC . 6-2
OC_ClearFault . 6-3
OC_CloseScanner . 6-4
OC_ConfigureDII . 6-5
OC_CreateIO

Configuration . 6-7
OC_DemandInputScan . 6-9
OC_DemandOutputScan . 6-10
OC_DownloadIO

Configuration . 6-11
OC_EnableEOSNotify . 6-13
OC_EnableForces . 6-15
OC_EnableSlot. 6-17
OC_ErrorMsg . 6-18
OC_ExtendedErrorMsg . 6-19
OC_GetBatteryStatus. 6-21
OC_GetDeviceInfo . 6-22
OC_GetExtendedError . 6-23
OC_GetInputImage

UpdateCounter . 6-25
OC_GetIOConfiguration . 6-27
OC_GetLastFaultCause . 6-29
OC_GetMeasuredScan

Time . 6-30
OC_GetScannerInitInfo . 6-31
OC_GetScannerStatus. 6-33
OC_GetScanner

WatchdogCount . 6-35
OC_GetStatusFile . 6-36
OC_GetSwitchPosition. 6-40
OC_GetTemperature . 6-41
OC_GetUserJumper

State . 6-42
OC_GetUserLEDState . 6-43
OC_GetVersionInfo . 6-44
Publication 1747-6.5.3 June 1998

iii
OC_InitScanner . 6-46
OC_OpenScanner . 6-48
OC_PetHostWatchdog . 6-49
OC_PollScanner. 6-50
OC_ReadHostRetentive

Data . 6-52
OC_ReadInputImage . 6-54
OC_ReadIOConfigFile . 6-56
OC_ReadModuleFile . 6-57
OC_ReadOutputImage. 6-59
OC_ReadSRAM . 6-61
OC_ResetScanner . 6-63
OC_SetForces . 6-64
OC_SetHostWatchdog . 6-66
OC_SetInputUpdate

Mode. 6-67
OC_SetIOIdleState. 6-68
OC_SetModuleInterrupt . 6-69
OC_SetOutputUpdate

Mode. 6-70
OC_SetScanMode . 6-72
OC_SetScanTime . 6-73
OC_SetUserLEDState . 6-74
OC_SetupPowerFail

Action . 6-75
OC_WaitForDII . 6-77
OC_WaitForEos . 6-78
OC_WaitForEosDmdIn. 6-80
OC_WaitForEosDmdOut . 6-82
OC_WaitForExtError . 6-84
OC_WaitForIoInt . 6-85
OC_WriteHostRetentive

Data . 6-86
OC_WriteIOConfigFile . 6-87
OC_WriteModuleFile . 6-88
OC_WriteOutputImage. 6-90
OC_WriteSRAM . 6-92

Error Codes Appendix A
Introduction. A-1
Error Code Returned by API Functions . A-1
Extended Error Codes . A-2

Testing Function Calls Appendix B
Introduction. B-1
Publication 1747-6.5.3 June 1998

iv
Publication 1747-6.5.3 June 1998

Chapter 1

Overview

Introduction This chapter provides an overview of the 1746 I/O PCI Interface and the API
software. This chapter also describes how to install the API.

You should have one of the following APIs:

• API for DOS (catalog number 1747-PCIDOS)

• API for Windows NT (catalog number 1747-PCINT)

The API software license agreement allows you to freely distribute the executable.

Relationship to
the Open
Controller

The API software for the 1746 I/O PCI Interface is compatible with the API for the
1747 Open Controller. The sample code and header files contain comments and
functions that are supported by the Open Controller but not supported by the 1746
I/O PCI Interface. The following table lists the differences between the Open
Controller and the 1746 I/O PCI Interface.

Important: All references to Open Controller in the example code or header files
apply to the 1746 I/O PCI Interface.

Open Controller 1746 I/O PCI Interface

User assigns interrupts and memory allocation. 1747-PCIS(2) is a plug-and-play card.

Watchdog can reset the entire system. Watchdog cannot reset entire system.

Contains OC_ReadRtcSRAM. Function not supported.

Contains OC_WriteRtcSRAM. Function not supported.

Does not provide access to user SRAM. Provides access to user SRAM.
Publication 1747-6.5.3 June 1988

1–2 Overview
The 1746 I/O PCI
Interface API

Use the 1746 I/O PCI Interface API to develop the software interface between your
application and the 1746 I/O PCI Interface scanner to control local I/O and to control
remote I/O via the 1747-SN or 1747-SDN scanners. The API provides calls for
typical control functions, such as:

• configuring I/O files

• initializing the scanner

• accessing the user LEDs, user jumper, and 3-position switch

• reading 1746 I/O PCI Interface status

• enabling/disabling forces

API Software for DOS

The DOS API software provides a library of C function calls for DOS application
programs to interface with the dual port memory. The DOS API supports any
language compiler that uses the Pascal calling convention.

API Software for Windows NT

The Windows NT API supports any programming languages that use the
Win32 _stdcall calling convention for application interface functions. The Windows
NT API function names are exported from a DLL in undecorated format to simplify
access from other programming languages.

The Windows NT API software consists of two main components:

• the 1746 I/O PCI Interface device driver (OCdriver)

• the API library, which is a DLL (dynamically-linked library)

Application

API

1746 I/O PCI Interface
dual port memory local I/O

remote I/O via
1747-SN or 1747-SDN
Publication 1747-6.5.3 June 1998

Overview 1–3

dow
I bus

a PC
d reads/

tware

by
ort
ual
The Windows NT API library is a DLL and must be installed on the system in order
to run an application which uses it. The Windows NT API accesses the scanner via
the driver created for the bus interface The driver:

• allocates resources (interrupt and memory window)

• initializes scanner hardware

• provides access to the scanner’s dual port RAM

• services interrupts from the scanner (priority messages)

Important: Only access the OCdriver through the API library functions.

When the OCdriver is loaded it tries to allocate an interrupt and a memory win
for the memory and interrupt that were allocated using the settings by the PC
at power-up for the dual port RAM.

Understanding
the 1746 I/O PCI
Interface
Architecture

The 1746 I/O PCI Interface architecture consists of a PCI card that plugs into
and cables to a 1746 I/O chassis. The scanner scans the 1746 local I/O bus an
writes inputs and outputs to/from the dual port registers.

The dual port is an 8K byte memory partition (optionally battery-backed) that
provides an interface between the integrated scanner and your application sof
that resides on the host.

Important: The jumper for the battery-backed dual port memory is disabled
default. You must switch the jumper in order to enable the dual p
memory battery-backed function. By enabling the battery-backed d
port memory, you will decrease the life of the battery.

 1746 backplane interface

1747-PCIL

status and user LEDs

3-position switch

user jumper

watchdog contact

dual port memory

Partition: Bytes:

register 1K

commands variable

response variable

output image variable

input image variable

host data variable

1747-PCIS

cable

PCI bus Scanner
CPU
Publication 1747-6.5.3 June 1998

1–4 Overview
Your application (the code you develop using the API) uses the dual port memory
to communicate with the scanner to handle control functions on the 1746 backplane,
such as:

• scanner commands and responses

• battery and scanner status

• scan rate frequency and timing

• I/O image counters

• priority messages and interrupts

• semaphores to ensure data integrity

• software-generated watchdogs

• control of the 4 user-definable LEDs, the 2-position jumper, and the 3-
position switch

The scanner functionality of the dual port supports I/O control functions, such as:

• synchronizing scans to the application

• forcing I/O

• defining discrete-input interrupts

• defining I/O module-driven interrupts (such as for the 1746-BAS module)

• enabling and disabling I/O slots

• resetting I/O

In addition to providing access to the control scanner, the dual port memory also
provides non-volatile (optional battery-backed) storage for:

• I/O values

• application parameters (timers, counters, presets)

Scanner Modes The scanner CPU operates in six basic modes:

• performing POST (power-on self test)

• waiting for host initialization

• Idle

• Scan

• Faulted

• non-recoverable fault

After the scanner successfully completes the POST, the scanner waits for an
initialization complete command from the application. Once the scanner receives
this command, the scanner enters Idle mode.

Before the scanner can enter Scan mode, the application must download a valid
I/O configuration to the scanner.

If a recoverable fault occurs, the scanner enters Faulted mode. Use the
OC_ClearFault API function to clear the fault before the scanner can resume
operating in Scan mode.
Publication 1747-6.5.3 June 1998

Overview 1–5
If a non-recoverable fault occurs, reset the scanner (cycle power). Some possible
non-recoverable faults include:

• POST failure

• background diagnostic failure

• internal watchdog timeout

Checking LED Indicators

STATUS

The STATUS indicator reports the status of the scanner. The following table lists
the LED states for STATUS:

Installing the
DOS API

To install the DOS API, copy the following files to a directory you create. The
sample code files are optional, but they show how to use the API functions.

This state: Means: Take this action:

Yellow The scanner is running POST. None

Flashing green The scanner is in idle mode and is
not scanning I/O.

None

Solid green The scanner is scanning I/O. None

Flashing red An I/O fault has occurred. Check software to identify
fault condition.

Solid red A scanner internal fault has
occurred.

Power system off and back on. If
the problem persists, service may
be required.

Off The adapter is not powered up. Turn on power.

PCI INTERFACE

STATUS BATT

LED 1 LED 2

LED 3 LED 4

This file: Contains:

ocapil.lib API functions that you link to your application

ocapi.h API header file that contains API-referenced structures

sample.c Sample application program calling the API functions

sampleb.mak Sample make file for the Borland C compiler

samplem.mak Sample make file for the Microsoft C compiler
Publication 1747-6.5.3 June 1998

1–6 Overview
Installing the
Windows NT API

To install the Windows NT API, use the setup utility:

1. Insert the API diskette into a diskette drive.

It is recommended that you exit all applications before starting the setup process.

2. Select Run from the startup menu, then select the setup.exe program from the
API diskette.

3. Click on OK to execute the setup utility. Follow the displayed instructions. Click
on Next.

4. The next dialog lets you choose whether to install the API development and
executable files (Complete) or the API executable files (Runtime), or just the
API development files (Development). To develop applications with the API,
you need the development files. To only run applications, only the runtime files
are necessary. The development files consist of an include file, import library,
and sample code. The runtime files consist of a device driver and a dynamically-
linked library.

Important: Runtime files may only be installed on a Windows NT system.
However, the development files may be installed on either
Windows NT or Windows 95 systems.

Choose the appropriate installation option and click on Next.

5. Specify the destination directory and click on Next.

6. The necessary files are copied to the disk, and the system registry is updated to
include the OCdriver information.

7. Choose whether to reboot the system now or later and click on Finish.

Important: You must shutdown and reboot the scanner before using the API. (The
setup utility sets the registry Start parameter for OCdriver to
Automatic; therefore, the service manager starts the OCdriver when
the system is booted.)

The Windows NT API uses these files:

This file: Contains:

ocapi.lib Import library in Microsoft COFF format

ocapi.h API header file that contains API-referenced structures

ocapi.dll API DLL

sample.c Sample application program calling the API functions

sampleb.mak Sample make file for the Borland C compiler

samplem.mak Sample make file for the Microsoft C compiler
Publication 1747-6.5.3 June 1998

Overview 1–7
Installation Details

This section describes the actions the setup utility performs to install the API
and OCdriver.

If you select Runtime (Complete), the setup utility:

1. copies the device driver file, OCdriver, to the system device driver directory
(%SystemRoot%\system32\drivers).

2. adds this key and these values to the system registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\OCdriver
ErrorControl: REG_DWORD 0x1
Group: REG_SZ Extended base
Start: REG_DWORD 0x2
Type: REG_DWORD 0x1

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Drivers\ OCdriver
EventMessageFile= REG_EXPAND_SZ%SystemRoot%\System32\Drivers\OCdriver.sys
TypesSupported= REG_DWORD 0X00000007

3. copies the library file, OCapi.dll, to the %SystemRoot%\system32 directory.

If you select Runtime & Development, the setup utility performs the same steps as
for Runtime only and the setup utility copies ocapi.lib , ocapi.h, and the sample
source files to a development directory.

Uninstalling the Windows NT API

To uninstall Windows NT API, use the following instructions.

1. From the Control Panel, select Add/Remove Programs.

2. From the list of installed programs, select Open Control API.

3. Click on Add/Remove.

4. Click on Yes.

All of the API files and registry keys will be deleted.
Publication 1747-6.5.3 June 1998

1–8 Overview
Notes:
Publication 1747-6.5.3 June 1998

Chapter 2

Using the API

Introduction This chapter describes the API and how to use its components. For more information
about developing applications using the API, see chapter 3.

Getting Started To use the API, make sure you have copied the following files to your development
directories. The sample files are optional.

Your application must link to the appropriate library (ocapil.lib for DOS or
ocapi.lib for Windows NT) and include ocapi.h. You can copy the sample files
and adapt them for your application.

Programming
Conventions

The API is supplied as an object code library file (ocapil.lib) or a DLL
(ocapi.dll) that you link with the host application’s object code using
commercially-available tools.

This file: Contains:

ocapil.lib API functions that you link to your application (DOS only)

ocapi.lib Import library in Microsoft COFF format (Windows NT only)

ocapi.h API header file that contains API-referenced structures

ocapi.dll API DLL (Windows NT only)

sample.c Sample application program calling the API functions

sampleb.mak Sample MAKE file for the Borland C compiler

samplem.mak Sample MAKE file for the Microsoft C compiler

This convention: Considerations:

calling convention

The DOS API functions are specified using the C programming language syntax. To allow you to
develop control applications in other programming languages, the API functions use the standard
Pascal calling convention.

The Windows NT API supports any programming languages that use the Win32 _stdcall calling
convention for application interface functions. The Windows NT API function names are exported
from the DLL in undecorated format to simplify access from other programming languages.

header files
The API includes a header file (ocapi.h) that contains API function declarations, data structure
definitions, and other constant definitions. The header file is in standard C format.

sample code
The API comes with sample files to provide an example application that communicates with the
scanner. The sample files include all source files and MAKE files required to build the sample
application.

compiler support

The DOS API is supplied in the large memory model, compatible with both Microsoft and Borland
compilers. The DOS library (ocapil.lib) is compiled as a 16-bit MS-DOS library using the
80386 instruction set.

The Windows NT library (ocapi.dll) is compiled for use with Microsoft Visual C++ or
Borland C++.
Publication 1747-6.5.3 June 1998

2–2 Using the API
DOS Considerations

The DOS API is as consistent as possible with APIs for other operating system
platforms. This makes it easier for you to migrate applications and it simplifies
support.

To create a consistent API, careful consideration was given to these requirements:

This requirement: Considerations:

memory mapping

The dual port RAM, or shared memory, is mapped automatically at power-up by the PCI bus in
the host processor’s memory address space on any even 8K boundary between 0xC0000 and
0xDFFFF. For MS-DOS, it is important that any installed memory managers (such as EMM386)
or other TSR software avoid accessing the 8K dual port memory window.

Place the base memory select jumper in 1M position to allow the PCI BIOS to assign a base
memory address.

DOS interrupts An interrupt is automatically assigned to the scanner by the PCI bus at power-up.

control-break handler

Because communication with the scanner requires memory and interrupt resources (as
described above), improper termination of the host application can leave these resources
allocated by the scanner and unusable by other applications. For this reason the API includes a
default control-break handler.

The default control-break handler is installed by OC_OpenScanner. If you press a [Ctrl-C]
or [Ctrl-Break] key sequence, the following prompt is displayed:

Terminate Application? (Y/N) _

A response of Y properly exits the application; a response of N causes the application to continue.

If you need a different control-break handler, you must install it after calling the OC_OpenScanner
function. Always call the OC_CloseScanner function before exiting an application.
Publication 1747-6.5.3 June 1998

Using the API 2–3
Windows NT Considerations

During development, the application must be linked with an import library that
provides information about the functions contained within the DLL. The API import
library is compatible with the Microsoft linker. You can generate import libraries
for other programming languages from the DLL.

The Windows NT API can only be accessed by one process at a time. The API is
designed to be multi-thread safe, so that multi-threaded control applications can be
developed. Where necessary, the API functions acquire a mutex before accessing
the scanner interface. In this way, access to the scanner device is serialized. If the
mutex is in use by another thread, a thread will be blocked until it is freed.

To create a consistent API, careful consideration was given to these requirements::

A group of thread-blocking functions are provided to aid multi-threaded application
development. The functions are:

• OC_WaitForDII

• OC_WaitForEos

• OC_WaitForEosDmdOut

• OC_WaitForIoInt

• OC_WaitForDmdIn

• OC_WaitForExtError

For more information, see chapter 6.

This requirement: Considerations:

memory mapping

The NT API device driver detects the Scanner Adapter and automatically configures the memory
window address and interrupt assignment. The base memory address jumper must be positioned
to choose 32 bit addressing. The API and device driver must be installed on the system.

Place the base memory select jumper in 32-bit position to allow the PCI BIOS to assign a base
memory address anywhere in 32-bit memory for protected-mode applications (WinNT). NT
device drivers (1747-PCINT) use the PCI BIOS or OS services to determine the memory window
base address and provide access to the dual port memory.
• To determine the allocated memory base address and interrupt, run the Windows NT

diagnostic found in Administrative Tools.

NT interrupts
An interrupt is automatically assigned to the scanner by the PCI bus at power-up
• To determine the allocated memory base address and interrupt, run the Windows NT

diagnostic found in Administrative Tools.
Publication 1747-6.5.3 June 1998

2–4 Using the API
Tools to Use The API functions support both Microsoft and Borland C compilers. The API disk
includes sample MAKE files for each compiler.

When you use the DOS API and link to ocapil.lib, use the appropriate command-
line switch to select the large memory model. For more information, see your user
manual for your compiler.

If you plan to use a programming language other than C, make sure the programming
language follows the appropriate calling convention (Pascal for the DOS API;
Win32 _stdcall for Windows NT). After you write your application, use your
compiler to link to ocapil.lib (DOS) or ocapi.lib (Windows NT).
Publication 1747-6.5.3 June 1998

Using the API 2–5
Sample DOS MAKE file for Borland compilers

The following sample file shows how to use a Borland MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**
#
Title: Makefile for Open Controller API Sample
#
Abstract:
This file is used by the Borland MAKE utility to build the
sample application.
#
Environment:
1747-OCE Open Controller
MS-DOS
Borland C/C++ Compiler (16-bit)#
#**
#
Paths to Tools

Note: Modify the following paths to
correspond to your environment.
#
#--
CPATH = D:\BC5 # Location of Borland tools
CC = $(CPATH)\bin\Bcc # compiler
LINK = $(CPATH)\bin\TLink # linker
MAKE = $(CPATH)\bin\Make # make utility

#--
Path to API Library and Include file

Note: Modify the following path to
correspond to your environment.
#
#--
APILIB = ..\ocapil.lib # Path to Open Controller API library
APIINC = .. # Path to Open Controller API include file

#--
Options
#--
CFLAGS = -c -v- -w -ml -I$(APIINC)
LFLAGS = -v- -Tde -d -c

sample.exe : sample.obj $(APILIB) sampleb.mak
 $(LINK) $(LFLAGS) c0l sample.obj, $*.exe, $*.map, $(APILIB) cl

clean:
 del *.exe
 del *.obj
 del *.map

rebuild:
 $(MAKE) clean
 $(MAKE)
.c.obj:
 $(CC) $(CFLAGS) $*.c

sample.obj: sample.c $(APIINC)\ocapi.h
sampleb.mak
Publication 1747-6.5.3 June 1998

2–6 Using the API
Sample DOS MAKE file for Microsoft compilers

The following sample file shows how to use a Microsoft MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**
Title: Makefile for Open Controller API Sample
#
Abstract:
This file is used by the Microsoft NMake utility to build the
sample application.
#
Environment:
1747-OCE Open Controller
MS-DOS
Microsoft C/C++ Compiler (16-bit)
#**

#--
Note: The environment variables LIB and
INCLUDE must be set to the path to the
Microsoft C library and include files.
For example:
#
set LIB=D:\MSVC15\LIB
set INCLUDE=D:\MSVC15\INCLUDE

#--
Paths to Tools

Note: Modify the following paths to
correspond to your environment.
#
#--
CPATH = D:\MSVC15 # Location of Microsoft tools
CC = $(CPATH)\bin\cl # compiler
LINK = $(CPATH)\bin\link # linker
MAKE = $(CPATH)\bin\nmake # make utility

#--
Path to API Library and Include file

Note: Modify the following path to
correspond to your environment.
#
#--
APILIB = ..ocapil.lib # Path to Open Controller API library
APIINC = .. # Path to Open Controller API include file

#--
Options
#--
CFLAGS = /c /nologo /G3 /W3 /AL /Oi /D /Gx- /I $(APIINC)
LFLAGS = /MAP:A /NOI /PACKC

sample.exe : sample.obj $(APILIB) samplem.mak
 $(LINK) $(LFLAGS) sample.obj, $*.exe, $*.map, $(APILIB), nul.def

clean:
 del *.exe
 del *.obj
 del *.map

rebuild:
 $(MAKE) -f samplem.mak clean
 $(MAKE) -f samplem.mak

.c.obj:
 $(CC) $(CFLAGS) $*.c

sample.obj: sample.c $(APIINC)\ocapi.h
samplem.mak
Publication 1747-6.5.3 June 1998

Using the API 2–7
Sample Windows NT MAKE file for Microsoft compilers

The following sample file shows how to use a Microsoft MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**
Title: Makefile for Open Controller NT API Sample
#
Abstract:
This file is used by the Microsoft NMake utility to build the
sample application.
#
Environment:
1747-OCE Open Controller
Microsoft Windows NT 4.0
Microsoft Visual C++
#
(c)Copyright Allen-Bradley
#
#**

#--
Note: The environment variable LIB
must be set to the path to the
Microsoft C library files.
For example:
#
set LIB=D:\MSDEV\LIB

#--
Paths to Tools

Note: Modify the following paths to
correspond to your environment.
#
#--
CPATH = D:\MSDEV # Location of Microsoft tools
CC = $(CPATH)\bin\cl # compiler
LINK = $(CPATH)\bin\link # linker
MAKE = $(CPATH)\bin\nmake # make utility

#--
Path to API Library and Include file

Note: Modify the following paths to
correspond to your environment.
#
#--
APILIB = ..\api\lib\ocapi.lib # Path to Open Controller API library
APIINC = ..\api\include # Path to Open Controller API include file

#----------------------------------
Compiler/Linker Debugging Options
(Define DEBUG for debugging.)
#----------------------------------
!ifdef DEBUG
CDEBUG = -Zi -Od
LDEBUG = -debug:full -debugtype:cv
!else
CDEBUG = -Ox
LDEBUG = /RELEASE
Publication 1747-6.5.3 June 1998

2–8 Using the API
!endif

#---
Compiler Options
#
-W3 Turn on warnings
-GB Optimize code for 80486/Pentium
-MT Use Multithreaded runtime lib

#---
CFLAGS = -W3 -GB -MT \
 -I$(APIINC) -I$(CPATH)\include

#----------------------------------
Linker Options
#
#----------------------------------
LFLAGS = /NODEFAULTLIB /SUBSYSTEM:CONSOLE \
 /INCREMENTAL:NO /PDB:NONE

#------------------------------------
Libraries
#
libcmt Multithreaded C runtime
kernel32 Base system lib
#
#------------------------------------
LIBS = libcmt.lib kernel32.lib

#---------------------------------
Final target
#---------------------------------
sample.exe : sample.obj $(APILIB)
 $(LINK) @<<
$(LDEBUG) $(LFLAGS) $(LIBS) $**
<<
 @echo Finished

clean:
 del *.exe
 del *.obj
 del *.map

rebuild:
 $(MAKE) -f samplem.mak clean
 $(MAKE) -f samplem.mak

#--------------------------
Intermediate target rules
#--------------------------
.c.obj:
 $(CC) @<<
/c $(CDEBUG) $(CFLAGS) $*.c
<<

#---------------------------------
Intermediate target dependancies
#---------------------------------

sample.obj: sample.c $(APIINC)\ocapi.h
samplem.mak
Publication 1747-6.5.3 June 1998

Using the API 2–9
Sample Windows NT MAKE file for Borland compilers

The following sample file shows how to use a Borland MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**
#
Title: Makefile for Open Controller API Sample
#
Abstract:
This file is used by the Borland MAKE utility to build the
sample application.
#
Environment:
1747-OCE Open Controller
Microsoft Windows NT 4.0
Borland C++ Compiler
#
(c)Copyright Allen-Bradley
#
#**
#--
Paths to Tools

Note: Modify the following paths to
correspond to your environment.
#
#--
CPATH = D:\BC5 # Location of Borland tools
CC = $(CPATH)\bin\Bcc32 # compiler
LINK = $(CPATH)\bin\TLink32 # linker
MAKE = $(CPATH)\bin\Make # make utility

#--
Path to API Library and Include file

Note: Modify the following path to
correspond to your environment.
#
#--
APIDLL = ..\api\lib\ocapi.dll # Path to Open Controller API library
APIINC = ..\api\include # Path to Open Controller API include file
APILIB = .\ocapi.lib # Borland compatible import library

#--
Options
#--
CFLAGS = -c -v -4 -tWM -w -I$(APIINC)
LFLAGS = -v -Tpe -d -c -ap -r

#--
Final Target
#--
sample.exe : sample.obj $(APILIB) sampleb.mak
 $(LINK) @&&|
$(LFLAGS) +
D:\BC5\LIB\c0x32.obj +
$*.obj, $*.exe, $*.map
D:\BC5\LIB\import32.lib +
D:\BC5\LIB\cw32mt.lib +
$(APILIB)
Publication 1747-6.5.3 June 1998

2–10 Using the API
|

clean:
 del *.exe
 del *.obj
 del *.map
 del *.lib

rebuild:
 $(MAKE) -f sampleb.mak clean
 $(MAKE) -f sampleb.mak

.c.obj:
 $(CC) $(CFLAGS) $*.c

#--
Create a Borland-compatible import library
#--
$(APILIB): $(APIDLL)
 implib $(APILIB) $(APIDLL)

sample.obj: sample.c $(APIINC)\ocapi.h sampleb.mak
Publication 1747-6.5.3 June 1998

Chapter 3

Developing Applications

Introduction This chapter describes the proper programming sequence for your application. This
chapter also describes how to partition the dual port memory in the 1746 I/O PCI
Interface.

How the API
Functions Are
Organized

Each of the API functions falls into one of these four categories:

• scanner initialization

• scanner I/O configuration

• data input/output

• user interface/miscellaneous

Chapter 6 describes each API function and identifies its functionality group.
Publication 1747-6.5.3 June 1998

3–2 Developing Applications
Programming
Sequence

Follow this programming sequence when you develop your application.

Access the scanner

The host application must first call OC_OpenScanner to gain access to the scanner.
Once an application has access, no other application can gain access to the scanner.
When the application no longer requires access to the scanner, it must call
OC_CloseScanner to release access of the scanner to other applications.

Once the scanner is opened, you must call OC_CloseScanner before exiting
the application.

Access the scanner

1

Initialize the scanner

2

Configure the scanner

3

Control scanner
operation

4

Scan I/O

5

Initialize the scanner

2

Publication 1747-6.5.3 June 1998

Developing Applications 3–3

nal
he
ding

he

ner
he
ust be
ber. If
t or

tes
an
can
nd

e for

ss it
ner

een

odule
he
en

canner
Initialize the scanner

After the scanner is reset and performs its POST, the scanner waits for initialization.
In this state, the scanner can’t be configured or control I/O. The only operatio
function is that which controls the LEDs. Any call to a function that requires t
scanner to be initialized returns an error. You must initialize the scanner by sen
it partitioning information before the host application can communicate with t
scanner.

Initialize the scanner by calling the OC_InitScanner function to send the scan
partitioning information, which defines in bytes the size of the output image, t
input image, and the host retentive data. Each of these memory segments m
at least large enough to hold their respective data, and must be an even num
the input or output partition is initialized smaller than the actual size of the inpu
output image for a configuration, the OC_DownloadIOConfiguration function
returns an error. The host retentive data size is optional and can be 0.

To determine the input image and output image sizes, use the
OC_CreateIOConfiguration function to create an I/O configuration.
OC_CreateIOConfiguration returns an I/O configuration with the number of by
of inputs and outputs for each module. If a configuration already exists, you c
use OC_GetIOConfig to return the current I/O configuration. The application
then calculate the minimum size of the segments required to hold the input a
output images. For more information, see page 3-18.

The API has a defined constant specifying the total number of bytes availabl
the three segmenters This constant is specified as:
OCSEGMENTSIZELIMIT

Once the scanner has been initialized properly it cannot be re-initialized unle
is reset with the OC_ResetScanner function. Once the scanner is reset, scan
communications are disabled again until the scanner is initialized. The host
application can call OC_GetScannerStatus to determine if the scanner has b
initialized.

If the scanner was previously initialized, the host application can retrieve the
initialization partition information with the OC_GetScannerInitInfo function
instead of resetting and re-initializing the scanner.

Configure the scanner

To access I/O modules in a rack, you must define the rack sizes and installed m
types for the scanner. You can either create a specific configuration or read t
current configuration. The scanner cannot be set to Scan mode until it has be
configured (received a valid scanner configuration).

If the scanner is in Scan mode and the host application has not downloaded a s
configuration, the scanner has already been configured. To control I/O, use
OC_GetIOConfiguration to retrieve the current scanner configuration.
Publication 1747-6.5.3 Junel 1998

3–4 Developing Applications

bout
The application can read the current I/O configuration with the
OC_GetIOConfiguration function. If the scanner is not in Scan mode, this function
returns the current scanner configuration which can be downloaded to the scanner
using OC_DownloadIOConfiguration.

If the application requires a specific I/O configuration, the application can define
the I/O configuration structure with the rack sizes and module types installed in
each slot. The application passes this configuration structure to
OC_CreateIOConfiguration. OC_CreateIOConfiguration returns a scanner
configuration that can be downloaded to the scanner. For more information, see
chapter 5.

Once a valid scanner configuration is successfully downloaded to the scanner via
OC_DownloadIOConfiguration, the application can set the scanner to Scan mode
and control I/O.

Both OC_CreateIOConfiguration and OC_GetIOConfiguration build the
configuration data from an internal database of supported I/O modules.

Control scanner operation

Once the scanner has been configured, the application can control scanner operation.
The host application can:

• set the scanner to Idle or Scan mode
• control the scan time
• control I/O
• read or write module files
• clear faults
• enable/disable slots
• set I/O Idle state
• install/remove forces
• handle module interrupts and discrete input interrupts

The API uses messages to communicate with the scanner. The scan time settings
affect the time allowed by the scanner to process a message. OC_SetScanTime
adjusts the scan time of the application.

The scanner processes messages during any available time that it is not scanning
I/O. If the scan time is set too small, some API functions might take a relatively
long time to complete. If some functions seem to be taking too long to complete,
increase the scan time to provide more time for the scanner to process messages. If
the scan time is set too large, I/O won’t update fast enough. For information a
estimating scan time, see PCIS Bus Card for 1746 Local I/O Installation
Instructions, publication 1747-5.31.
Publication 1747-6.5.3 June 1998

Developing Applications 3–5

wing
vent
puts
llows

anner
tput
rites

canner
f-scan
ng
his

ns.

he
 by the
Scan I/O

The scanner provides two basic methods for scanning I/O: timed scans and
on-demand scans. The host application can use either, or a combination of both.

Typically, the scanner reads inputs from modules and writes outputs to modules
once every scan time. To read inputs and write outputs, the application calls
OC_ReadInputImage and OC_WriteOutputImage independently from the
scanner’s scan sequence.

The application can change the behavior of the input and output scans by allo
the application to have more control over I/O scanning. The application can pre
the scanner from doing any output scans and allow the application to read in
and initialize outputs before the scanner begins to write outputs. This mode a
the application to pre-scan the inputs before the outputs are written.

The application can set the scanner to a conditional scan mode where the sc
writes outputs at the next scan time after the application writes data to the ou
image. In this mode, the scanner only writes outputs each time the application w
data to the output image.

The application can also prevent output scans by the scanner and have the s
send a message after every input scan. The application can detect an end-o
message and then read the input image, perform logic, and write outputs usi
OC_DemandOutputScan to force the scanner to write outputs immediately. T
lets the application synchronize its control loop with the input and output sca

The application can also disable both input and output scans. In this mode, t
scanner is a slave and input or output scans only take place when requested
host application.
Publication 1747-6.5.3 Junel 1998

3–6 Developing Applications
Programming
Example for DOS

The following DOS example (sample.c on your API disk) shows how to program
the above steps. Callouts on the right margin identify the code for each step.

/**
*
* FILE:sample.c
*
* PURPOSE:Sample application code for 1746 I/O PCI Interface API
*
* SUMMARY:This program,
* - Resets and initializes the scanner.
* - Displays the scanner firmware and hardware versions.
* - Autconfigures the I/O in chassis.
* - Reads the front panel switch position and lights LED 1.
* - Reads first discrete input module data word.
* - Writes incremental data to first output module data word.
* - Closes connection to scanner and exits.
*
* ENVIRONMENT:1747-PCIS 1746 I/O PCI Interface
* MS-DOS
* Borland/Microsoft C/C++ Compiler (16-bit)
*
**/

/*===
= INCLUDE FILES =
===*/

#include ”ocapi.h”
#include <stdio.h>
#include <dos.h>
#include <time.h>
#include <conio.h>
#include <string.h>

/*===
= MODULE WIDE GLOBAL VARIABLES =
===*/

HANDLE Handle; /* Software ID to scanner device */
OCIOCFG OCcfg; /* Chassis I/O config. data structure */

/*===
= FUNCTION PROTOTYPES =
===*/

void Ioexit(int);

/*===
= MAIN PROGRAM =
===*/

void main()
{

int retcode; /* Return code from API calls */
int i;
int slots;
int input_slot, input_found = 0;
int output_slot, output_found = 0;
OCINIT ocpart;
BYTE status;
OCVERSIONINFO verinfo;
BYTE swpos;
WORD wData;
Publication 1747-6.5.3 June 1998

Developing Applications 3–7
/*

** Open the scanner
*/
retcode = OC_OpenScanner(&Handle, 0, 0);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_OpenScanner failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Reset the scanner
*/
printf(”\n\n Going to reset OC, takes 6 seconds to complete...\n”);

retcode = OC_ResetScanner(Handle, OCWAIT);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_ResetScanner failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Check scanner status register
*/
retcode = OC_GetScannerStatus(Handle, &status);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_GetScannerStatus failed: %d\n”, retcode);
Ioexit(1);

}

if (status != SCANSTS_INIT)
{

printf(”\nERROR: POST failure detected: %d\n”, status);
Ioexit(1);

}

/*
** Initialize the DPR partitions
** You can use OC_CreateIOConfiguration to determine the I/O image table
** sizes before paritioning the DPR
*/
ocpart.OutputImageSize = 0x800;
ocpart.InputImageSize = 0x800;
ocpart.HostRetentiveDataSize = 0;

retcode = OC_InitScanner(Handle, &ocpart);
if (retcode != SUCCESS)
{

printf(” \nERROR: OC_InitScanner failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Display software/hardware versions
*/
retcode = OC_GetVersionInfo(Handle, &verinfo);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_GetVersionInfo failed: %d\n”, retcode);
Ioexit(1);

}
printf(”\n\n Scanner Firmware Series: %02d Revision: %02d ”,

verinfo.ScannerFirmwareSeries, verinfo.ScannerFirmwareRevision);
printf(”\n Hardware Series: %02d Revision: %02d”,

verinfo.OCHardwareSeries, verinfo.OCHardwareRevision);
delay(3000);

Access the
scanner
See page 6-48.

Initialize the
scanner
See pages
6-63, 6-33,
and 6-7.
Publication 1747-6.5.3 Junel 1998

3–8 Developing Applications
/*
** Read switch position
*/
retcode = OC_GetSwitchPosition(Handle, &swpos);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_GetSwitchPosition failed: %d\n”, retcode);
Ioexit(1);

}
printf(”\n\n Switch position: ”);
switch(swpos)
{

case SWITCH_TOP:
printf(”Top \n”);
break;

case SWITCH_BOTTOM:
printf(”Bottom \n”);
break;

case SWITCH_MIDDLE:
printf(”Middle \n”);
break;

}
delay(3000);

/*
** Read auto-config
*/
retcode = OC_GetIOConfiguration(Handle, &OCcfg);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_GetIOConfiguration failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Display rack configuration
*/
slots = OCcfg.Rack1Size + OCcfg.Rack2Size + OCcfg.Rack3Size;
if (slots > 31)

slots = 31;
printf(”\n\n Chassis configuration ”);
for (i=1; i < slots; i++)
{

if (OCcfg.SlotCfg[i].type != 0xff)
printf(”\n Slot %2d: Type %2d, Mix %3d %s”,

i, OCcfg.SlotCfg[i].type, OCcfg.SlotCfg[i].mix,
OCcfg.SlotCfg[i].Name);

else
printf(”\n Slot %2d: %s”, i, OCcfg.SlotCfg[i].Name);

/* Find digital input card */
if (OCcfg.SlotCfg[i].mix < 8 && !input_found)
{

input_found = 1;
input_slot = i;

}
/* Find digital output card */
if ((OCcfg.SlotCfg[i].mix > 7) && (OCcfg.SlotCfg[i].mix < 32) && !output_found)
{

output_found = 1;
output_slot = i;

}
}
delay(3000);
Publication 1747-6.5.3 June 1998

Developing Applications 3–9
/*
** Download the configuration to the scanner
*/
retcode = OC_DownloadIOConfiguration(Handle, &OCcfg);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_DownloadIOConfiguration failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Set output update mode to always
*/
retcode = OC_SetOutputUpdateMode(Handle, OUTUPD_ALWAYS);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_SetOutputUpdateMode failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Set scan time to 5ms, periodic scan mode
*/
retcode = OC_SetScanTime(Handle, SCAN_PERIODIC, 20);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_SetScanTime failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Goto Scan Mode
*/
retcode = OC_SetScanMode(Handle, SCAN_RUN);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_SetScanMode failed: %d\n”, retcode);
Ioexit(1);

}

/*
** Turn on User LED 1
*/
retcode = OC_SetUserLEDState(Handle, 1, LED_GREEN_SOLID);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_SetUserLEDState failed: %d\n”, retcode);
Ioexit(1);

}
printf(”\n\n LED1 is on solid green now. \n”);
delay(3000);

Configure
the scanner
See page
6-11.

Control scanner
operation
See pages 6-70
and 6-73.
Publication 1747-6.5.3 Junel 1998

3–10 Developing Applications
/*
** Read first Input word
*/
retcode = OC_ReadInputImage(Handle, NULL, input_slot, 0, 1, &wData);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_ReadInputImage failed: %d\n”, retcode);
Ioexit(1);

}
printf(”\n\n First input image data word --> 0x%04x \n”, wData);
delay(3000);

/*
** Write to the first Output word
*/

printf(”\n\n Incrementing first discrete output word. \n”);
for (wData=0; wData < 256; wData++)
{

retcode = OC_WriteOutputImage(Handle, NULL, output_slot, 0, 1, &wData);
if (retcode != SUCCESS)
{

printf(”\nERROR: OC_WriteOutputImage failed: %d\n”, retcode);
Ioexit(1);

}
delay (10);

}

/*
** Must always close the scanner before exiting
*/
OC_CloseScanner(Handle);

printf(”\n\n Program is done! \n\n”);

} /* end main() */

Scan I/O
See page
6-54 and
6-90.
Publication 1747-6.5.3 June 1998

Developing Applications 3–11
/**
*
* Name: Ioexit
*
* Description:
*
* Common error handling routine. This routine displays any
* extended error and exits the program.
*
* Arguments:
* retcode : int(input)
* This error code is passed to the exit() routine.
*
* External effects:
* The program is terminated.
*
* Return value:
* none
*
**/
void Ioexit(int retcode)
{

OCEXTERR exterr;
char *msg;
if (OC_GetExtendedError(Handle, &exterr) == SUCCESS)
{

if (exterr.ErrorCode != 0)
{

OC_ExtendedErrorMsg(Handle, &exterr, &msg);
printf(”\nERROR: %s\n”, msg);

}
}

OC_CloseScanner(Handle);

exit(retcode);

} /* end Ioexit() */
Publication 1747-6.5.3 Junel 1998

3–12 Developing Applications
Programming
Example for
Windows NT

The following Windows NT example (sample.c on your Windows NT API disk)
shows how to program the above steps. Callouts on the right margin identify the
code for each step.

/**
* Title: Simple application sample code for 1746 I/O PCI Interface API
*
* Abstract:
*
* This file contains a simple application using the PCI
* bus interface API.
*
* Environment:
* 1747-PCIS 1746 I/O PCI Interface
* Microsoft Windows NT 4.0
* Microsoft Visual C++ / Borland C++
* (c)Copyright Allen-Bradley *
**/

/*===
= INCLUDE FILES =
===*/

#include <windows.h>
#include <process.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <conio.h>
#include <string.h>
#include "ocapi.h"

/*===
= MODULE WIDE GLOBAL VARIABLES =
===*/

HANDLE OChandle;
OCIOCFG OCcfg;

/**
* Entry point:
* Ioexit
*
* Description:
* Common error handling routine. This routine displays any
* extended error and exits the program.
*
* Arguments:
* rc : int (input)
* This error code is passed to the exit() routine.
*
* External effects:
* The program is terminated.
*
* Return value:
* none
*
* Access: Public
* ---
* Notes:
*
***/
void Ioexit
 int rc
) {
 OCEXTERR exterr;
 char *msg;
Publication 1747-6.5.3 June 1998

Developing Applications 3–13
 if (OC_GetExtendedError(OChandle, &exterr) == SUCCESS)
 {
 if (exterr.ErrorCode != 0)
 {
 OC_ExtendedErrorMsg(OChandle, &exterr, &msg);
 printf("\n\nERROR: %d %s\n", msg, exterr.ErrorCode);
 }
 }
 OC_CloseScanner(OChandle);

 exit(rc);

} /* end Ioexit() */

/***
* Entry point:
* tErrorEvent
*
* Description:
* Thread to handle errors.
*
* Arguments:
* none
*
* External effects:
* none
*
* Return value:
* none
*
* Access: Public
*
*---
* Notes:
*
**/
 void tErrorEvent(void *dummy)
 {

 while(1)
 {
 /* Sleep until the scanner reports an error */
 OC_WaitForExtError(OChandle, INFINITE);

 /* An error has occurred. Perform whatever error handling */
 /* that is necessary. In this case, we just print a message */
 /* and exit the process. */

 Ioexit(1);
 }

} /* end tErrorEvent() */
Publication 1747-6.5.3 Junel 1998

3–14 Developing Applications
/** *
* Entry point:
* main
*
* Description:
* Entry point of the PCI I/O bus interface API sample application.
*
* This program resets, initializes, and autoconfigures the scanner.
* It displays the scanner firmware and hardware versions, and
* the front panel switch position.
* It lights User LED 1, reads inputs from a 32 pt discrete
* input module, and writes data to the M0 file on a BAS module.
*
* Arguments:
* none
*
* External effects:
* none
*
* Return value:
* 0 if no errors were encountered
* 1 if errors
*
* Access: Public
*
*---
* Notes:
*
**/
main()
{
 int rc;
 int i;
 int slots;
 int BASslot;
 int IB32slot;
 int fRecreateIOcfg;
 OCINIT ocpart;
 BYTE status;
 OCVERSIONINFO verinfo;
 BYTE swpos;
 WORD wData,wLen;
 BYTE temp;

 BASslot = IB32slot = 0;
 fRecreateIOcfg = 0;

 /* Open the scanner */
 if (SUCCESS != (rc = OC_OpenScanner(&OChandle)))
 {
 printf("\nERROR: OC_OpenScanner failed: %d\n", rc);
 Ioexit(1);
 }

 /* Create an error-handling thread */
 if (-1 == (long) _beginthread(tErrorEvent, 0, NULL))
 printf("\nERROR: _beginthread tErrorEvent failed.\n");

Access the
scanner
See page
6-48.
Publication 1747-6.5.3 June 1998

Developing Applications 3–15
 /* Reset the scanner */
 printf("\nResetting the scanner...");
 if (SUCCESS != (rc = OC_ResetScanner(OChandle, OCWAIT)))
 {
 printf("\nERROR: OC_ResetScanner failed: %d\n", rc);
 Ioexit(1);
 }

 /* Check scanner status register */
 if (SUCCESS != (rc = OC_GetScannerStatus(OChandle, &status)))
 {
 printf("\nERROR: OC_GetScannerStatus failed: %d\n", rc);
 Ioexit(1);
 }

 if (status != SCANSTS_INIT)
 {
 printf("\nERROR: POST failure detected: %d\n", status);
 Ioexit(1);
 }

 /* Initialize the DPR partitions */
 ocpart.OutputImageSize = 0x800;
 ocpart.InputImageSize = 0x800;
 ocpart.HostRetentiveDataSize = 0;
 if (SUCCESS != (rc = OC_InitScanner(OChandle, &ocpart)))
 {
 printf("\nERROR: OC_InitScanner failed: %d\n", rc);
 Ioexit(1);
 }

 /* Display software/hardware versions */
 if (SUCCESS != (rc = OC_GetVersionInfo(OChandle, &verinfo)))
 {
 printf("\nERROR: OC_GetVersionInfo failed: %d\n", rc);
 Ioexit(1);
 }
 printf("\nOC API Series: %02d Revision: %02d ",
 verinfo.APISeries,verinfo.APIRevision);
 printf("\nOCdriver Series: %02d Revision: %02d ",
 verinfo.OCdriverSeries, verinfo.OCdriverRevision);
 printf("\nOC Scanner Firmware Series: %02d Revision: %02d ",
 verinfo.ScannerFirmwareSeries, verinfo.ScannerFirmwareRevision);
 printf("\nOC Hardware Series: %02d Revision: %02d\n",
 verinfo.OCHardwareSeries, verinfo.OCHardwareRevision);

 /* Read switch position */
 if (SUCCESS != (rc = OC_GetSwitchPosition(OChandle, &swpos)))
 {
 printf("\nERROR: OC_GetSwitchPosition failed: %d\n", rc);
 Ioexit(1);
 }
 printf("\nSwitch position: ");
 switch(swpos)
 {
 case SWITCH_TOP:
 printf("Top");
 break;
 case SWITCH_BOTTOM:
 printf("Bottom");
 break;
 case SWITCH_MIDDLE:
 printf("Middle");
 break; }

 /* Read temperature */
 if (SUCCESS != (rc = OC_GetTemperature(OChandle, &temp)))
 {
 printf("\nERROR: OC_GetTemperature failed: %d\n", rc);
 Ioexit(1);
 }
 printf("\nTemperature: %dC ", temp);

Initialize the
scanner
See pages
6-63, 6-33,
and 6-46.
Publication 1747-6.5.3 Junel 1998

3–16 Developing Applications
 /* Read auto-config */
 if (SUCCESS != (rc = OC_GetIOConfiguration(OChandle, &OCcfg)))
 {
 printf("\nERROR: OC_GetIOConfiguration failed: %d\n", rc);
 Ioexit(1);
 }

 /* Display rack configuration */
 slots = OCcfg.Rack1Size + OCcfg.Rack2Size + OCcfg.Rack3Size;
 if (slots > 31) slots = 31;

 printf("\n\nRack configuration:");
 for (i=1; i<slots; i++)
 {
 if (OCcfg.SlotCfg[i].type != 0xff)
 {
 printf("\nSlot %2d: Type %2d, Mix %3d %s",
 i, OCcfg.SlotCfg[i].type, OCcfg.SlotCfg[i].mix,
 OCcfg.SlotCfg[i].Name);
 }
 else
 {
 printf("\nSlot %2d: %s", i, OCcfg.SlotCfg[i].Name);
 }

 /* check for BAS modules class 1 or 4 */
 if (((OCcfg.SlotCfg[i].mix == 35) || (OCcfg.SlotCfg[i].mix == 131))
 && (OCcfg.SlotCfg[i].type == 6))
 {
 if (OCcfg.SlotCfg[i].mix == 35)
 { /* if Class 1 BAS module, then ...
 OCcfg.SlotCfg[i].mix = 131; /* ...make it class 4 */
 OCcfg.SlotCfg[i].Name = NULL; /* remove name so that OC_CreateIOConfiguration
will key off mix/type */
 fRecreateIOcfg = 1;
 }
 BASslot = i;
 }

 /* check for IB32 modules */
 if (OCcfg.SlotCfg[i].mix == 7)
 {
 IB32slot = i;
 }
 }

 /* if we converted a Class 1 BAS module to Class 4, recreate the IO configuration */
 /* to insure we get the M0 and M1 file sizes */
 if (fRecreateIOcfg == 1)
 {
 if (SUCCESS != (rc = OC_CreateIOConfiguration(&OCcfg)))
 {
 printf("\nERROR: OC_CreateIOConfiguration failed: %d\n", rc);
 Ioexit(1);
 }
 }

 /* Download the configuration to the scanner */
 if (SUCCESS != (rc = OC_DownloadIOConfiguration(OChandle, &OCcfg)))
 {
 printf("\nERROR: OC_DownloadIOConfiguration failed: %d\n", rc);
 Ioexit(1);
 }

Configure
the scanner
See page
6-11.
Publication 1747-6.5.3 June 1998

Developing Applications 3–17
 /* Set output update mode to always */
 if (SUCCESS != (rc = OC_SetOutputUpdateMode(OChandle, OUTUPD_ALWAYS)))
 {
 printf("\nERROR: OC_SetOutputUpdateMode failed: %d\n", rc);
 Ioexit(1);
 }

 /* Set scan time to 5ms, periodic scan mode */
 if (SUCCESS != (rc = OC_SetScanTime(OChandle, SCAN_PERIODIC, 20)))
 {
 printf("\nERROR: OC_SetScanTime failed: %d\n", rc);
 Ioexit(1);
 }

 /* Goto Scan Mode */
 if (SUCCESS != (rc = OC_SetScanMode(OChandle, SCAN_RUN)))
 {
 printf("\nERROR: OC_SetScanMode failed: %d\n", rc);
 Ioexit(1);
 }

 /* Turn on User LED 1 */
 if (SUCCESS != (rc = OC_SetUserLEDState(OChandle, 1, LED_GREEN_SOLID)))
 {
 printf("\nERROR: OC_SetUserLEDState failed: %d\n", rc);
 Ioexit(1);
 }

 /* Read word 0 of IB32 module */
 if (IB32slot != 0)
 { if (SUCCESS != (rc = OC_ReadInputImage(OChandle, NULL, IB32slot, 0, 1, &wData)))
 {
 printf("\nERROR: OC_ReadInputImage failed: %d\n", rc);
 Ioexit(1);
 } }

 /* Write the data read to word 2 of BAS module M0 file */
 wLen = 1; if (BASslot != 0)
 {
 if (SUCCESS != (rc = OC_WriteModuleFile(OChandle, FILTYP_M0, &wData, BASslot,
2, wLen)))
 {
 printf("\nERROR: OC_WriteModuleFile failed: %d\n", rc);
 Ioexit(1);
 }
 }

 /* Close the scanner before exiting */
 OC_CloseScanner(OChandle);

 return(0);

} /* end main()*/

Control scanner
operation
See pages 6-70
and 6-73.

Scan I/O
See pages
6-54 and
6-88.
Publication 1747-6.5.3 Junel 1998

3–18 Developing Applications

t has

ure,
Handling Interrupt
Messages

Modules that communicate via discrete input interrupts or module interrupts require
special attention. The API buffers these interrupts internally until they are extracted
via OC_PollScanner. The internal message buffer can hold as many as 5 messages.
If the message buffer is full, the oldest message in the buffer is overwritten by the
next message. Interrupts will be missed if OC_PollScanner is not called by the
application more often than interrupts are received.

For Windows NT, use the OC_WaitForxxx functions.

Handling Errors Every function call returns a status code for the function. Check this status code
before using the data returned by the function. The scanner reports faults and other
errors via messages. The API library buffers these errors internally and reports their
existence as an Extended Error. The application must periodically call
OC_GetExtendedError to determine if an extended error message exists.

The library buffers extended errors in a queue. The queue can hold as many as 5
extended errors at one time. If the queue is full when a new extended error is received
from the scanner, the oldest extended error is lost and ERR_OCOVERRUN is
returned. The host application must call OC_GetExtendedError periodically to
remove existing extended errors from the buffer.

Extended Errors cause the scanner to fault. Once the scanner is faulted, it is forced
to Idle mode and cannot go to Scan mode until the Extended Errors are extracted
via OC_GetExtendedError and the fault is cleared via OC_ClearFault. For Windows
NT, use the OC_WaitForExtError function.

Determining
Partition Sizes for
Shared Memory

The host application initializes the scanner by providing partitioning information,
which contains the size of memory to be reserved in the shared memory for the
input and output images. The size of memory to be reserved for each of the images
must be greater than or equal to the number of input and output words required by
each module. The host application can’t communicate with the scanner until i
been initialized.

The partitioning information is passed to OC_InitScanner in the OCINIT struct
which is defined as:

typedef struct tagOCINIT {
WORD OutputImageSize; /* size in bytes */
WORD InputImageSize; /* size in bytes */
WORD HostRetentiveDataSize; /* size in bytes */

} OCINIT;
Publication 1747-6.5.3 June 1998

Developing Applications 3–19

ation
ory

ent
, use

imum
tion
To determine the input and output image sizes, call OC_CreateIOConfiguration
with a configuration that contains the I/O modules to be installed.
OC_CreateIOConfiguration returns the number of bytes of I/O required by each
module. Or you can use OC_GetIOConfig to use the current configuration, if one
exists. The input and output sizes are based on the number of words of I/O required
by each module. As an estimate, take the total number of input and output words
for all the modules in the system and multiply by two to get the number of required
bytes. The following code fragment calculates the number of bytes required by the
input and output images:

OCINIT initinfo;
OCIOCFG iocfg;
int i,numslots;

/* assuming application has filled iocfg with I/O configuration */
OC_CreateIOConfiguration(&iocfg);

numslots = iocfg.Rack1Size + iocfg.Rack2Size + iocfg.Rack3Size;
if (numslots > 31) numslots = 31;
initinfo.OutputImageSize = initinfo.InputImageSize = 0;
for (i=1 ; i<numslots ; i++) {

initinfo.OutputImageSize += ((iocfg.SlotCfg[i].OutputSize+1) / 2) * 2;
initinfo.InputImageSize += ((iocfg.SlotCfg[i].InputSize+1) / 2) * 2;

}

Any remaining shared memory can be allocated for host retentive data, which is the
portion of the dual port RAM that you can use to store data in case power fails. If
the application doesn’t need host retentive data, set its size to 0. If the applic
needs host retentive data, the application can determine the amount of mem
available by using the OCSEGMENTSIZELIMIT constant.

This constant specifies the total number of bytes available for the three segm
sizes. To calculate the maximum memory available for the host retentive data
this formula:

initinfo.HostRetentiveDataSize =
OCSEGMENTSIZELIMIt - initinfo.OutputImageSize - initinfo.InputImageSize;

If the I/O configuration changes and causes the image sizes to change, the max
memory available for Host Retentive Data will change accordingly, and informa
stored in the Host Retentive Data memory may be overwritten.
Publication 1747-6.5.3 Junel 1998

3–20 Developing Applications
Notes:
Publication 1747-6.5.3 June 1998

Chapter 4

Using the API Structures

Introduction This chapter describes the structures the API uses. These structures are declared in
ocapi.h.

API Structures

Structure Name: Syntax:

DII_CFG
Passed to OC_ConfigureDII.
Configures a discrete input
interrupt for a module.

typedef struct tagDII_CFG

BYTE SlotNum; /* slot number */
BYTE IOIncludeMask; /* declare which Discrete Inputs can cause interrupts */
BYTE IOEdgeType; /* select required transition of each discrete input */
WORD PresetCount; /* set the number of transitions required to cause interrupt */

} DII_CFG;

FORCEDATA
Passed to OC_SetForces.
Configures input and output
forces.

typedef struct tagFORCEDATA
{

BYTE SlotNum; /* slot number */
WORD WordOffset; /* offset to word to force */
BYTE IOType; /* selects force inputs or outputs */
WORD ForceMask; /* bits set to 1 are forced, 0 removes forces */
WORD ForceVal; /* selects force state of bits set to 1 in ForceMask */

} FORCEDATA;

MSGBUF
Returned by OC_PollScanner.
MsgID identifies the message
type. Type-specific data is
contained in MsgData[].

#define OCMSGDATASIZE4 /* number of bytes of message data */
typedef struct tagMSGBUF
{

BYTE MsgID; /* Message type */
BYTE MsgData[OCMSGDATASIZE]; /* Type-specific data */

} MSGBUF;

OCEXTERR
Returned by
OC_GetExtendedError. I/O error
report from scanner.

#define OCERRDATASIZE3 /* number of bytes of error data */
typedef struct tagOCEXTERR
{

BYTE ErrorCode; /* Extended error code */
BYTE SlotNum; /* Associated slot number */
BYTE ErrorData[OCERRDATASIZE];/* Error code data */

} OCEXTERR;

OCINIT
Passed to OC_InitScanner
function to specify dual port
RAM partition sizes for output
image, input image, and host
retentive data.

typedef struct tagOCINIT
{

WORD OutputImageSize; /* size in bytes */
WORD InputImageSize; /* size in bytes */
WORD HostRetentiveDataSize;/* size in bytes */

} OCINIT;

OCIOCFG
Used by
OC_CreateIOConfiguration,
OC_GetIOConfiguration, and
OC_DownloadIOConfiguration.
Configuration information for a
system. 1, 2, or 3 racks may be
configured for up to 30 I/O
modules. (Slot 0 is reserved for
the 1746 I/O PCI Interface.)

typedef struct tagOCIOCFG
{

BYTE Rack1Size; /* number of slots in Rack 1 */
BYTE Rack2Size; /* number of slots in Rack 2 */
BYTE Rack3Size; /* number of slots in Rack 3 */
OCSLOTCFGSlotCfg[OCMAXSLOT];/* configuration for each slot */

} OCIOCFG;
Publication 1747-6.5.3 June 1998

4–2 Using the API Structures
OCSLOTCFG
Configuration information for a
module. The mix and type codes
together form a unique
identification for each module.

typedef struct tagOCSLOTCFG
{

BYTE mix; /* mix code */
BYTE type; /* type code */
BYTE InputSize; /* number of inputs in bytes */
BYTE OutputSize; /* number of outputs in bytes */
WORD M0Size; /* size of M0 file in words */
WORD M1Size; /* size of M1 file in words */
WORD GSize; /* size of G file in words */
WORD *GData; /* pointer to array of length GSize words */
char *Name; /* pointer to module name string */

} OCSLOTCFG;

OCVERSIONINFO
Returned by
OC_GetVersionInfo. Software
and hardware version numbers.

typedef struct tagOCVERSIONINFO
{

WORD APISeries; /* API series */
WORD APIRevision; /* API revision */
WORD ScannerFirmwareSeries; /* Scanner firmware series */
WORD ScannerFirmwareRevision;/* Scanner firmware revision */
WORD OCHardwareSeries; /* Hardware series */
WORD OCHardwareRevision; /* Hardware revision */
WORD OCdriverSeries /* OCdriver series - Windows NT only */
WORD OCdriverRevision /* Ocdriver reviwion - Windows NT only */

} OCVERSIONINFO;

STSFILE
Scanner status file.

typedef struct tagSTSFILE
{

WORD wWordNum[OCSTSFILEWSIZE];
} STSFILE;

Structure Name: Syntax:
Publication 1747-6.5.3 June1998

Chapter 5

Configuring I/O Modules

Introduction This chapter explains how to configure the I/O modules for your 1746 I/O PCI
Interface system. You can either use the autoconfigure (OC_GetIOConfiguration)
function or build your own configuration (OC_CreateIOConfiguration).

A separate I/O configuration utility is available for the PCI SLC I/O bus interface
to simplify this process. The utility is on the 1746 I/O PCI Interface utilities disk
that ships with the 1746 I/O PCI Interface (1747-PCIS[2]). The I/O configuration
utility (ioconfig.exe) allows an I/O configuration data file to be created and saved
to disk.

Configuring I/O The application configures the scanner by downloading information about the
installed rack sizes and module types. Call the OC_GetIOConfiguration function
to get the current I/O configuration or use OC_CreateIOConfiguration to build an
I/O configuration. Both of these functions return a valid I/O configuration that can
be downloaded to the scanner.

The scanner will not go to Scan mode until the OC_DownloadIOConfiguration
function sends the configuration information. The scanner checks the downloaded
I/O configuration against the installed modules when the application attempts to set
the scanner to Scan mode. The scanner returns an extended error if the I/O
configuration is not valid and the scanner will fault.

The OC_CreateIOConfiguration function requires a structure containing rack sizes
and module types or module names. The structure is:

struct {
BYTE Rack1Size; /* number of slots in rack1 (4,7,10, or 13) */
BYTE Rack2Size; /* number of slots in rack2 (0,4,7,10, or 13) */
BYTE Rack3Size; /* number of slots in rack3 (0,4,7,10, or 13) */
OCSLOTCFGSlotCfg[31];/* slot information */

} OCIOCFG;

Initialize the three rack size variables with the total number of slots in each rack. If
rack 2 or rack 3 is not installed, set the size to 0.

SlotCfg contains information about each slot in the racks. The 1746 I/O PCI
Interface supports as many as 31 slots, numbered 0 to 30. Slot 0 is the adapter slot
(left slot of rack 1) and is invalid for scanner functions. Each slot is described by
the structure OCSLOTCFG:
Publication 1747-6.5.3 June 1998

5–2 Configuring I/O Modules

sn’t

st

ee
ion.

rn,
iles.
le

on.
struct {
BYTE mix; /* Module I/O Mix value */
BYTE type; /* Module Type */
BYTE InputSize; /* number of inputs in bytes */
BYTE OutputSize; /* number of outputs in bytes */
WORD M0Size; /* size of M0 file in words */
WORD M1Size; /* size of M1 file in words */
WORD GSize; /* size of G file in words */
WORD *GData; /* pointer to array of length GSize words */
char *Name; /* pointer to module name string */

} OCSLOTCFG;

You can specify a module by name or by mix and type. You only specify G data if
the module uses G files (such as the 1747-SN). If the Name pointer is NULL,
OC_CreateIOConfiguration uses mix and type to identify the module. See page 4
for the mix and type values. OC_CreateIOConfiguration supplies the InputSize,
OutputSize, M0Size, M1Size, Gsize, and Name fields.

If Name points to a string containing a valid module name, the module name
identifies the module. OC_CreateIOConfiguration supplies the mix, type,
InputSize, OutputSize, M0Size, M1Size, and Gsize fields.

Initialize empty slots and slot 0 with a mix value of 0xFF and a type value of 0xFF.

If the module is not in the internal database, OC_CreateIOConfiguration doe
alter the OCSLOTCFG.

To support modules not included in the internal database of modules, the ho
application can initialize the mix, type, InputSize, OutputSize, M0Size,
M1Size, and GSize before downloading the I/O configuration to the scanner. S
the I/O module’s user manual to determine the proper configuration informat

After the OC_CreateIOConfiguration and OCGetIOConfiguration functions retu
the I/O configuration structure must be checked for installed modules with G f
If the Gsize field of a non-empty slot configuration is not zero, then the modu
contains a G file. If the module contains a G file, initialize GData to point to an
array of Gsize words to be loaded into the module during scanner configurati
See the I/O module’s user manual to determine the proper G file data.
Publication 1747-6.5.3 June 1998

Configuring I/O Modules 5–3
Using M0-M1 Files
and G Files

The 1746 I/O PCI Interface uses M0-M1 files and G files to download configuration
information to specialty I/O modules. The following descriptions describe the basics
of M0-M1 and G files. For detailed information, see the user manual for the specialty
I/O module you are configuring.

M0-M1 files

M0 and M1 files are data files that reside in specialty I/O modules only. There is
no image for these files in the dual port memory (like the discrete input and output
image files). The application of these files depends on the function of the particular
specialty I/O module. Your application program initiates the transfer of these files.
Each transfer is a single request or an API call. With respect to the 1746 I/O PCI
Interface, the M0 file is a module output file (a write-only file) and the M1 file is a
module input file (a read-only file).

You can address M0 and M1 files in your application and they can also be acted
upon by the specialty I/O module - independent of the processor scan.

G files

Some specialty modules (such as the 1747-SN) use configuration files, which act
as the software equivalent of DIP switches.

The data you enter into the G file is automatically passed to the specialty I/O module
when you enter Scan mode.
Publication 1747-6.5.3 June 1998

5–4 Configuring I/O Modules
Supported I/O
Modules

Module Name:a Description: Class: Mix:b Type:

AMCI-1561 1 35 14

1203-SM1 Class1 1 35 16

1203-SM1 Class 4 4 136 17

1394-SJT 4 136 17

1746-IA4 4-Input 100/120 V ac 0 1 0

1746-IA8 8-Input 100/120 V ac 0 3 0

1746-IA16 16-Input 100/120 V ac 0 5 0

1746-IB8 8-Input (SINK) 24 V dc 0 3 6

1746-IB16 16-Input (SINK) 24 V dc 0 5 6

1746-IB32 32-Input (SINK) 24 V dc 0 7 6

1746-IC16 16-Input dc 0 5 9

1746-IH16 16-Input ac 0 5 7

1746-IG16 16-Input [TTL](SOURCE) 5 V dc 0 5 15

1746-IM4 4-Input 200/240 V ac 0 1 1

1746-IM8 8-Input 200/240 V ac 0 3 1

1746-IM16 16-Input 200/240 V ac 0 5 1

1746-IN16 16-Input 24 V ac/V dc 0 5 10

1746-ITB16 16-Input [FAST](SINK) 24V dc 0 5 19

1746-ITV16 16-Input [FAST](SOURCE) 24V dc 0 5 18

1746-IV8 8-Input (SOURCE) 24 V dc 0 3 20

1746-IV16 16-Input (SOURCE) 24 V dc 0 5 20

1746-IV32 32-Input (SOURCE) 24 V dc 0 7 20

1746-OA8 8-Output(TRIAC) 100/240 V ac 0 27 3

1746-OA16 16-Output(TRIAC) 100/240 V ac 0 29 3

1746-OAP12 Enhanced ac 0 28 3

1746-OB8 8-Output [TRANS](SOURCE)10/50 V dc 0 27 13

1746-OB16 16-Output [TRANS](SOURCE)10/50 V dc 0 29 13

1746-OB16E 16-Output dc 0 29 20

1746-OB32 32-Output [TRANS](SOURCE) 10/50 V dc 0 31 13

1746-OBP8 8-Output dc 0 27 21

1746-OBP16 16-Output [TRANS 1 amp](SRC) 24V dc 0 29 21

1746-OG16 16-Output [TTL](SINK) 5 V dc 0 29 15

1746-OV8 8-Output [TRANS](SINK)10/50 V dc 0 27 14

1746-OV16 16-Output [TRANS](SINK)10/50 V dc 0 29 14

1746-OV32 32-Output [TRANS](SINK) 10/50 V dc 0 31 14

1746-OW4 4-Output [RELAY] V ac/V dc 0 25 0

1746-OW8 8-Output [RELAY] V ac/V dc 0 27 0

1746-OW16 16-Output [RELAY] V ac/V dc 0 29 0

1746-OX8 8-Output [ISOLATED RELAY] V ac/V dc 0 27 1

1746-OVP16 16-Output [TRANS 1 amp] (SINK) 24V dc 0 29 22

a.The module names shown in this table correspond to those used by the OC_GetIOConfiguration and
OC_CreateIOConfiguration functions.

b.The mix code for a module is composed of one byte field. The upper 3 bits represent the class of the
module, and the lower 5 bits represent the I/O mix of the module.
Publication 1747-6.5.3 June 1998

Configuring I/O Modules 5–5
Module Name:a Description: Class: Mix:b Type:

1746-IO4 2-Input 100/120 V ac 2-Output [RLY] 0 8 0

1746-IO8 4-Input 100/120 V ac 4-Output [RLY] 0 11 0

1746-IO12 6-Input 100/120 V ac 6-Output [RLY] 0 15 0

1746-INT4 4 thermocouples, isolated 1 35 15

1746sc-INO4VI Spectrum Controls, 4 Analog Outputs 1 35 19

1746sc-INI4VI Spectrum Controls, 4 Analog Inputs 1 35 20

1746sc-INO4I Spectrum Controls, 4 Analog Outputs 1 35 21

1746sc-INI4I Spectrum Controls, 4 Analog Inputs 1 35 22

1746-NI4 4 Channel Analog Input 1 44 1

1746-NI8 8 Analog Inputs 1 35 26

1746-NI8 8 Analog Inputs 3 127 26

1746-NIO4I Analog Comb. 2 In & 2 Current Out 1 32 1

1746-NIO4V Analog Comb. 2 In & 2 Voltage Out 1 32 2

1746-FIO4I Fast Analog Comb 2 In & 2 Current Out 1 32 24

1746-FIO4V Fast Analog Comb 2 In & 2 Voltage Out 1 32 18

1746-NO4I 4 Channel Analog Current Output 1 54 1

1746-NO4V 4 Channel Analog Voltage Output 1 54 2

1746-NT4 4 Channel Thermocouple Input Module 1 35 10

1746sc-NT8 Spectrum Controls, 4 Analog inputs isolated 1 35 33

1746-NR4 4 Channel RTD/Resistance Input Module 1 35 13

1746-HSCE High Speed Counter/Encoder 3 127 5

1746-HS Single Axis Motion Controller 1 33 3

1746-HSRV SLC Servo Single AX MC 3 101 14

1746-HSTP1 Stepper Controller Module 1 35 12

1746-BAS1c BASIC Module - 5/01 Configuration 1 35 6

1746-BAS2c BASIC Module - 5/02 Configuration 4 131 6

1746-QS Synchronized Axes 4 136 27

1746-QV Open Loop Velocity 4 131 15

1747-DCM1c Direct Commun. Module (1/4 RACK) 1 32 25

1747-DCM2c Direct Commun. Module (1/2 RACK) 1 33 25

1747-DCM3c Direct Commun. Module (3/4 RACK) 1 34 25

1747-DCM4c Direct Commun. Module (FULL RACK) 1 35 25

1747-MNET Module Interface 4 158 11

1747-SDN DeviceNet Scanner 4 136 6

1747-SN Remote I/O Scanner 4 136 8

1747-DSN1c Distributed I/O Scanner - 7 Blks 1 35 7

1747-DSN2c Distributed I/O Scanner - 30 Blks 4 136 7

1747-KE1c Interface Module, Series A 1 42 9

1747-KE2c Interface Module, Series B 1 35 9

a.The module names shown in this table correspond to those used by the OC_GetIOConfiguration and
OC_CreateIOConfiguration functions.

b.The mix code for a module is composed of one byte field. The upper 3 bits represent the class of the
module, and the lower 5 bits represent the I/O mix of the module.

c.Some modules can have multiple configurations. To distinguish between different configurations of the
same module, a single digit is appended to the module name.
Publication 1747-6.5.3 June 1998

5–6 Configuring I/O Modules
Notes:
Publication 1747-6.5.3 June 1998

Chapter 6

Library of Routines

Introduction The MS-DOS API is a run-time library that can be linked with most industry
standard programming language compilers using the Pascal calling convention.

The Windows NT API is a 32-bit DLL that can be linked with most industry-standard
programming language compilers.

This chapter provides the programming information for each routine and identifies
which operating system supports the routine. The calling convention for each API
function is shown in C format.
Publication 1747-6.5.3 June 1998

6–2 Library of Routines OC_CalculateCRC
OC_CalculateCRC OC_CalculateCRC calculates a 16-bit CRC.

Syntax:

void OC_CalculateCRC(BYTE *bufPtr, WORD bLen, WORD *Crc);

Parameters:

Description:

This function is useful for verifying data integrity. For example, a CRC might be appended to data stored
in the host retentive data partition. When the data is later retrieved, a new CRC can be calculated and
compared to the old CRC to ensure the data is valid.

Return Value:

none

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

BYTE buffer[100];
WORD buffer_crc;
int retcode;

retcode = OC_CalculateCRC(buffer, 100, &buffer_crc);

Parameter: Description:

bufPtr Points to the buffer that contains the bytes for the CRC calculation

bLen Number of bytes for which to calculate the CRC

Crc A word that returns the calculated CRC
Publication 1747-6.5.3 June 1998

OC_ClearFault Library of Routines 6–3
OC_ClearFault OC_ClearFault clears any fault condition of the scanner.

Syntax:

int OC_ClearFault(HANDLE handle);

Parameters:

Description:

All extended error information must be retrieved before the fault can be cleared.

If the scanner encounters an error condition, it generates an extended error and faults. The fault forces the
scanner into Idle mode. The scanner cannot be placed into Scan mode until the fault is cleared.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_ClearFault(Handle);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

Name: Value: Description:

SUCCESS 0 fault was cleared successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCEXTERR 11 scanner extended error message, see OC_GetExtendedError

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCRESPONSE 10 scanner did not respond to request
Publication 1747-6.5.3 June 1998

6–4 Library of Routines OC_CloseScanner

OC_CloseScanner This function must always be called before exiting the application.

Syntax:

int OC_CloseScanner(HANDLE handle);

Parameters:

Description:

This function releases control of the scanner device, releases the interrupt assigned by OC_OpenScanner,
and disables the segment address assignment.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_CloseScanner(Handle);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

!
ATTENTION: The system might become unstable if you don’t call OC_CloseScanner before exiting

the application.

Name: Value: Description:

SUCCESS 0 scanner was closed successfully

ERR_OCACCESS 2 handle does not have access to the scanner
Publication 1747-6.5.3 June 1998

OC_ConfigureDII Library of Routines 6–5
OC_ConfigureDII OC_ConfigureDII allows an application to receive a message from the scanner when
an input bit pattern of a discrete I/O module matches a compare value.

Syntax:

int OC_ConfigureDII(HANDLE handle, DII_CFG *diicfg);

Parameters:

Description:

The application configures the compare value using this function and when the comparison completes, the
scanner generates a message to the application. The application must then call OC_PollScanner to retrieve
the message.

The DII_CFG structure is defined as:

typedef struct {
BYTE SlotNum; /* slot number 1-30*/
BYTE IOIncludeMask;/* bits allowed mask */
BYTE IOEdgeType;/* bit pattern to compare */
WORD PresetCount;/* number of matches */

} DII_CFG;

The scanner recognizes a match when every bit in the IOIncludeMask has finished transitioning. After a
message is generated, another message will be generated as soon as the next specified number of
matches occurs.

To disable DII’s, set IOIncludeMask to 0 with a valid SlotNum. DII’s are disabled by default on reset.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

diicfg Points to the DII configuration

This value: Means:

Slotnum

Must contain the slot number of a Class 0 Discrete Input module. An I/O error report
is generated if the scanner determines the slot does not contain a valid discrete input
module.

IOIncludeMask

Should contain the bits in the discrete input module to include in the comparison.
Only bits 0 - 7 of word 0 of the module can be configured for DII’s. IOIncludeMask
is a bit-mapped mask. Any bit set to 1 in this mask includes the corresponding bit of
the discrete input module in the comparison. Any bit set to 0 is ignored.

IOEdgeType

Defines the bit pattern to compare. Only bits that correspond to bits set to 1 in
IOIncludeMask are used. Only bits 0 - 7 are valid. IOEdgeType is a bit-mapped
value. If a bit is set to 1, the comparison for the bit matches when its corresponding
discrete input bit changes from 0 to 1. If a bit is set to 0, the comparison for the bit
matches when its corresponding discrete input bit changes from 1 to 0.

PresetCount

When PresetCount is 0 or 1, the scanner generates a message each time the
comparison matches. When it is between 2 and 65535, the message is generated
when the number of comparison matches meets PresetCount.
Publication 1747-6.5.3 June 1998

6–6 Library of Routines OC_ConfigureDII
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
DII_CFG diicfg;
int retcode;

diicfg.Slotnum = 6;/* Slot 6 has discrete input module */
diicfg.IOIncludeMask = 1;/* bit 0 is the input trigger */
diicfg.IOEdgeType = 1;/* bit 0 must toggle from low to high */
diicfg.PresetCount = 3;/* bit 0 must toggle 3 times */

retcode = OC_ConfigureDII(Handle, &diicfg);

/* Use OC_PollScanner() to check for DII messages */

Name: Value: Description:

SUCCESS 0 discrete input interrupt (DII) was configured successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

OC_CreateIO Configuration Library of Routines 6–7
OC_CreateIO
Configuration

OC_CreateIOConfiguration creates a scanner configuration from an application-
specific installation of rack sizes and installed modules. See chapter 5 for more
information.

Syntax:

int OC_CreateIOConfiguration(OCIOCFG *iocfg);

Parameters:

Description:

Modules can be specified by name or by mix and type. The function automatically fills in the rest of the
required information in the OCIOCFG structure.

This function returns in iocfg the scanner configuration information obtained from the rack sizes and
installed module types specified in iocfg. The scanner configuration can then be downloaded to the scanner
with OC_DownloadIOConfiguration, which allows the application to control the number of racks and their
sizes and the position and type of modules installed in the racks.

The OCIOCFG structure is defined as:

typedef struct tagOCIOCFG
{

BYTE Rack1Size; /* number of slots in Rack 1 */
BYTE Rack2Size; /* number of slots in Rack 2 */
BYTE Rack3Size; /* number of slots in Rack 3 */
OCSLOTCFG SlotCfg[OCMAXSLOT];/* configuration for each slot */

} OCIOCFG;

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

iocfg Specifies the rack sizes and installed modules

Name: Value: Description:

SUCCESS 0 I/O configuration was read successfully

ERR_OCUNKNOWN

18 at least one module was not found in the internal database
The SlotCfg data for the unknown module is not altered; the remaining
modules are configured.
Publication 1747-6.5.3 June 1998

6–8 Library of Routines OC_CreateIO Configuration
Example:

OCIOCFG iocfg;
int retcode, numslots, i;
char module_name[] = ”1746-BAS”;

iocfg.Rack1Size = 10; /* 10 slot chassis */
iocfg.Rack2Size = 7; /* 7 slot chassis */
iocfg.Rack3Size = 0; /* Only 2 chassis */

numslots = iocfg.Rack1Size + iocfg.Rack2Size + iocfg.Rack3Size;

for (i=1; i<numslots; i++){
iocfg.SlotCfg[i].mix = OCEMPTYMIX;
iocfg.SlotCfg[i].type = OCEMPTYTYPE; /* Empty all slots */

}
iocfg.SlotCfg[6].mix = 35;
iocfg.SlotCfg[6].type = 6; /* Slot 6 has 1746-BAS module */

or
iocfg.SlotCfg[6].name = module_name; /* Use name instead */

.

. /* Add additional module information to */

. /* match the physical I/O configuration */

.

retcode = OC_CreateIOConfiguration(&iocfg);

/* Use OC_DownloadIOConfiguration() to download the information */
Publication 1747-6.5.3 June 1998

OC_DemandInputScan Library of Routines 6–9
OC_DemandInputScan OC_DemandInputScan forces the scanner to immediately perform an input scan.

Syntax:

int OC_DemandInputScan(HANDLE handle, int mode);

Parameters:

Description:

If an I/O scan is in progress when this function is called, the input scan is performed after the current scan
has completed.

The scanner updates the input image with data read from the modules. Use OC_ReadInputImage to read
data from the input image.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_DemandInputScan(Handle, OCWAIT);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
OCWAIT OC_DemandInputScan waits for the input scan to be

completed before returning to the caller.
OCNOWAITOC_DemandInputScan returns immediately.

Name: Value: Description:

SUCCESS 0 demand input request was successful

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured
Publication 1747-6.5.3 June 1998

6–10 Library of Routines OC_DemandOutputScan
OC_DemandOutputScan OC_DemandOutputScan forces the scanner to immediately perform an output scan.

Syntax:

int OC_DemandOutputScan(HANDLE handle, int mode);

Parameters:

Description:

The scanner updates module outputs from the data in the output image. Use OC_WriteOutputImage to write
data to the output image.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_DemandOutputScan(Handle, OCWAIT);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
OCWAIT OC_DemandOutputScan waits for the output scan to be

completed before returning to the caller.
OCNOWAITOC_DemandOutputScan returns immediately.

Name: Value: Description:

SUCCESS 0 demand output request was successful

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured
Publication 1747-6.5.3 June 1998

OC_DownloadIO Configuration Library of Routines 6–11
OC_DownloadIO
Configuration

OC_DownloadIOConfiguration downloads an I/O configuration to the scanner.

Syntax:

int OC_DownloadIOConfiguration(HANDLE handle, OCIOCFG *iocfg);

Parameters:

Description:

The scanner must be in Idle mode to receive an I/O configuration. This function forces the scanner to Idle
mode to download the configuration.

The scanner checks the downloaded I/O configuration for validity, and if there are any errors, an extended
error might be generated. If an error is generated, the scanner will fault.

The OCIOCFG structure is defined as:

typedef struct tagOCIOCFG
{

BYTE Rack1Size; /* number of slots in Rack 1 */
BYTE Rack2Size; /* number of slots in Rack 2 */
BYTE Rack3Size; /* number of slots in Rack 3 */
OCSLOTCFG SlotCfg[OCMAXSLOT];/* configuration for each slot */

} OCIOCFG;

Return Value:

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

iocfg Specifies the rack sizes and installed modules

Name: Value: Description:

SUCCESS 0 I/O configuration was downloaded successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCOUTOFMEM 17 unable to allocate memory for configuration data

ERR_OCRESPONSE 10 scanner did not respond to request
Publication 1747-6.5.3 June 1998

6–12 Library of Routines OC_DownloadIO Configuration
Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
OCIOCFG iocfg;
int retcode;

/* Either OC_CreateIOConfiguration() or OC_GetIOConfiguration() were */
/* called previously to fill in ’iocfg’ structure */

retcode = OC_DownloadIOConfiguration(Handle, &iocfg);
Publication 1747-6.5.3 June 1998

OC_EnableEOSNotify Library of Routines 6–13

 scan
n. See
OC_EnableEOSNotify OC_EnableEOSNotify controls whether end-of-scan notification messages are
generated by the scanner.

Syntax:

int OC_EnableEOSNotify(HANDLE handle, int mode);

Parameters:

Description:

There are three types of end-of-scan messages:

End-of-scan messages are generated from the scanner to the API via interrupts after each scan. The scan
rate is controlled by the OC_SetScanTime function and end-of-scan interrupts are generated at the scan
rate. Enabling end-of-scan messages can affect the performance of the application due to the overhead
incurred in processing these interrupts. An alternative method to synchronize with the scanner’s I/O
is to monitor the scanner watchdog register, which is incremented at the end of each timed I/O sca
OC_GetScannerWatchdogCount.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
EOSMSG_ENABLE the scanner generates an end-of-scan
message

after each scan. Use the OC_PollScanner
function

to retrieve end-of-scan messages.
EOSMSG_DISABLE the scanner does not generate End-of-
scan

messages. End-of-scan messages are
disabled

after the scanner has been reset.

This type of message: Is generated after:

OCMSG_EOS_DMDIN a OC_DemandInputScan command has completed

OCMSG_EOS_DMDOUT a OC_DemandOutputScan command has completed

OCMSG_EOS each timed I/O scan
Publication 1747-6.5.3 June 1998

6–14 Library of Routines OC_EnableEOSNotify
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_EnableEOSNotify(Handle, EOSMSG_ENABLE);
/* Use OC_PollScanner() to check EOS messages */

Name: Value: Description:

SUCCESS 0 notification was generated successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

OC_EnableForces Library of Routines 6–15
OC_EnableForces OC_EnableForces enables/disables forces for all inputs and outputs with entries in
the force files on the scanner.

Syntax:

int OC_EnableForces(HANDLE handle, int mode);

Parameters:

Description:

If no I/O forces are in the force files, OC_EnableForces does not enable forces and instead returns an error.
All forces are disabled by default.

Return Value:

!
ATTENTION: Enabling forces will potentially change the

output data values that your application
was previously controlling.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
FORCE_ENABLE forces are enabled
FORCE_DISABLE forces are disabled
FORCE_CLEAR forces are disabled and all input and
output forces

are cleared from the force files.

Name: Value: Description:

SUCCESS 0 forces were updated successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCNOFORCES 15 no forces installed, scanner cannot enable forces

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured
Publication 1747-6.5.3 June 1998

6–16 Library of Routines OC_EnableForces
Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

/* Use OC_SetForces() to configure forcing information first */
retcode = OC_EnableForces(Handle, FORCE_ENABLE);
Publication 1747-6.5.3 June 1998

OC_EnableSlot Library of Routines 6–17
OC_EnableSlot OC_EnableSlot enables fine tuning of the I/O scanning process.

Syntax:

int OC_EnableSlot(HANDLE handle, int slotnum, int state);

Parameters:

Description:

This function enables or disables the scanner from scanning the module in a specific slotnum. This applies
to both the input and output scan. Slots that are disabled are not included in the I/O scan. By default, all
slots are enabled.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_EnableSlot(Handle, 6, SLOT_DISABLE); /* Exclude slot 6 */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

slotnum Must contain a valid slot number.

state

If state is:
SLOT_ENABLE the module is released from its reset state and is

included in the I/O scan
SLOT_DISABLE the module is no longer included in the I/O scan and

any outputs remain at their last state

Name: Value: Description:

SUCCESS 0 module was updated successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCNOFORCES 15 no forces installed, scanner cannot enable forces

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured
Publication 1747-6.5.3 June 1998

6–18 Library of Routines OC_ErrorMsg
OC_ErrorMsg OC_ErrorMsg returns a descriptive text message associated with the API return
value errcode.

Syntax:

int OC_ErrorMsg(int errcode, char **msg);

Description:

The null-terminated message string is placed in a static buffer that is reused each time this function is called.
A pointer to this buffer is returned in msg.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library.

Example:

HANDLE Handle;

char *msg;

int rc;

if (SUCCESS != (rc = OC_OpenScanner(&Handle)))

{

/* Open failed - display error message */

OCErrorMsg(rc, &msg);

printf(“Error: %s\n”, msg);

}

Name: Description:

SUCCESS errcode was valid. msg points to corresponding error description.

ERR_OCPARAM errcode was invalid. msg points to unknown error code string.
Publication 1747-6.5.3 June 1998

OC_ExtendedErrorMsg Library of Routines 6–19
OC_ExtendedErrorMsg OC_ExtendedErrorMsg returns a descriptive text message associated with an
extended error.

Syntax:

int OC_ExtendedErrorMsg(HANDLE handle, OCEXTERR *exterr, char **msg);

Parameters:

Description:

This function is useful when displaying an error message. You should use OC_GetExtendedError to obtain
the message before using OC_ExtendedErrorMsg to display the message. If you don’t use
OC_GetExtendedError first, OC_ExtendedErrorMsg displays a null message.

The OCEXTERR structure is defined as:

#define OCERRDATASIZE 3 /* number of bytes of error data */
typedef struct tagOCEXTERR
{

BYTE ErrorCode; /* Extended error code */
BYTE SlotNum; /* Associated slot number */
BYTE ErrorData[OCERRDATASIZE]; /* Error code data */

} OCEXTERR;

See appendix A for error codes.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

exterr Points to an extended error

msg
Points to a static buffer that contains a null-terminated message string for
the associated extended error

Name: Value: Description:

SUCCESS 0 extended error information was read successfully

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

6–20 Library of Routines OC_ExtendedErrorMsg
Example:

HANDLE Handle;
OCEXTERR exterr;
char *msg;
int retcode;

/* Should already have called OC_GetExtendedError() to obtain exterr */

retcode = OC_ExtendedErrorMsg(Handle, &exterr, &msg);

printf(“ERROR:%s\n”, msg);
Publication 1747-6.5.3 June 1998

OC_GetBatteryStatus Library of Routines 6–21
OC_GetBatteryStatus OC_GetBatteryStatus gets the current state of the battery of the scanner.

Syntax:

int OC_GetBatteryStatus(HANDLE handle, BYTE *batstate);

Parameters:

Description:

The battery provides backup power for the host retentive data (dual port RAM).

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE batt_sts;
int retcode;

retcode = OC_GetBatteryStatus(Handle, &batt_sts);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

batstate

If batstate is:
BATTERY_GOOD battery voltage is good
BATTERY_LOW battery voltage has dropped below a reliable level

Name: Value: Description:

SUCCESS 0 battery state was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

6–22 Library of Routines OC_GetDeviceInfo
OC_GetDeviceInfo OC_GeDeviceInfo returns information about the scanner device.

Syntax:

int OC_GetDeviceInfo(HANDLE handle, OCDEVICEINFO *devinfo);

Description:

The OCDEVICEINFO is defined as:

{

WORD ScannerType; /* scanner device type */

WORD ScannerIrq; /* allocated interrupt */

WORD ScannerMemory; /* dual-port memory access */

WORD ControlIo; /* PCIS control registers address */

WORD SRAM_Size /* size of available SRAM in bytes */

} OCDEVICEINFO;

handle must be a valid handle returned from OC_OpenScanner.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library.

Description:

HANDLE Handle;

OCDEVICEINFO devinfo;

/* display size of available SRAM */

OC_GetDeviceInfo(Handle, &devinfo);

printf(“SRAM Size is %ld bytes\n”, devinfo.SRAM_Size);

Name: Description:

SUCCESS The extended error information was read successfully.

ERR_OCACCESS handle does not have access to scanner
Publication 1747-6.5.3 June 1998

OC_GetExtendedError Library of Routines 6–23
OC_GetExtendedError OC_GetExtendedError reads extended error information from the scanner.

Syntax:

int OC_GetExtendedError(HANDLE handle, OCEXTERR *buf);

Parameters:

Description:

The extended error information is written during Scan mode or its configuration. An API function that
determines that the scanner has responded with an error returns an error code of ERR_OCEXTERR.
OC_GetExtendedError retrieves the extended error information written by the scanner and removes the
error from the scanner.

The library buffers extended errors in a queue. The queue can hold as many as 5 extended errors at one
time. If the queue is full when a new extended error is received from the scanner, the oldest extended error
is lost and ERR_OCOVERRUN is returned. The host application must call this function periodically to
remove existing extended errors from the buffer.

The OCEXTERR structure is defined as:

#define OCERRDATASIZE 3 /* number of bytes of error data */
typedef struct tagOCEXTERR
{

BYTE ErrorCode; /* Extended error code */
BYTE SlotNum; /* Associated slot number */
BYTE ErrorData[OCERRDATASIZE]; /* Error code data */

} OCEXTERR;

See appendix A for error codes.

Return Value:

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

buf

Contains the extended error information
If no extended error information is available, the error code field of buf
will be 0.

Name: Value: Description:

SUCCESS 0 extended error information was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCOVERRUN 16 an error message has been discarded
Publication 1747-6.5.3 June 1998

6–24 Library of Routines OC_GetExtendedError
Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
OCEXTERRexterr;
int retcode;

retcode = OC_GetExtendedError(Handle, &exterr);
Publication 1747-6.5.3 June 1998

OC_GetInputImage UpdateCounter Library of Routines 6–25
OC_GetInputImage
UpdateCounter

OC_GetInputImageUpdateCounter reads the value of the input image update
counter from the scanner and places it into count.

Syntax:
int OC_GetInputImageUpdateCounter(HANDLE handle, BYTE *count);

Parameters:

Description:

The input image update counter is incremented by the scanner after each input scan.

The input image update counter is only incremented if the scanner is in Scan mode, input scans are enabled,
and inputs are present. Use the counter to determine whether a change occurred; the value of the counter is
not important. It is possible to configure a system with no inputs; in this case, the input image update counter
would not be incremented.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handle;
BYTE count;
int retcode;

retcode = OC_GetInputImageUpdateCounter(Handle, &count);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

count Contains the value of the input image update counter

Name: Value: Description:

SUCCESS 0 input image update counter was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

6–26 Library of Routines OC_GetInputImage UpdateCounter
Publication 1747-6.5.3 June 1998

OC_GetIOConfiguration Library of Routines 6–27
OC_GetIOConfiguration OC_GetIOConfiguration queries the I/O rack about the installed rack sizes and
I/O modules in each 1746 chassis.

Syntax:

int OC_GetIOConfiguration(HANDLE handle, OCIOCFG *iocfg);

Parameters:

Description:

If the scanner is in Scan mode and OC_GetIOConfiguration returns successfully, OC_GetIOConfiguration
enables the host application to access I/O. The scanner must have previously received a valid configuration
prior to going to Scan mode.

The OCIOCFG structure is defined as:

typedef struct tagOCIOCFG
{

BYTE Rack1Size; /* number of slots in Rack 1 */
BYTE Rack2Size; /* number of slots in Rack 2 */
BYTE Rack3Size; /* number of slots in Rack 3 */
OCSLOTCFG SlotCfg[OCMAXSLOT];/* configuration for each slot */

} OCIOCFG;

!
ATTENTION: OC_GetIOConfiguration can take several
milliseconds to complete, depending upon the rack
configuration. While it is executing, I/O scanning and DII’s
are disabled.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

iocfg

Specifies the rack sizes and installed modules
Use the information in iocfg as input to OC_DownloadIOConfiguration
to configure the scanner.
Publication 1747-6.5.3 June 1998

6–28 Library of Routines OC_GetIOConfiguration
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
OCIOCFG iocfg;
int retcode;

retcode = OC_GetIOConfiguration(Handle, &iocfg);

/* Use OC_DownloadIOConfiguration() to download the information */

Name: Value: Description:

SUCCESS 0 I/O configuration was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCRESPONSE 10 scanner did not respond to request
Publication 1747-6.5.3 June 1998

OC_GetLastFaultCause Library of Routines 6–29
OC_GetLastFaultCause OC_GetLastFaultCause retrieves the cause of the last fault.

Syntax:

int OC_GetLastFaultCause(HANDLE handle, BYTE *FaultCode, int *SlotNum);

Parameters:

Description:

When the scanner faults, an extended error is generated. The error code and slot number of the most recent
fault is retained and returned by this function. The fault cause is a duplicate of the most recent extended error.

The OC_ClearFault function clears the fault in the scanner but does not clear the cause of the last fault.

See Appendix A for error codes.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE status, FaultCause;
int FaultSlot;
int retcode;

OC_GetScannerStatus (Handle, &status);
if (status = SCANSTS_FAULT)
{

retcode = OC_GetLastFaultCause (Handle, &FaultCause, &FaultSlot);
}

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

FaultCode

Points to the address that contains the fault cause
If the value returned in FaultCode is 0, the scanner has not received
any faults since it has been reset.

SlotNum Slot number that caused the fault

Name: Value: Description:

SUCCESS 0 fault was cleared successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

6–30 Library of Routines OC_GetMeasuredScan Time
OC_GetMeasuredScan
Time

OC_GetMeasuredScanTime returns the maximum and last observed I/O scan times.

Syntax:

int OC_GetMeasuredScanTime(HANDLE Handle, WORD *maxtime, WORD *lasttime);

Parameters:

Description:

The scanner calculates these values at the end of each I/O scan. The values are represented in units of 250
microseconds.

The scan times are reset to zero when changing to Scan mode, and are not valid until the end of the second
I/O scan. Only the timed I/O scans are measured; the demand input or output scans are not.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
WORD max_time, last_time;
int retcode;

retcode = OC_GetMeasuredScanTime(Handle, &max_time, &last_time);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

maxtime Returns the maximum scan time

lasttime Returns the last scan time

Name: Value: Description:

SUCCESS 0 measured scan time was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

OC_GetScannerInitInfo Library of Routines 6–31
OC_GetScannerInitInfo This function retrieves current information about the shared memory partitioning.

Syntax:

int OC_GetScannerInitInfo(HANDLE handle, OCINIT *scaninit);

Parameters:

Description:

If the scanner has not been initialized, OC_GetScannerInitInfo returns an error.

If the scanner has been previously initialized, an application can retrieve the current scanner partitioning
information with this function instead of resetting and re-initializing the scanner.

The OCINIT structure us defined as:

typedef struct tagOCINIT
{

WORD OutputImageSize; /* size in bytes */
WORD InputImageSize; /* size in bytes */
WORD HostRetentiveDataSize; /* size in bytes */

} OCINIT;

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

scaninit
Points to the structure that contains the initialization information this
function returns

Name: Value: Description:

SUCCESS 0 scanner initialization information was retrieved successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPOST 7 scanner POST failed, see OC_GetScannerStatus
Publication 1747-6.5.3 June 1998

6–32 Library of Routines OC_GetScannerInitInfo
Example:

HANDLE Handle;
OCINIT scaninit;
int retcode;

retcode = OC_GetScannerInitInfo(Handle, &scaninit);
if (retcode == SUCCESS)
{

printf(”Input Image Size = %d bytes \n”, scaninit.InputImageSize);
printf(”Output Image Size = %d bytes \n”, scaninit.OutputImageSize);
printf(”Host Retentive Data Size = %d bytes \n”,
scaninit.HostRetentiveDataSize);

}
else

/* handle error */
Publication 1747-6.5.3 June 1998

OC_GetScannerStatus Library of Routines 6–33
OC_GetScannerStatus OC_GetScannerStatus reads the current status of the scanner.

Syntax:

int OC_GetScannerStatus(HANDLE handle, BYTE *scansts);

Parameters:

Description:

If OC_GetScannerStatus returns SUCCESS, scansts has one of these values:

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

scansts Status of the scanner

This value:
Has this
hex value: Means the:

SCANSTS_BPIC 4 POST backplane IC test failed; scanner is halted

SCANSTS_CRC 2 software CRC checksum failed

SCANSTS_DPR 5 POST dual port RAM test failed; scanner is halted

SCANSTS_FAULT 13 scanner faulted; scanner is in Scan mode

SCANSTS_IDLE 11 scanner initialized; scanner is in Idle mode

SCANSTS_INIT 10 POST passed; waiting for OC_InitScanner from host

SCANSTS_INT 8 POST interrupt test failed; scanner is halted

SCANSTS_POST 1 power-on self test (POST) is in progress

SCANSTS_RAM 3 POST RAM test failed; scanner is halted

SCANSTS_SCAN 20 scanner initialized; scanner in Scan mode

SCANSTS_THERM 6 POST thermometer test failed; scanner is halted

SCANASTS_TIMER 7 POST timer test failed; scanner is halted

SCANSTS_WDOG 12 scanner watchdog timeout; scanner is halted

Name: Value: Description:

SUCCESS 0 scanner status was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCEXTERR 11 scanner extended error message (scansts is returned)
Publication 1747-6.5.3 June 1998

6–34 Library of Routines OC_GetScannerStatus
Example:

HANDLE Handle;
BYTE scansts;
int retcode;

retcode = OC_GetScannerStatus(Handle, &scansts);
Publication 1747-6.5.3 June 1998

OC_GetScanner WatchdogCount Library of Routines 6–35
OC_GetScanner
WatchdogCount

OC_GetScannerWatchdogCount reads the contents of the watchdog register of the
scanner.

Syntax:

int OC_GetScannerWatchdogCount(HANDLE handle, BYTE *count);

Parameters:

Description:

The watchdog register is incremented by the scanner after every timed I/O scan.

This register is incremented in both Scan and Idle modes, and is incremented even if both output and input
scans are disabled. The control application can monitor this register to ensure that the scanner is functioning
normally. It is also useful for synchronizing with the I/O scan.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE wdog_count;
int retcode;

retcode = OC_GetScannerWatchdogCount(Handle, &wdog_count);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

count Returns the watchdog register contents

Name: Value: Description:

SUCCESS 0 watchdog was read successfully

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

6–36 Library of Routines OC_GetStatusFile
OC_GetStatusFile OC_GetStatusFile reads a copy of the current scanner system status file into the
STSFILE structure pointed to by stsfil on the scanner.

Syntax:

int OC_GetStatusFile(HANDLE handle, STSFILE *stsfil);

Parameters:

Description:

The status file is updated by the scanner at the end of each I/O scan.

The STSFILE structure is defined as:

typedef struct tagSTSFILE
{

WORD wWordNum[OCSTSFILEWSIZE];
} STSFILE;

The status file is organized by words. The status file uses these classifications to define the data each word
contains:

The status file contains:

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

stsfil Points to the STSFILE structure that contains scanner system status

This classification: Means the data:

status
is used primarily to monitor scanner options or status. This
information is usually not written by the application, except to
clear a function such as a minor error bit.

dynamic configuration
can be written by application to select scanner options while
in Scan mode.

Word/Bit: Classification: Description:

0/0 to 0/4 status

Scanner mode/status
bit 4 bit 3 bit 2bit 1bit 0
1 0 000= (16) download in progress
1 0 001= (17) Idle mode (program)
1 1 110= (30) Scan mode (run)
All other values for bits 0-4 are reserved.

0/5 status
Forces enabled bit
This bit is set if forces have been enabled.
Publication 1747-6.5.3 June 1998

OC_GetStatusFile Library of Routines 6–37
0/6 status
Forces installed bit
This bit is set is forces have been installed.

0/7 to 0/12 reserved

0/13 dynamic configuration

Major error halted bit
This bit is set by the scanner when a major error is encountered. The
scanner enters a fault condition. Word 2, Fault Code will contain a code
which can be used to diagnose the fault condition.
When bit 0/13 is set, the scanner places all outputs in a safe state and
sets the Status LED to the fault state (flashing red).
Once a major fault state exists, the condition must be corrected and bit 0/
13 cleared before the scanner will accept a mode change request.

0/14 reserved

0/15 status

First pass bit
The bit is set by the scanner to indicate that the first I/O scan following
entry into Scan mode is in progress. The scanner clears this bit following
the first scan.

1/0 to 1/10 reserved

1/11 status
Battery low bit
This bit is set by the scanner when the Battery Low LED is on. It is cleared
when the Battery Low LED is off.

1/12 status

DII overflow bit
This bit is set by the scanner when a DII interrupt occurs and the scanner
is unable to successfully transmit the DII Received priority message to the
host.

1/13 to 1/15 reserved

2 status

Major error fault code
A code is written to this word by the scanner when a major error occurs.
See word S:0/13. The code defines the type of fault. If not zero, the upper
byte indicates the slot associated with the error. This word is not cleared
by the scanner.

3 to 4 dynamic configuration

I/O slot enables
These two words are bit mapped to represent the 30 possible I/O slots in
an SLC 500 system. Bits 3/0 through 4/14 represent slots 0-30 (slot 0 is
reserved for the 1746 I/O PCI Interface). Bit 4/15 is unused.
When a bit is set (default condition), it allows the I/O module in the
referenced slot to be updated in the I/O scan. When a bit is cleared, the
corresponding I/O module will no longer be included in the I/O scan.
Changes to the I/O slot enable bits will take affect at the end of the next
I/O scan.

5 status

Maximum observed scan time
This word indicates the maximum observed interval between consecutive
I/O scans. The interval time is reported in units of 250 ms.
Resolution of the observed scan time is +0 to -250 ms. For example, the
value 10 indicates that 2.25-2.5 ms was the longest scan time.

6 dynamic configuration
Index register
This word indicates the element offset used in indexed addressing.

7 to 8 status

I/O interrupt pending
These two words are bit-mapped to the 30 I/O slots. Bits 7/1 through 8/
14 refer to slots 1-30. Bits 7/0 and 8/15 are not used.
The pending bit associated with a slot is set when an interrupt request is
received from that slot. This bit is set regardless of the state of the I/O
interrupt enabled bit (wee word 9 and 10).

Word/Bit: Classification: Description:
Publication 1747-6.5.3 June 1998

6–38 Library of Routines OC_GetStatusFile
9 to 10 status

I/O interrupt enabled
These two words are bit-mapped to the 30 I/O slots. Bits 9/1 through 10/
14 refer to slots 1-30. Bits 9/0 and 10/15 are not used.
The corresponding enable bit must be set in order for an I/O interrupt
received priority message to be generated when a module issues an
interrupt request.

11/0 to 11/8 reserved

11/9 status
I/O scan toggle bit
This bit is cleared upon entry into Scan mode and is toggled (changes
state) at the end of every I/O scan.

11/10 dynamic configuration
DII reconfiguration bit
If the bit is set by the host, the DII function will reconfigure itself at the end
of the next I/O scan.

11/11 to 11/
15

reserved

12 status

Last I/O scan time
This word indicates the current observed interval between consecutive I/
O scans. The interval time is reported in units of 250 ms.
Resolution of the last scan time is +0 to -250 ms. For example, the value
10 indicates that 2.25-2.5 ms was the last scan time.

13 dynamic configuration
DII function enable
A value of zero written to this word will disable the discrete input interrupt
function. Any non-zero value will enable the function.

14 dynamic configuration

DII slot number
This word is used to configure the DII function. The slot number (1-30)
that contains the discrete I/O module should be written to this word. The
scanner will fault if the slot is empty or contains a non-discrete I/O module.
This word is applied upon detection of the DII reconfigure bit 11/10 or upon
entry to Scan mode.

15 dynamic configuration

DII bit mask
This word contains a bit-mapped value that corresponds to the bits to
monitor on the discrete I/O module. Only bits 0-7 are used in the DII
function. Setting a bit indicates that it is to be included in the comparison
of the discrete I/O module’s bit transition to the DII compare value (word
16). Clearing a bit indicates that the transition state of that bit is a “don’t
care.”
This word is applied upon detection of the DII reconfigure bit 11/10 and
at the end of each I/O scan.

16 dynamic configuration

DII compare value
This word contains a bit-mapped value that corresponds to the bit
transitions that must occur in the discrete I/O module for a count or
interrupt to occur. Only bits 0-7 are used in the DII function. Setting a bit
indicates that the bit must transition from a 0 to a 1 to satisfy the compare
condition for that bit. Clearing a bit indicates that the bit must transition
from a 1 to a 0 in order to satisfy the compare condition for that bit. An
interrupt or count will be generated upon the last bit transition of the
compare value.
This word is applied upon detection of the DII reconfigure bit 11/10 and
at the end of each I/O scan.

Word/Bit: Classification: Description:
Publication 1747-6.5.3 June 1998

OC_GetStatusFile Library of Routines 6–39
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
STSFILE stsfile;
int retcode;

retcode = OC_GetStatusFile(Handle, &stsfile);

17 dynamic configuration

DII preset
When this value is 0 or 1, an interrupt is generated each time the bit
transition comparison is satisfied (see words 15 and 16). When this value
is 2-65535, a count occurs each time the bit transition comparison is
satisfied. When the total number of counts equals the DII preset value, an
interrupt will be generated.
This word is applied upon detection of the DII reconfigure bit 11/10 and
at the end of each I/O scan.

18 status

DII accumulator
The DII accumulator contains the number of count transitions that have
occurred (see word 17). When a count occurs and the accumulator is
greater than or equal to the preset value, a DII interrupt is generated.

19 status
Scanner firmware series
This word indicates the scanner firmware series number. The series and
revision numbers are used to identify versions of firmware.

20 status
Scanner firmware revision
This word indicates the scanner firmware revision number. The series and
revision numbers are used to identify versions of firmware.

21 status
1746 I/O PCI Interface hardware series
This word indicates the 1746 I/O PCI Interface hardware series number.
The series and revision numbers are used to identify versions of firmware.

22 status
1746 I/O PCI Interface hardware revision
This word indicates the 1746 I/O PCI Interface hardware revision number.
The series and revision numbers are used to identify versions of firmware.

23 status
Scanner RAM size
This word indicates the size of RAM in 16-bit K words. For example, a
value of 64 indicates 64K words, or 128K bytes.

24 status
Scanner flash ROM size
This word indicates the size of flash ROM in 16-bit K words. For example,
a value of 64 indicates 64K words, or 128K bytes.

Name: Value: Description:

SUCCESS 0 system status file was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCSCANCFG 14 scanner has not been configured

Word/Bit: Classification: Description:
Publication 1747-6.5.3 June 1998

6–40 Library of Routines OC_GetSwitchPosition
OC_GetSwitchPosition OC_GetSwitchPosition reads the current position of the three-position front-panel
switch from the scanner.

Syntax:

int OC_GetSwitchPosition(HANDLE handle, BYTE *swpos);

Parameters:

Description:

The switch position has no effect on the scanner. The application can use this switch for any purpose.

The scanner must be initialized before you can monitor the switch position.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE sw_pos;
int retcode;

retcode = OC_GetSwitchPosition(Handle, &sw_pos);

if (sw_pos == SWITCH_BOTTOM)
OC_SetScanMode (Handle, SCAN_IDLE);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

swpos

If swpos is:
SWITCH_TOP switch is in the top position
SWITCH_MIDDLE switch is in the middle position
SWITCH_BOTTOM switch is in the bottom position

Name: Value: Description:

SUCCESS 0 switch position was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

OC_GetTemperature Library of Routines 6–41

ace’s

ond its
OC_GetTemperature OC_GetTemperature reads the current temperature of the 1746 I/O PCI Interf
built-in thermometer.

Syntax:

int OC_GetTemperature(HANDLE handle, BYTE*temp);

Parameters:

Description:

The temperature is updated every 10 seconds by the scanner.

The optimal operating temperature range for the 1746 I/O PCI Interface is 0° to 60°C. When
OC_GetTemperature returns a value of 75_ C or higher, the 1746 I/O PCI Interface is operating bey
optimal operating temperature range and you need to correct the situation.

The scanner must be initialized before you can monitor the temperature.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE temp;
int retcode;

retcode = OC_GetTemperature(Handle, &temp);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

temp Returns the temperature in degrees Celsius

Name: Value: Description:

SUCCESS 0 temperature was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

6–42 Library of Routines OC_GetUserJumper State
OC_GetUserJumper
State

OC_GetUserJumperState reads the state of the user selectable jumper.

Syntax:

int OC_GetUserJumperState(HANDLE handle, BYTE *jmpr);

Parameters:

Description:

The scanner reads the state of the jumper once during its POST and does not continually monitor the state
of the jumper.

The scanner must be initialized before you can monitor the jumper position.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE jmpr;
int retcode;

retcode = OC_GetUserJumperState(Handle, &jmpr);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

jmpr

If jmpr is:
JUMPER_PRESENT jumper is installed
JUMPER_ABSENT jumper is not installed

Name: Value: Description:

SUCCESS 0 switch position was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

OC_GetUserLEDState Library of Routines 6–43
OC_GetUserLEDState OC_GetUserLEDState reads the status of one of the four user-defined LEDs.

Syntax:

int OC_GetUserLEDState(HANDLE handle, int lednum, int *state);

Parameters:

Description:

The application can use this function to determine the current state of the LEDs.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int led_state;
int retcode;

retcode = OC_GetUserLEDState(Handle, 1, &led_state);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

lednum
Must be a value from 1 to 4, which corresponds to LED 1, LED 2, LED 3,
and LED 4

state

If state is:
LED_OFF LED is off
LED_RED_SOLID LED is on, red solid
LED_GREEN_SOLID LED is on, green solid
LED_RED_FLASH LED is on, red flashing (LED1 and LED2
only)
LED_GREEN_FLASH LED is on, green flashing (LED1 and LED2
only)

Name: Value: Description:

SUCCESS 0 LED was read successfully

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

6–44 Library of Routines OC_GetVersionInfo
OC_GetVersionInfo OC_GetVersionInfo retrieves the current version of the API library, 1746 I/O PCI
Interface hardware, and scanner firmware.

Syntax:

int OC_GetVersionInfo(HANDLE handle, OCVERSIONINFO *verinfo);

Parameters:

Description:

The scanner must be initialized before this function returns valid version information.

The OCVERSIONINFO structure is defined as:

typedef struct tagOCVERSIONINFO
{

WORD APISeries; /* API series */
WORD APIRevision; /* API revision */
WORD ScannerFirmwareSeries; /* Scanner firmware series */
WORD ScannerFirmwareRevision; /* Scanner firmware revision */
WORD OCHardwareSeries; /* Hardware series */
WORD OCHardwareRevision; /* Hardware revision */

} OCVERSIONINFO;

The Windows NT version uses the above structure with these additional members:

WORD OCDriverSeries; /* Device driver series */
WORD OCDriverRevision /* Device driver series revision */

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

verinfo
Returns the current version of the API library, 1746 I/O PCI Interface
hardware, and scanner firmware

Name: Value: Description:

SUCCESS 0 version information was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
Publication 1747-6.5.3 June 1998

OC_GetVersionInfo Library of Routines 6–45
Example:

HANDLE Handle;
OCVERSIONINFO verinfo;
int retcode;

retcode = OC_GetVersionInfo(Handle, &verinfo);
Publication 1747-6.5.3 June 1998

6–46 Library of Routines OC_InitScanner
OC_InitScanner This function initializes the shared memory interface between the host and scanner
and this function configures the shared memory partitioning.

Syntax:

int OC_InitScanner(HANDLE handle, OCINIT *scaninit);

Parameters:

Description:

If the scanner is executing POST when this function is called, ERR_OCPOST is returned.

If the scanner has been previously initialized and the partition information in scaninit is identical to the
current scanner partitioning, OC_InitScanner returns successfully.

If the scanner has been previously initialized and the partition information in scaninit is different from
the current scanner partitioning, OC_InitScanner returns an error value that indicates that the scanner was
previously initialized. The scanner must be reset via OC_ResetScanner before the initialization information
can be changed. If the scanner has already been initialized, you can call OC_GetScannerInitInfo to retrieve
current partition information.

The OCINIT structure is defined as:

typedef struct tagOCINIT
{

WORD OutputImageSize; /* size in bytes */
WORD InputImageSize; /* size in bytes */
WORD HostRetentiveDataSize; /* size in bytes */

} OCINIT;

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

scaninit
Points to the structure that contains the initialization information passed
from the application
Publication 1747-6.5.3 June 1998

OC_InitScanner Library of Routines 6–47
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
OCINIT scaninit;
int retcode;

scaninit.InputImageSize = 128; /* 64 words for input image */
scaninit.OutputImageSize = 128; /* 64 words for output image */
scaninit.HostRetentiveDataSize = 500; /* 256 words for host data area */

retcode = OC_InitScanner(Handle, &scaninit);

Name: Value: Description:

SUCCESS 0 scanner was initialized successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCMEM 3 shared memory not found

ERR_OCPAR 6 initialization failed due to invalid partition information

ERR_OCPOST 7 POST in progress or scanner POST failed, see OC_GetScannerStatus

ERR_OCREINIT 4 scanner has already been initialized

ERR_OCRESPONSE 10 scanner did not respond to request
Publication 1747-6.5.3 June 1998

OC_OpenScanner Library of Routines 6–48
OC_OpenScanner OC_OpenScanner acquires access to the scanner device and sets a unique ID that
the application uses to access the scanner in subsequent functions.

Syntax:

DOS int OC_OpenScanner(HANDLE *handle, 0, 0);

NT int OC_OpenScanner(HANDLE *handle);

Important: The two argument values of zero are ignored by the DOS API
function.They are a carryover from the Open Controller API.

Description:

This function must be called before any of the other scanner access functions can be used.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_OpenScanner(&Handle, 0, 0);

!
ATTENTION: After OC_OpenScanner has been called, OC_CloseScanner must be called before
exiting the application.

Name: Value: Description:

SUCCESS 0 scanner was opened successfully

ERR_OCOPEN 1 scanner is already open

ERR_OCMEM 3 shared memory not found
Publication 1747-6.5.3 June 1998

OC_PetHostWatchdog Library of Routines 6–49
OC_PetHostWatchdog OC_PetHostWatchdog increments the host-to-scanner watchdog register of the
scanner.

Syntax:

void OC_PetHostWatchdog(HANDLE handle);

Parameters:

Description:

OC_PetHostWatchdog must be called at time intervals less than the timeout value specified in the
OC_SetHostWatchdog function.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;

retcode = OC_PetHostWatchdog(Handle);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

Name: Value: Description:

SUCCESS 0 watchdog was updated successfully

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

6–50 Library of Routines OC_PollScanner
OC_PollScanner OC_PollScanner reads module I/O interrupt, discrete input interrupt, and end-of-
scan notification messages from the scanner.

Syntax:

int OC_PollScanner(HANDLE handle, int MsgFilter, MSGBUF *msgbuf);

Parameters:

Description:

The MSGBUF structure is defined as:

typedef struct {
BYTE MsgID;
BYTE MsgData[4];

} MSGBUF;

The MsgID member of the msgbuf structure will be one of the following values:

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

MsgFilter

If MsgFilter is:
OCMSG_DIINT
OCMSG_IOINT,
OCMSG_EOS, OC_PollScanner returns a message only
OCMSG_EOS_DMDIN of the corresponding type, if any
or
OCMSG_EOS_DMDOUT
OCMSG_ANY OC_PollScanner searches for a
message, in

the order OCMSG_DIINT, OCMSG_IOINT,
OCMSG_EOS_DMDIN,
OCMSG_EOS_DMDOUT, then
OCMSG_EOS, from any of the sources.

msgbuf A structure that contains scanner messages

This value: Means:

OCMSG_NONE No message available

OCMSG_IOINIT I/O module interrupt message, see OC_SetModuleInterrupt

OCMSG_DIINT Discrete input interrupt message, see OC_ConfigureDII

OCMSG_EOS_DMDIN
End-of-scan notification message from OC_DemandInputScan command,
see OC_EnableEOSNotify

OCMSG_EOS_DMDOUT
End-of-scan notification message from OC_DemandOutputScan
command, see OC_EnableEOSNotify

OCMSG_EOS
End-of-scan notification message for timed I/O scan, see
OC_EnableEOSNotify
Publication 1747-6.5.3 June 1998

OC_PollScanner Library of Routines 6–51
The data returned in the MsgData member array depends upon the value in MsgID:

Separate queues hold messages received from each source. The host application must call OC_PollScanner
periodically to read messages from each enabled source to prevent messages from being discarded. If a
message queue is full when a new message is received, the oldest message is discarded and the next call to
OC_PollScanner results in a return value of ERR_OCOVERRUN. The queue can hold as many as
five messages.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
MSGBUF msgbuf;
int retcode;

retcode = OC_PollScanner(Handle, OCMSG_ANY, &msgbuf);

/* Check msgbuf.MsgID for what message is available */

This MsgID: Returns:

MsgID=OCMSG_IOINT MsgData[0]slot number that generated the interrupt

MsgID=OCMSG_DIINT

MsgData[0]mask of last bit transition that generated the interrupt
MsgData[2]lowbyte of count of matches that generated the interrupt
MsgData[3]highbyte of count of matches that generated the interrupt

MsgID=OCMSG_EOS_DMDIN

MsgID=OCMSG_EOS_DMDOUT
MsgID=OC_EOS

MsgData[0]number of scans that occurred since the last end-of-scan
message of this type was read

Name: Value: Description:

SUCCESS 0 scanner was polled successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCOVERRUN 16 a message has been discarded
Publication 1747-6.5.3 June 1998

6–52 Library of Routines OC_ReadHostRetentive Data
OC_ReadHostRetentive
Data

OC_ReadHostRetentiveData reads the host-retentive-data partition of the scanner.

Syntax:

int OC_ReadHostRetentiveData(HANDLE handle, BYTE *buf, WORD offset, WORD len);

Parameters:

Description:

Data is not read past the end of the host-retentive-data partition.

It is recommended that you verify the integrity of the data stored in the host-retentive-data partition. You
can use the OC_CalculateCRC function to generate a 16-bit CRC.

Important: The jumper for the battery-backup dual-port memory is disabled by
default. You must switch the jumper to enable the battery-backup
feature.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

buf Contains the data that is read

offset

The data is read offset bytes from the beginning of the data partition
If the number of bytes from offset to the end of the partition is smaller
than len, no bytes will be read and ERR_OCPARAM is returned.

len Defines how many bytes to read

Name: Value: Description:

SUCCESS 0 host retentive data was written successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

OC_ReadHostRetentive Data Library of Routines 6–53
Example:

HANDLE Handle;
BYTE retent_data[500];
int retcode;

retcode = OC_ReadHostRetentiveData(Handle, retent_data, 0, 500);
Publication 1747-6.5.3 June 1998

6–54 Library of Routines OC_ReadInputImage
OC_ReadInputImage OC_ReadInputImage reads the current input image from the scanner.

Syntax:

int OC_ReadInputImage(HANDLE handle, WORD *inpimgcpy, int slotnum, WORD offset, WORD
len, WORD *imagebuf);

Parameters:

Description:

To guarantee that a series of calls to OC_ReadInputImage read data from a single input scan,
OC_ReadInputImage can first be called to read the entire input image into a local buffer pointed to by
imagebuf, with the inpimgcpy pointer set to NULL and slotnum set to -1. The imagebuf buffer can
then be passed as inpimgcpy in subsequent OC_ReadInputImage calls to retrieve the slot data from the
copy of the input image. This preserves input image file integrity across multiple calls to
OC_ReadInputImage.

If file integrity is not necessary, the host application can set inpimgcpy to NULL and access data directly
from shared memory.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

inpimgcpy

If inpimgcpy is:
NULL OC_ReadInputImage reads data directly from the input image

in the scanner’s shared memory.
not NULL OC_ReadInputImage reads data from inpimgcpy which

contains a copy of the scanner’s input image.

slotnum

offset

len

If slotnum is:
positive input data for that slot is read into the array pointed to by

imagebuf. Then imagebuf contains len words of input
data starting at word offset of the module in the slot. Data
will not be read past the end of the input image for the slot.

-1 the entire input image is read into the array pointed to by
imagebuf, and offset and len are ignored.

imagebuf
Must point to an array that is large enough to accept the amount of data
in the requested input image
Publication 1747-6.5.3 June 1998

OC_ReadInputImage Library of Routines 6–55
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
WORD inputdata[2];
int retcode;

retcode = OC_ReadInputImage(Handle, NULL, 6, 0, 2, inputdata);

/* Read slot 6 data, first 2 words, directly from the input image */
/* table to inputdata buffer */

Name: Value: Description:

SUCCESS 0 input image was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

6–56 Library of Routines OC_ReadIOConfigFile
OC_ReadIOConfigFile OC_ReadIOConfigFile reads the configuration data that is already stored in the
DOS file created using OC_WriteIOConfigFile.

Syntax:

int OC_ReadIOConfigFile(OCIOCFG *iocfg, char *filename);

Parameters:

Description:

If G file data is included in the configuration file, OC_ReadIOConfigFile allocates memory for the data
and initializes the G data values to point to the allocated memory. The host application should release the
allocated memory via the free() function when it is no longer needed.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

OCIOCFG iocfg;
int retcode;

/* DOS file named RACK1.CFG, is storing the rack configuration info. */

retcode = OC_ReadIOConfigFile(&iocfg, ”RACK1.CFG”);

/* Use OC_DownloadIOConfiguration() to download the information */

Parameter: Description:

iocfg
A structure that contains a copy of the configuration data that is in
filename

filename References a file that was created using OC_WriteIOConfigFile

Name: Value: Description:

SUCCESS 0 I/O configuration file was read successfully

ERR_OCFILERROR 19 error encountered while opening or reading the file
Publication 1747-6.5.3 June 1998

OC_ReadModuleFile Library of Routines 6–57
OC_ReadModuleFile OC_ReadModuleFile reads a data file from a module.

Syntax:

int OC_ReadModuleFile(HANDLE handle, BYTE ftype, WORD *mfile, int slotnum, WORD offset,
WORD len);

Parameters:

Description:

This function accesses an internal data file of the selected module. I/O scanning is blocked while this access
takes place.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

ftype

Defines the module type as:
FILTYP_M0 M0 file
FILTYP_M1 M1 file
FILTYP_G G file

mfile

Buffer file that contains data read from the module at slotnum
The data in mfile is read from the module starting at word offset.
This function does not read data past the end of the module file for the slot.

slotnum Must be a valid slot number

offset Must be valid word number within module file

len
Number of words read from the module located at slotnum on the
scanner into the buffer mfile

Name: Value: Description:

SUCCESS 0 file was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

6–58 Library of Routines OC_ReadModuleFile
Example:

HANDLE Handle;
WORD filedata[2];
int retcode;

retcode = OC_ReadModuleFile(Handle, FILTYP_M1, filedata, 6, 3, 2);

/* Reads words 3 and 4 from module in slot 6. */
Publication 1747-6.5.3 June 1998

OC_ReadOutputImage Library of Routines 6–59
OC_ReadOutputImage OC_ReadOutputImage reads the current output image from the scanner.

Syntax:

int OC_ReadOutputImage(HANDLE handle, WORD *outimgcpy, int slotnum,
WORD offset, WORD len, WORD *imagebuf);

Parameters:

Description:

Since the scanner never changes data in the output image, it is not necessary to copy the image, as with the
OC_ReadInputImage function, to preserve file integrity. It is supported, however, to provide a consistent
interface.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

outimgcpy

If outimgcpy is:
NULL OC_ReadOutputImage reads data directly from the output

image in the scanner’s shared memory.
not NULL OC_ReadInputImage reads data from outimgcpy which

contains a copy of the scanner’s output image.

slotnum

offset

len

If slotnum is positive, the output image for that slot is read into the array
pointed to by imagebuf. Then imagebuf is filled with len words of
output data starting at word offset of the module in the slot.
If slotnum is -1, the entire output image is read into the array pointed
to by imagebuf, and offset and len are ignored.

imagebuf
Must point to an array that is large enough to accept the amount of data
in the requested output image

Name: Value: Description:

SUCCESS 0 output image was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

6–60 Library of Routines OC_ReadOutputImage
Example:

HANDLE Handle;
WORD outputdata[2];
int retcode;

retcode = OC_ReadOutputImage(Handle, NULL, 6, 0, 2, outputdata);

/* Read slot 6 data, first 2 words, directly from the output image */
/* table to outputdata buffer */
Publication 1747-6.5.3 June 1998

OC_ReadSRAM Library of Routines 6–61
OC_ReadSRAM OC_ReadSRAM reads data from the battery-backed user memory.

Syntax:

int OC_ReadSRAM(HANDLE Handle, BYTE *bufptr, DWORD offset, DWORD length);

Description:

The battery-backed memory may be used to store important data that needs to be preserved in the event of
a power failure. The size of the available memory in bytes may be obtained using OC_GetDeviceInfo.

Important: It is recommended that the integrity of data stored in the user memory
be verified by some means. The OC_CalculateCRC function may be
used to generate a 16-bit CRC that may be used for this purpose.

handle must be a valid handle returned from OC_OpenScanner. bufptr points to a buffer to be receive
the data. offset specifies the offset within the memroy to begin reading. length specifiies the number
of bytes to be read.

If offset +length points past the end of the memory, no bytes will be written and ERR_OCPRAM
will be returned.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Name: Description:

SUCCESS data was read successfully

ERR_OCACCESS handle does not have access to scanner

ERR_OCPARAM offset+length points past the end of the memory
Publication 1747-6.5.3 June 1998

6–62 Library of Routines OC_ReadSRAM
Example:

Byte buf[100]; /*buffer of 100 bytes of important data*/

HANDLE handle;

Word crc, crc_saved;

/* Read 100 bytes of data from offset 0 in SRAM */

OC_ReadSRAM(handle, buf, 0, 100);

/* Calculate CRC */

OC_CalculateCRC(buf, 100, &crc);

/* Read saved CRC at offset 100 in SRAM */

OC_ReadSRAM(handle, &crc_saved, 100, 2);

/* Check CRC */

if (crc != saved_crc)

printf(“ERROR: Data is corrupted.\n”);
Publication 1747-6.5.3 June 1998

OC_ResetScanner Library of Routines 6–63
OC_ResetScanner OC_ResetScanner generates a temporary hard reset to the scanner.

Syntax:

int OC_ResetScanner(HANDLE handle, int mode);

Parameters:

Description:

After the reset is generated, the scanner begins to execute its POST.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_ResetScanner(Handle, OCWAIT);

!
ATTENTION: This call stops scanning and resets
outputs.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
OCNOWAIT OC_ResetScanner returns after releasing the reset

signal to the scanner.
OCWAIT OC_ResetScanner returns after POST is completed.

Name: Value: Description:

SUCCESS 0 scanner was reset successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCPOST 7 scanner POST failed
Publication 1747-6.5.3 June 1998

6–64 Library of Routines OC_SetForces
OC_SetForces OC_SetForces installs and removes input and output forces to the scanner.

Syntax:

int OC_SetForces(HANDLE handle, FORCEDATA *forcedata)

Parameters:

Description:

If the result of OC_SetForces removes all I/O forces, the scanner disables forces. If any I/O forces are later
installed, OC_EnableForces must be called to re-enable forces.

The FORCEDATA structure is defined as:

typedef struct tagFORCEDATA {
BYTE SlotNum; /* Slot Number of local I/O or 1747-SN module (1-30)*/
WORD WordOffset; /* Word Offset in I/O image */
BYTE IOType; /* Selects Input or Output Image */
WORD ForceMask; /* Install/Remove bitmask */
WORD ForceVal; /* Install value bitmask */

} FORCEDATA;

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

forcedata Defines the inputs and outputs to force.

This value: Means:

SlotNum

WordOffset

SlotNum and WordOffset select the word of I/O that contains the bits
to be forced

IOType IOType must be FORCE_INPUTS or FORCE_OUTPUTS

ForceMask

ForceVal

All 16 bits of the word are installed/removed according to ForceMask
and ForceVal
Each bit in ForceMask that is set to 0 will have its force removed. Each
bit in ForceMask that is set to 1 will have its force installed. For each bit
that has its force installed, the corresponding bit in ForceVal determines
the state of the force. For bits that have their force removed, the
corresponding bit in ForceVal is ignored.
Publication 1747-6.5.3 June 1998

OC_SetForces Library of Routines 6–65
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE handle;
FORCEDATA forces;
int retcode;

/* Force low byte of input word 1 of slot 6 to 0x5A */
forces.SlotNum = 6;
forces.WordOffset = 1;
forces.IOType = FORCE_INPUTS;
forces.ForceMask = 0x00FF;
forces.ForceVal = 0x005A;

retcode = OC_SetForces(handle, &forces);

/* Must call OC_EnableForces() to actually apply the force data */

Name: Value: Description:

SUCCESS 0 I/O forces were configured successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

6–66 Library of Routines OC_SetHostWatchdog
OC_SetHostWatchdog OC_SetHostWatchdog sets the host-to-scanner watchdog delay and mode of the
scanner.

Syntax:

int OC_SetHostWatchdog(HANDLE handle, int mode, WORD delay);

Parameters:

Description

Once the Host Watchdog is enabled, the host application must call OC_PetHostWatchdog more often than
the time specified as the watchdog timeout. If the host application does not call OC_PetHostWatchdog for
a time longer than the watchdog timeout, then the action specified by mode is performed.Return Value

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetHostWatchdog(Handle, WATCHDOG_IDLE, 10);

/* Watchdog times out in 1 second and places scanner in idle mode */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
WATCHDOG_IGNORE the host-to-scanner watchdog is

disabled (default)
WATCHDOG_IDLE a watchdog timeout causes the scanner to fault.

The status LED is set to flashing red, the I/O is
reset, I/O scanning stops, and internal scanner
error of 0x0B is set, and the major error code is
set to 0x40. Use OC_ClearFault before the
scanner can be set to Scan mode

delay
Specifies the watchdog timeout in multiples of 100ms and can have any
value from 1 (100ms) to 65535 (6553.5s).

Name: Value: Description:

SUCCESS 0 host watchdog was set successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

OC_SetInputUpdate Mode Library of Routines 6–67
OC_SetInputUpdate
Mode

OC_SetInputUpdateMode controls how the scanner updates inputs.

Syntax:

int OC_SetInputUpdateMode(HANDLE handle, int mode);

Parameters:

Description:

This function does not affect output image scanning.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetInputUpdateMode(Handle, INUPD_NEVER);

/* Must use OC_DemandInputScan() function to obtain new input data */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
INUPD_NEVER the scanner does not scan inputs unless explicitly

requested by the OC_DemandInputScan function.
INUPD_ALWAYS the scanner continuously updates inputs on

every scan.
By default, the input update mode is INUPD_ALWAYS. A change in status
of the input update mode takes effect at the start of the next scan.

Name: Value: Description:

SUCCESS 0 conditional scan was set successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized; see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

6–68 Library of Routines OC_SetIOIdleState
OC_SetIOIdleState OC_SetIOIdleState controls the state of I/O when the scanner goes from Scan mode
to Idle mode.

Syntax:

int OC_SetIOIdleState(HANDLE handle, int mode);

Parameters:

Description:

The I/O will always be reset in the case of a fault.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetIOIdleState(Handle, IDLESTATE_HOLD);

/* Outputs will remain in last state when scanner goes to idle mode */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
IDLESTATE_HOLD module I/O’s maintain their last state.
IDLESTATE_RESET module I/O’s are reset by the scanner.
The default I/O idle state is IDLESTATE_RESET.

Name: Value: Description:

SUCCESS 0 I/O state was changed successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized; see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

OC_SetModuleInterrupt Library of Routines 6–69
OC_SetModuleInterrupt OC_SetModuleInterrupt enables, disables, or acknowledges the module interrupt
for the slot slotnum on the scanner.

Syntax:

int OC_SetModuleInterrupt(HANDLE handle, int slotnum, int mode);

Parameters:

Description:

When a module interrupt is received, the scanner generates a module interrupt message that the host
application can read by calling the OC_PollScanner function. After retrieving the module interrupt message,
the host application should immediately acknowledge the module interrupt and then service the module
interrupt message. The module interrupt must be acknowledged before another can be received from that
module.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetModuleInterrupt(Handle, 6, IOINT_ENABLE);

/* Slot 6 module now enabled to generate module interrupts. */
/* Use OC_PollScanner() to check for Module Interrupt messages. */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

slotnum Must be a valid slot number

mode

If mode is:
IOINT_DISABLE the module interrupt is disabled (default)
IOINT_ENABLE the module interrupt is enabled
IOINT_ACK the module interrupt is acknowledged.

Name: Value: Description:

SUCCESS 0 module interrupt was processed successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

6–70 Library of Routines OC_SetOutputUpdate Mode

 time

utput
OC_SetOutputUpdate
Mode

OC_SetOutputUpdateMode controls how the scanner updates real outputs from the
Output Image.

Syntax:

int OC_SetOutputUpdateMode(HANDLE handle, int mode);

Parameters:

Description:

This function does not affect input image scanning.

Setting the output update mode to OUTUPD_NEVER allows the host application to read the input image
and perform logic to determine the initial state of outputs. Once the output image is written with the initial
state data, the output update mode can be changed to allow updating of the outputs.

Setting the output update mode to OUTUPD_CHANGE allows the host application to signal the scanner
to write outputs by calling OC_WriteOutputImage. This setting allows the scanner’s minimum scan
to be reduced (since it is only scanning inputs most of the time), and is provided as a performance
enhancement.

Setting the output update mode to OUTUPD_ALWAYS forces the scanner to write outputs from the o
image on every scan.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
OUTUPD_NEVER the scanner does not write outputs from the output

image unless explicitly requested by the
OC_DemandOutputScan function

OUTUPD_CHANGE the scanner writes outputs only when the scanner
output image is written via OC_WriteOutputImage,
but does not continuously update outputs from the
output image every scan

OUTUPD_ALWAYS the scanner continuously updates outputs from the
output image on every scan.

By default, the output update mode is OUTUPD_NEVER. A change in status
of the output update mode will take effect at the start of the next scan.
Publication 1747-6.5.3 June 1998

OC_SetOutputUpdate Mode Library of Routines 6–71
Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetOutputUpdateMode(Handle, OUTUPD_NEVER);

/* Must use OC_DemandOutputScan() function to send new output data */

Name: Value: Description:

SUCCESS 0 conditional scan was set successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

6–72 Library of Routines OC_SetScanMode
OC_SetScanMode OC_SetScanMode changes the scan mode of the scanner.

Syntax:

int OC_SetScanMode(HANDLE handle, int mode);

Parameters:

Description:

The scanner must be properly configured before going to Scan mode.

OC_SetScanMode will fail if there are any unread extended errors or faults. Call OC_GetExtendedError to
extract all extended errors and call OC_ClearFault to clear any faults before calling OC_SetScanMode.

Before the scanner changes to Scan mode, it compares the downloaded I/O configuration to the racks and
I/O modules actually installed. If there are any problems, an extended error is generated and
OC_SetScanMode returns an error. If the scanner finds no problems, the scanner is in Scan mode when this
function returns.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetScanMode(Handle, SCAN_RUN); /* Scan I/O */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

If mode is:
SCAN_IDLE the scanner changes to Idle mode and stops
scanning I/O
SCAN_RUN the scanner changes to Scan mode and begins

scanning I/O.

Name: Value: Description:

SUCCESS 0 scan mode was set successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCFAULT 13 scanner is faulted

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request
Publication 1747-6.5.3 June 1998

OC_SetScanTime Library of Routines 6–73
OC_SetScanTime OC_SetScanTime sets the I/O scan time and I/O scan interval of the scanner.

Syntax:

int OC_SetScanTime(HANDLE handle, int mode, int time);

Parameters:

Description:

A scan time change will take effect when the scanner transitions from Idle mode to Scan mode.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetScanTime(Handle, SCAN_PERIODIC, 20);

/* Scan set to start every 5 msec. */

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

mode

time

If mode is:
SCAN_PERIODIC time determines the frequency of I/O scans in

multiples of 250us and must contain a value
between 1 and 255.

SCAN_DELAYED time determines the delay between I/O scans in
multiples of 10us and must contain a value
between 1 and 256.

The default mode is SCAN_PERIODIC and the default time is 10 if
OC_SetScanTime is not used to change the scan time.

Name: Value: Description:

SUCCESS 0 scan time was set successfully

ERR_OCACCESS 2 handle does not have access to the scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

6–74 Library of Routines OC_SetUserLEDState
OC_SetUserLEDState OC_SetUserLEDState sets the state of a user-defined LED

Syntax:

int OC_SetUserLEDState(HANDLE handle, int lednum, int state);

Parameters:

Description:

The application can use the four user LEDs for any purpose.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library.

Example:

HANDLE Handle;
int retcode;

retcode = OC_SetUserLEDState(Handle, 1, LED_GREEN_SOLID);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

lednum
Must be a value from 1 to 4, which corresponds to LED1, LED2, LED3, and
LED4

ledstate

If ledstate is:
LED_OFF LED is off
LED_RED_SOLID LED is on, red solid
LED_GREEN_SOLID LED is on, green solid
LED_RED_FLASH LED is on, red flashing (LED1 and LED2
only)
LED_GREEN_FLASH LED is on, green flashing (LED1 and LED2
only)

Name: Value: Description:

SUCCESS 0 LED was updated successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

OC_SetupPowerFail Action Library of Routines 6–75
OC_SetupPowerFail
Action

OC_SetupPowerFailAction registers the action to be taken when a power fail
interrupt is received from the scanner.

Syntax:

int OC_SetupPowerFailAction(HANDLE handle, BYTE *bufptr, WORD offset, WORD length, void
(*callback)());

Parameters:

Description:

You can configure the power failure action in four ways:

• No action (default); the power failure interrupt is ignored (bufptr is NULL; callback is NULL)

• Copy a block of data to the host retentive data partition in dual port RAM (bufptr points to the data
to save; callback is NULL)

• Execute a user callback function (bufptr is NULL; callback points to the routine to call)

• Copy a block of data and execute a callback function (bufptr points to the data to save; callback
points to the routine to call)

A system typically has at least 10 milliseconds, and possibly as much as 50 milliseconds or more between
the power fail interrupt and the loss of power. The duration of this interval is a function of the power supply
and system configuration, and it varies from system to system. You might need to experiment to determine
the typical value for a particular system.

Data is copied to the host retentive data partition at the rate of approximately 1K bytes per millisecond.

Declare bufptr as static if the OC_SetupPowerFail function is used other than in main(); otherwise
random data will be sent to the host retentive data area.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

bufptr

If bufptr is:
NULL no data is copied (default)
Not NULL at power fail length bytes of data are copied from

bufptr to the host retentive data partition starting at
offset.

offset Specifies the offset within the host retentive data partition to begin copying

length

Number of bytes to copy
If length points beyond the end of the host retentive data partition, it is
truncated

callback

If callback is:
NULL no callback function is executed (default)
Not NULL the power fail interrupt routine calls this function after

copying the data to the host retentive data partition
(if configured)
Publication 1747-6.5.3 June 1998

6–76 Library of Routines OC_SetupPowerFail Action
Return Value:

Considerations:

Supported in the DOS API library only.

Example:

This example is for DOS only.

HANDLE Handle;
BYTE buffer1[100];
BYTE buffer2[100];
int retcode;

void PowerFailSave(void) /* power fail callback routine */
{

len = 100;
OC_WriteRtcSRAM(buffer2, 0, &len); /* Put data in protected area */

}

retcode = OC_SetupPowerFailAction(Handle, buffer1, 0, 100, PowerFailSave);

Name: Value: Description:

SUCCESS 0 power fail action was registered successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains invalid value
Publication 1747-6.5.3 June 1998

OC_WaitForDII Library of Routines 6–77
OC_WaitForDII Blocks the calling thread until a DII interrupt is received from the scanner or
msTimeout milliseconds have elapsed.

Syntax:

int OC_WaitForDII(HANDLE handle, DWORD msTimeout)

Parameters:

Description:

If a DII has been received since the last OCMSG_DIINT message was retrieved with the OC_PollScanner
function, OC_WaitForDII returns SUCCESS immediately.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Example:

HANDLE handle;
intrc;
MSGBUF diiMSG

/* Wait for 10 seconds for a DII */
rc = OC_WaitForDII(handle, 10000);
switch(rc) {

case SUCCESS:/* got a DII */
/* fetch the DII message */

OC_PollScanner (handle,OCMSG_DIINT,&diiMSG);
break;
case ERR_OCRESPONSE:/* timed out */

printf(“\nTimed out waiting for DII\n”);
break;
default;

printf(“\nError!\n”);
break;

}

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

msTimeout
Specifies the number of milliseconds to wait
Set to INFINITE to wait forever

Name: Value: Description:

SUCCESS 0 a DII was received

ERR_RESPONSE 10 msTimeout milliseconds elapsed without a DII

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

6–78 Library of Routines OC_WaitForEos
OC_WaitForEos Blocks the calling thread until an end-of-scan (EOS) notification is received from
the scanner or msTimeout milliseconds have elapsed.

Syntax:

int OC_WaitForEos(HANDLE handle, DWORD msTimeout)

Parameters:

Description:

If an EOS message has been received since the last OCMSG_EOS message was retrieved with the
OC_PollScanner function, OC_WaitForEos returns SUCCESS immediately.

You can use this function to synchronize a control application with the I/O scan. See the
OC_EnableEOSNotify function.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

msTimeout
Specifies the number of milliseconds to wait
Set to INFINITE to wait forever

Name: Value: Description:

SUCCESS 0 an EOS message was received

ERR_RESPONSE 10 msTimeout milliseconds elapsed without an EOS

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

OC_WaitForEos Library of Routines 6–79
Example:

HANDLE handle;
intrc;
MSGBUF eosMSG

/* Wait for 10 seconds for the EOS */
rc = OC_WaitForEos(handle, 10000);
switch(rc) {

case SUCCESS:/* got EOS*/
/* reset the EOS event*/

OC_PollScanner (handle,OCMSG_EOS,&eosMSG);
break;
case ERR_OCRESPONSE:/* timed out */

printf(“\nTimed out waiting for EOS\n”);
break;
default;

printf(“\nError!\n”);
break;

}

Publication 1747-6.5.3 June 1998

6–80 Library of Routines OC_WaitForEosDmdIn
OC_WaitForEosDmdIn Blocks the calling thread until a demand input end-of-scan (EOS) notification is
received from the scanner or msTimeout milliseconds have elapsed.

Syntax:

int OC_WaitForEosDmdIn(HANDLE handle, DWORD msTimeout)

Parameters:

Description:

If a demand input EOS message has been received since the last OCMSG_EOS_DMDIN message was
retrieved with the OC_PollScanner function, OC_WaitForEosDmdIn returns SUCCESS immediately.

You can use this function to synchronize a control application with the I/O scan. See the
OC_EnableEOSNotify and OC_DemandInputScan functions.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

msTimeout
Specifies the number of milliseconds to wait
Set to INFINITE to wait forever

Name: Value: Description:

SUCCESS 0 demand input EOS message was received

ERR_RESPONSE 10 msTimeout milliseconds elapsed without an EOS

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

OC_WaitForEosDmdIn Library of Routines 6–81
Example:

HANDLE handle;
intrc;
MSGBUF eosMSG

/* Request an input scan, but don’t wait */
OC_DemandInputScan(handle, OCNOWAIT);

/* Could have other code here */

/* Wait 1 second for the EOS */
rc = OC_WaitForEosDmdIn(handle, 1000);
switch(rc) {

case SUCCESS:/* got EOS*/
/* reset the EOS_DMDIN event*/

OC_PollScanner (handle,OCMSG_EOS_DMDIN,&eosMSG);
/* do logic, etc. synchronized with the I/O scan */

break;
case ERR_OCRESPONSE:/* timed out */

printf(“\nTimed out waiting for EOS\n”);
break;
default;

printf(“\nError!\n”);
break;

}

Publication 1747-6.5.3 June 1998

6–82 Library of Routines OC_WaitForEosDmdOut
OC_WaitForEosDmdOut Blocks the calling thread until a demand output end-of-scan (EOS) notification is
received from the scanner or msTimeout milliseconds have elapsed.

Syntax:

int OC_WaitForEosDmdOut(HANDLE handle, DWORD msTimeout)

Parameters:

Description:

If a demand output EOS message has been received since the last OCMSG_EOS_DMDOUT message was
retrieved with the OC_PollScanner function, OC_WaitForEosDmdOut returns SUCCESS immediately.

You can use this function to synchronize a control application with the I/O scan. See the
OC_EnableEOSNotify and OC_DemandOutputScan functions.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

msTimeout
Specifies the number of milliseconds to wait
Set to INFINITE to wait forever

Name: Value: Description:

SUCCESS 0 demand output EOS message was received

ERR_RESPONSE 10 msTimeout milliseconds elapsed without an EOS

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

OC_WaitForEosDmdOut Library of Routines 6–83
Example:

HANDLE handle;
intrc;
MSGBUF eosMSG

/* Request an output scan, but don’t wait */
OC_DemandOutputScan(handle, OCNOWAIT);

/* Could have other code here */

/* Wait 1 second for the EOS */
rc = OC_WaitForEosDmdOut(handle, 1000);
switch(rc) {

case SUCCESS:/* got EOS*/
/* reset the EOS_DMDOUT event*/

OC_PollScanner (handle,OCMSG_EOS_DMDOUT,&eosMSG);
/* do logic, etc. sychronized with the I/O scan */

break;
case ERR_OCRESPONSE:/* timed out */

printf(“\nTimed out waiting for EOS\n”);
break;
default;

printf(“\nError!\n”);
break;

}

Publication 1747-6.5.3 June 1998

6–84 Library of Routines OC_WaitForExtError
OC_WaitForExtError Blocks the calling thread until an extended error is received from the scanner or
msTimeout milliseconds have elapsed.

Syntax:

int OC_WaitForExtError(HANDLE handle, DWORD msTimeout)

Parameters:

Description:

If an extended error has been received since the last extended error message was retrieved with the
OC_GetExtendedError function, OC_WaitForExtError returns SUCCESS immediately.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Example:

HANDLE handle;
intrc;
OCEXTERRexterr

/* Error handler thread */
while(1) {/* loop forever */

OC_WaitForExtError(handle, INFINITE);
/* fetch the error data */
OC_GetExtendedError(handle, &exterr);
/*handle the error */

}

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

msTimeout
Specifies the number of milliseconds to wait
Set to INFINITE to wait forever

Name: Value: Description:

SUCCESS 0 an extended error occurred

ERR_RESPONSE 10 msTimeout milliseconds elapsed without an extended error

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

OC_WaitForIoInt Library of Routines 6–85
OC_WaitForIoInt Blocks the calling thread until a module interrupt is received from the scanner or
msTimeout milliseconds have elapsed.

Syntax:

int OC_WaitForIoInt(HANDLE handle, DWORD msTimeout)

Parameters:

Description:

If a module interrupt has been received since the last OCMSG_IOINT message was retrieved with the
OC_PollScanner function, OC_WaitForIoInt returns SUCCESS immediately.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Example:

HANDLE handle;
intrc;
MSGBUF mintMSG

/* Wait for 10 seconds for a module interrupt*/
rc = OC_WaitForIoInt(handle, 10000);
switch(rc) {

case SUCCESS:/* got a module interrupt*/
/* fetch the module interrupt message */

OC_PollScanner (handle,OCMSG_IOINT,&mintMSG);
/* handle the module interrupt */

break;
case ERR_OCRESPONSE:/* timed out */

printf(“\nTimed out waiting for module interrupt\n”);
break;
default;

printf(“\nError!\n”);
break;

}

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

msTimeout
Specifies the number of milliseconds to wait
Set to INFINITE to wait forever

Name: Value: Description:

SUCCESS 0 a module interrupt was received

ERR_RESPONSE 10 msTimeout milliseconds elapsed without a module interrupt

ERR_OCACCESS 2 handle does not have access to scanner
Publication 1747-6.5.3 June 1998

6–86 Library of Routines OC_WriteHostRetentive Data
OC_WriteHostRetentive
Data

OC_WriteHostRetentiveData writes data to the host-retentive-data partition of the
scanner.

Syntax:

int OC_WriteHostRetentiveData(HANDLE handle, BYTE *buf, WORD offset, WORD len);

Parameters:

Description:

Data is not written past the end of the host-retentive-data partition.

It is recommended that you verify the integrity of the data stored in the host-retentive-data partition. You
can use the OC_CalculateCRC function to generate a 16-bit CRC.

Data written to the host retentive data partition of the shared memory is battery-backed, and will be retained
if power is removed from the rack, as long as the battery voltage is good.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handle;
BYTE retent_data[500];
int retcode;

retcode = OC_WriteHostRetentiveData(Handle, retent_data, 0, 500);

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

buf Contains the data that is read

offset

The data is written offset bytes from the beginning of the data partition
If the number of bytes from offset to the end of the partition is smaller
than len, no bytes are written and ERR_OCPARAM is returned.

len Defines how many bytes to write

Name: Value: Description:

SUCCESS 0 host retentive data was written successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

ERR_OCPARAM 8 parameter contains an invalid value
Publication 1747-6.5.3 June 1998

OC_WriteIOConfigFile Library of Routines 6–87
OC_WriteIOConfigFile OC_WriteIOConfigFile writes the configuration data contained in the iocfg
structure to the file named filename.

Syntax:

int OC_WriteIOConfigFile(OCIOCFG *iocfg, char *filename);

Parameters:

Description:

Configuration files created by OC_WriteIOConfigFile can be read by OC_ReadIOConfigFile.

The OCIOCFG structure is defined as:

typedef struct tagOCIOCFG
{

BYTE Rack1Size; /* number of slots in Rack 1 */
BYTE Rack2Size; /* number of slots in Rack 2 */
BYTE Rack3Size; /* number of slots in Rack 3 */
OCSLOTCFGSlotCfg[OCMAXSLOT];/* configuration for each slot */

} OCIOCFG;

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

OCIOCFG‘ iocfg
int retcode;

/* Either OC_CreateIOConfiguration() or OC_GetIOConfiguration() were */
/* called previously to fill in ’iocfg’ structure */

retcode = OC_WriteIOConfigFile(&iocfg, ”RACK1.CFG”);

Parameter: Description:

iocfg
A structure that contains the configuration data that is to be written to
filename

filename
References the file to write
If filename does not exist, it is created.

Name: Value: Description:

SUCCESS 0 I/O configuration file was written successfully

ERR_OCFILERROR 19 error encountered while opening or writing the file
Publication 1747-6.5.3 June 1998

6–88 Library of Routines OC_WriteModuleFile
OC_WriteModuleFile OC_WriteModuleFile writes a data file to a module.

Syntax:

int OC_WriteModuleFile(HANDLE handle, BYTE ftype, WORD *mfile, int slotnum, WORD
offset, WORD len);

Parameters:

Description:

This function accesses an internal data file of the selected module. I/O scanning is blocked while this access
takes place.

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

ftype

Defines the module type as:
FILTYP_M0 M0 file
FILTYP_M1 M1 file
FILTYP_G G file

mfile

Buffer file that contains data read from the module at slotnum
The data in mfile is written to the module starting at word offset.
This function does not write data past the end of the module file for the slot.

slotnum Must be a valid slot number

offset Must be valid word number within module file

len
Number of words written from the module located at slotnum on the
scanner into the buffer mfile

Name: Value: Description:

SUCCESS 0 file was read successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

OC_WriteModuleFile Library of Routines 6–89
Example:

HANDLE Handle;
WORD filedata[2];
int retcode;

filedata[0] = 0x55AA;
filedata[1] = 0xAA55;

retcode = OC_WriteModuleFile(Handle, FILTYP_M0, filedata, 6, 3, 2);

/* Writes words 3 and 4 from module in slot 6 */
Publication 1747-6.5.3 June 1998

6–90 Library of Routines OC_WriteOutputImage

ner’s
Image.
OC_WriteOutputImage OC_WriteOutputImage updates the output image on the scanner.

Syntax:

int OC_WriteOutputImage(HANDLE handle, WORD *outimgcpy, int slotnum,
WORD offset, WORD len, WORD *imagebuf);

Parameters:

Description:

To guarantee that changes to the output image resulting from a series of calls to OC_WriteOutputImage are
posted to the I/O modules in a single output scan, OC_WriteOutputImage can be called to modify a local
copy of the output image, then finally called to write the entire copy of the output image to the scan
shared memory. This preserves output image file integrity across multiple calls to OC_WriteOutput

Return Value:

Considerations:

Supported in the DOS API library and the Windows NT API library

Parameter: Description:

handle Must be a valid handle returned from OC_OpenScanner

outimgcpy

If outimgcpy is:
NULL OC_WriteOutputImage writes data directly to the output

image in the scanner’s shared memory; if the update mode
is OUTUPD_CHANGE, the scanner is signalled to update
the outputs

not NULL OC_WriteOutputImage writes data to outimgcpy; the
output image data is not affected

If file integrity is not necessary, the host application can set outimgcpy
to NULL.

slotnum

offset

len

If slotnum is positive, the output image for that slot is written from the
array pointed to by imagebuf. Then len words of output data starting
at word offset are written to the module in the slot, and will not write
past the end of the output image for the slot.
If slotnum is -1, the entire output image is written from the array pointed
to by imagebuf, and offset and len are ignored.

imagebuf
Must point to an array that is large enough to accept the amount of data
from the requested output image

Name: Value: Description:

SUCCESS 0 output image was written successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid
Publication 1747-6.5.3 June 1998

OC_WriteOutputImage Library of Routines 6–91
Example:

HANDLE Handle;
WORD outputdata[2];
int retcode;

outputdata[0] = 0x55AA;
outputdata[1] = 0xAA55;

retcode = OC_WriteOutputImage(Handle, NULL, 6, 0, 2, outputdata);
Publication 1747-6.5.3 June 1998

6–92 Library of Routines OC_WriteSRAM
OC_WriteSRAM OC_WriteSRAM wires data to the battery-backed user memory

Syntax:

int OC_WriteSRAM(HANDLE Handle, BYTE*bufptr, DWORD offset, DWORD length);

Description:

The battery-backed memory may be used to store important data that needs to be preserved in the event of
a power failure. The size of the available memory in bytes may be obtained using OC_GetDeviceInfo.

Important: It is recommended that the integrity of data stored in the user memory
be verified by some means. The OC_CalculateCRC function may be
used to generate a 16-bit CRC that may be used for this purpose.

handle must be a valid handle returned from OC_OpenScanner. bufptr points to the data to be written.
offset specifies the offset within the memroy to begin writing. length specifiies the number of bytes
to be written.

If offset +length points past the end of the memory, no bytes will be written and ERR_OCPRAM
will be returned.

Return Value:

Considerations:

Supported in the Windows NT API library only.

Example:

Byte buf[100]; /*buffer of important data*/

Word crc;

HANDLE handle;

/* Save 100 bytes of data to offset 0 in SRAM */

OC_WriteSRAM(handle, buf, 0, 100);

/* Calculate CRC */

OC_CalculateCRC(buf, 100, &crc);

/* Write data CRC to offset 100 in SRAM */

OC_WriteSRAM(handle, &crc, 100, 2);

Name: Description:

SUCCESS data was written successfully

ERR_OCACCESS handle does not have access to scanner

ERR_OCPARAM offset+length points past the end of the memory
Publication 1747-6.5.3 June 1998

Appendix A

Error Codes

Introduction This appendix describes the error code data.

Error Code
Returned by API
Functions

Most of the API functions return values (see chapter 6). These are the values
returned by the API functions to indicate success or possible error conditions
(but not all are returned by each function):

Name: Return Value: Description:

SUCCESS 0 function returned successfully

ERR_OCACCESS 2 handle does not have access to scanner

ERR_OCEXTERR 11 scanner responded with an extended error message

ERR_OCFAULT 13 request denied because scanner faulted

ERR_OCFILERROR 19 error occurred while reading/writing disk file

ERR_OCINIT 5 scanner has not been initialized

ERR_OCIOCFG 9 I/O configuration is invalid

ERR_OCMEM 3 shared memory cannot be found

ERR_OCNOFORCES 15 no forces installed, cannot enable forces

ERR_OCOPEN 1 scanner already open

ERR_OCOUTOFMEM 17 memory allocate failed

ERR_OCOVERRUN 16 DII, I/O initialization, or error report message overrun

ERR_OCPAR 6 initialization failed due to invalid partition information

ERR_OCPARAM 8 parameter contains invalid value

ERR_OCPOST 7 scanner POST failure

ERR_OCREINIT 4 scanner has already been initialized

ERR_OCRESPONSE 10 scanner did not respond to request successfully

ERR_OCSCANCFG 14 scanner I/O configuration not downloaded

ERR_OCSLOT 12 slot number is invalid

ERR_OCUNKNOWN 18 unknown module type

ERR_OCNOTSUPP 20 function not supported on this platform
Publication 1747-6.5.3 June 1998

A–2 Error Codes
Extended Error
Codes

The OC_GetExtendedError function returns error information in a structure of
type OCEXTERR. This structure is five bytes in length and contains this
information:

Table A.1
OCEXTERR Structure

When the scanner encounters an error, the extended error code and associated slot
(if any) is written to the extended error code and slot number fields. Error-dependent
information is written to the remaining field and the scanner goes to Idle mode. The
extended error codes that can be reported by the scanner are:

Table A.2
Extended Error Codes

Buffer Offset: Bytes: Description:
0 1 extended error code
1 1 associated slot or file number

2 3 error code data

Extended Error Code: Description:
0x00 No errors present
0x01 Downloaded directory file is invalid
0x08 Internal software error
0x12 Downloaded configuration is corrupted
0x21 Power fail on expansion rack occurred
0x2E Invalid DII input slot
0x40 Host Watchdog Timeout
0x50 Data error while accessing module
0x51 Stuck PINT error
0x52 Module is missing
0x53 Module detected in unused slot
0x54 Module type does not match downloaded configuration
0x55 Module I/O mix does not match downloaded configuration
0x56 Rack type does not match downloaded configuration
0x57 Specialty I/O module lock memory command timeout
0x58 Specialty I/O module fault
0x59 Specialty I/O module command timeout
0x5A Module interrupt problem
0x5B G file configuration error
0x5C M0/M1 file configuration error
0x5D Unsupported interrupt service requested by module
0x5E I/O driver error

0x60 - 0x8F Module specific errors (see I/O module documentation)
0x90 MINT occurred on disabled slot
0x91 PINT occurred on disabled slot
0x93 Unsupported module error
0x94 Module has been inserted or reset
0xF0 Internal scanner error
Publication 1747-6.5.3 June 1998

Error Codes A–3
The error code data provides information specific to the cause of all extended errors,
except 0xF0 (see Table A.3). The first byte of the error code data contains a
subsystem identifier.

Table A.3
First Byte of Error Code Data - Scanner Communications Subsystem Error Codes

The second byte of the error code data provides details about the subsystem
identifier.

Table A.4
Second Byte of Error Code Data - Scanner Communications Subsystem Error Codes

The third byte of the Error Code Data provides details about the Subsystem
Error Codes.

Table A.5
Third Byte of Error Code Data - Backplane Interface Subsystem Error Codes

Subsystem ID: Description:
0x06 Scanner Communications
0x08 Backplane Interface (module I/O)

Error Code: Description:
0x00 Download error - invalid directory file pointer block
0x01 Download error - change to Idle mode failed
0x02 Download error - configuration file CRC failed (byte 1 contains

the file number)
0x03 Download error - directory CRC failed
0x04 Download error - input or output image exceeds partition

allocation (byte 1 contains 0 for output image, 1 for input)

Error Code: Description:
0x01 Rack configuration verify error
0x02 DII configuration error
0x03 I/O error occurred while updating slot enables
0x06 I/O error occurred while polling for PINT
0x07 Bad module mode change attempted
0x08 Slot error occurred during mode change
0x09 Source of module interrupt not found
0x0A Corrupted directory file detected when going to run mode
0x0C I/O error occurred while servicing module interrupt
0x0D Module interrupt from disabled slot
0x0E Interrupting module requested unsupported service
0x0F I/O error while performing input scan
0x10 I/O error while performing output scan
0x11 Verified read or write error
Publication 1747-6.5.3 June 1998

A–4 Error Codes
If the extended error code is an internal scanner error (0xF0), the slot number is set
to 0 and the first byte of the Error Code Data contains the source of the error. Table
9 lists the internal scanner extended error sources.

Table A.6
Internal Scanner Errors

Error Code: Description:
0x03 Scanner message queue full
0x06 Internal scanner watchdog timeout
0x07 CRC checksum failure
0x09 Invalid message
0x0A RAM failure
0x0B Host watchdog timeout
Publication 1747-6.5.3 June 1998

Appendix B

Testing Function Calls

Introduction Both the DOS API and the Windows NT API come with a utility program called
api_test.exe. This interactive program lets you execute, from the keyboard,
every API call for the 1746 I/O PCI Interface. Use the source code of the utility
program, along with the executable program, to test different argument values for
each function call and to verify correct scanner operation.

Another DOS utility program called ocdiag.exe comes with the 1746 I/O PCI
Interface hardware. Use this utility program to verify:

• hardware operation

• scanner functionality

• I/O control

The Windows NT utility program is oc_nt.exe. To get a copy of this utility:

• contact A-B Technical Support Services at 440-646-6800

or

• download a copy from the Technical Support Services bulletin board at 440-
646-5441

Use the -d option when executing the self-unzipping file so that you preserve
subdirectory structures.
Publication 1747-6.5.3 June 1998

B–2 Testing Function Calls
Notes:
Publication 1747-6.5.3 June 1998

Allen-Bradley
Publication Problem Report

If you find a problem with our documentation, please complete and return this form.

Pub. Name

Cat. No. Pub. No. Pub. Date Part No.

Check Problem(s) Type: Describe Problem(s): Internal Use Only

procedure/step

example

explanation

illustration

guideline

other

definition

feature

info in manual

(accessibility)

info not in
manual

text illustrationTechnical Accuracy

Completeness

What information is missing?

Clarity

Sequence

What is not in the right order?

What is unclear?

Other Comments

Use back for more comments.

Your Name Location/Phone

Return to: Marketing Communications, Allen-Bradley Co., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118Phone: (440)646-3176
FAX: (440)646-4320

Publication ICCG-5.21-August1995 PN955107-82

API Software for 1746 I/O PCI Interface

1747-PCIDOS, -PCINT 1747-6.5.3 955132-74June 1998

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

PL
EA

SE
 R

EM
O

VE

PLEASE FASTEN HERE (DO NOT STAPLE)

Publication 1747-6.5.3 – June 1998 PN 955132-74
Copyright 1998 Allen-Bradley Company, Inc. Printed in USA

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve
productivity and quality for more than 90 years. We design, manufacture and support a broad
range of automation products worldwide. They include logic processors, power and motion
control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the
world’s leading technology companies.

Worldwide representation.
Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark •
Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy •
Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto
Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey •
United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

	1747-6.5.3, API Software for 1746 I/O PCI Interface
	Important User Information
	Using This Manual
	Table of Contents
	Chapter 1 - Overview
	Introduction
	Relationship to the Open Controller
	The 1746 I/O PCI Interface API
	Understanding the 1746 I/O PCI Interface Architecture
	Scanner Modes
	Installing the DOS API
	Installing the Windows NT API

	Chapter 2 - Using the API
	Introduction
	Getting Started
	Programming Conventions
	Tools to Use

	Chapter 3 - Developing Applications
	Introduction
	How the API Functions Are Organized
	Programming Sequence
	Programming Example for DOS
	Programming Example for Windows NT
	Handling Interrupt Messages
	Handling Errors
	Determining Partition Sizes for Shared Memory

	Chapter 4 - Using the API Structures
	Introduction
	API Structures

	Chapter 5 - Configuring I/O Modules
	Introduction
	Configuring I/O
	Using M0-M1 Files and G Files
	Supported I/O Modules

	Chapter 6 - Library of Routines
	Introduction

	Appendix A - Error Codes
	Appendix B - Testing Function Calls
	Allen-Bradley Publication Problem Report
	Back Cover

