o
Allen-Bradley

API Software for
1746 1/0 PCI

Interface III
(Cat. No. 1747-PCIDOS, -PCINT) Imm ‘ I‘N“H"

Important User
Information

Because of the variety of uses for the products described in this
publication, thoseresponsiblefor the application and use of thiscontrol
eguipment must satisfy themselves that all necessary steps have been
taken to assure that each application and use meetsall performanceand
safety requirements, including any applicable laws, regulations, codes
and standards.

Theillustrations, charts, sample programs and layout examples shown
in this guide are intended solely for example. Since there are many
variables and requirements associated with any particular installation,
Allen-Bradley does not assume responsibility or liability (to include
intellectual property liability) for actual use based upon the examples
shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines For The
Application, Installation and Maintenance of Solid State Control
(available from your local Allen-Bradley office) describes some
important differences between solid-state equipment and
electromechanical devices which should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole
or in part, without written permission of Allen-Bradley Company, Inc.
is prohibited.

Throughout this manua we use notes to make you aware of safety
considerations:

ATTENTION: ldentifiesinformation about practices
or circumstances that can lead to personal injury or
death, property damage or economic loss.

Attention helps you to:

e jdentify ahazard

e avoid the hazard

* recognize the consequences

Important: ldentifiesinformation that is critical for successful
application and understanding of the product.

AMIBIOSis atrademark of American Megatrends, Inc.
SystemSoft and CardSoft are trademarks of SystemSoft Corporation.
Microsoft and MS-DOS are trademarks of Microsoft.

Preface

Using This Manual

Who Should Use Usethismanual if you are responsiblefor devel oping control applications using the

this Manual 1746 1/0O PCI Interface API (application programming interface) software in an
MS-DOS or Windows NT environment.

This manual documentsthe 1746 1/0 PCI Interface APl software for DOS and the
API software for Windows NT. The APIs use most of the same calls. Differences
are noted as appropriate.

Terminology Throughout the language of this document, we refer to the 1746 1/0 PCI Interface
card (1747-PCIS) asthe scanner and the 1747-PCIL chassisinterface module asthe
adapter.

There are two versions of the PCI Bus Interface Card. 1747-PCIS has a 256k
memory capacity and the 1747-PCIS2 has a 1M capacity.

Reference The following books might be useful as you develop your 1746 /O PCI Interface

Material1746 1/0 applications:

PCI Interface

This document: By: Has this ISBN number:

PC System Architecture Series MindShare, Inc. .

PCI System Architecture Addison-Wesley Publishing Company ISBN: 0-201-40993-3

PCI Hardware and Software Architecture and Design Edward Solari and George Willse ISBN: 0-929392-28-0
Support Due to the PC-based architecture of the 1746 1/0O PCI Interface, the telephone

support provided with the purchase price of the 1746 1/0 PCI Interface consists
primarily of determining if the system software and hardware is operating within
documented specifications. The tools for this support are:

e diagnostic utility disk that ships with the 1746 1/O PCI Interface

e 1746 1/0 PCI Interface system diagnostic LEDs

The diagnostic utility disk usesthe DOS API asits programming interface, which
provides examples of how to usethe API. The diagnostic utility disk isagood tool
to help diagnose your API application software. See appendix B for more
information.

When you purchase a 1746 1/0 PCI Interface system, you also receive firmware
upgrades during the 12-month warranty period.

You can purchase extended support in blocks of 5 hours by ordering support
contracts (1747-OCTYS).

Publication 1747-6.5.3 June 1998

Preface-2 Using This Manual

Publication 1747-6.5.3 June 1998

Table of Contents

Overview

Using the API

Developing Applications

Using the API Structures

Chapter 1
INtroduCtioNo e -
Relationship to the Open Controller
The 1746 /0 PCl Interface APl -
APl Software forDOS oo
API Software for Windows NT. -
Understanding the 1746 I/0 PCl Interface Architecture -
Scanner Modes.o
Checking LED Indicatorscoiiiiieeeeniiiinnnnn.. -
STATUS o -
Installingthe DOS APl i e
Installing the Windows NT APL. -
Installation Details. -
Uninstalling the Windows NTAPL............................. -
Chapter 2 -
Introduction. 2-1]
Getting Started 2-1]
Programming Conventionst Z|_1
DOS Considerationsottt 2-2)
Windows NT Considerations.covviiieiiineninn... 2-3)
TOOIStOUSE . oo 2-4)
Sample DOS MAKE file for Borland compilers................... 2-5)
Sample DOS MAKE file for Microsoft compilers. 2-6)
Sample Windows NT MAKE file for Microsoft compilers. 2-7)
Sample Windows NT MAKE file for Borland compilers............. 2-9
Chapter 3
INtroduction
How the API Functions Are Organized
Programming SEqUENCe.t -
Accessthesscanner.o i -
Initialize the scanner. -
Configurethe scanner. e -
Control scanneroperation. -
SCAN IO oo -
Programming Example forDOSo -
Programming Example for Windows NT
Handling Interrupt Messages
Handling Errors. 3-18
Determining Partition Sizes for Shared Memory. 3-18
Chapter 4
INtrodUCtioN 4-1
APL SHTUCIUIES. . . oo 4-1

Publication 1747-6.5.3 June 1998

Configuring 1/0 Chapter 5
Modules INFOUCHION. e ettt E
Configuring /Oo =
Using MO-M1Filesand GFilest 5-3
MO-MLFIESo e e [5-3
GAIES . oo [5-3
SUppOrted /O MOTUIESo v e e [5-4
Library of Routines Chapter 6
INtroduction. 6-1
OC CalculateCRC . .\ v e e 6-2
OC ClearFault. ... e 6-3
OC_ClOSESCANNEY\ [6-4]
OC_CONAIGUIEDIL e e e e e [6-5
OC_CreatelO
CONIGUIALION [6-7
OC_DemandiNPUESCaNoovee et [6-9
OC _DemandOutputScan 6-10
OC_DownloadlO
Configuration [6-11]
OC_EnableEOSNOtIfY\t [6-13
OC_ENABIEFOICES . ..o [6-15]
OC_ENableSIot. [6-17]
OC_EMOMMSG . . oo [6-18]
OC_EXeNdEdEMOIMSYo oe oo e [6-19]
OC_GetBatteryStatlS.t e et [6-21]
OC_GetDeVICRINTOt [6-22)
OC_GEtEXIENAEUEIONo et e e e [6-23]
OC_GetInputlmage
UpdateCounter. [6-25]
OC_GetlOCONAIGUIAtION« oot e e e, [6-27]
OC_GetLastFaUCAUSEo et e e [6-29]
OC_GetMeasuredScan
TIMe L [6-30]
OC_GetScannerinitinfocooveeeeieeeeieennn, [6-31]
OC_GetSCANNEISIAtUS.o ev e e et [6-33]
OC_GetScanner
WatchdogCount 6-35
OC_GetStatusFileo 6-36)
OC_GEtSWItchPOSItION. . .. [6-40]
OC_GetTeMPEratUIeot e e e [6-41]
OC_GetUserJumper
Al . [6-42
OC_GetUSErLEDSIAteot e e e 6-43]
OC_GetVersionInfo 6-44

Publication 1747-6.5.3 June 1998

Error Codes

Testing Function Calls

OC _INIESCANNET . .\ ot [6-46]
OC_OPENSCANNET « .o v v v e e et e [6-48]
OC_PetHOStWatehdog.\ ee e [6-49
OC_POIISCANNET.\ oot [6-50]
OC_ReadHostRetentive

DA ettt [6-52]
OC_ReadINPULIMAGE oo e e e [6-54
OC_ReadlOCONGRIIEo e et [6-56]
OC_ReadModuleFile [6-57]
OC_ReadOUtPUIMAGE. oo e oo [6-59
OC_REAUSRAM.ttt [6-61]
OC_RESEISCANNETot e e e [6-63
OC_SEtFOICESottt et e [6-64
OC_SetHOSIWALCAAOG e e e e e e e [6-66]
OC_SetlnputUpdate

MOGE. et [6-67]
OC_SetlOIIESHALE.ot [6-68]
OC_SetMOdUIBINEEITUPL . .« .+ .o e [6-69]
OC_SetOutputUpdate

MOGE. . .. [6-70]
OC_SetSCaNMOOEo et [6-72
OC_SetSCANTIME ...t et et [6-73
OC_SEtUSEILEDSEAE . . .+ v v e e e e [6-74]
OC_SetupPowerFail

ACHON . . [6-75]
OC_WatFOIDIL. . ..o [6-77]
OC WaItFOTEDSo ettt [6-78
OC_WaitFOrEOSDMAIN.\ e e e [6-80)
OC_WaitFOrEOSDMAOUL [6-82]
OC_WaItFOrEXIEITOro\ e e et [6-84
OC_WatFOrIOINt ...\t [6-85]
OC_WriteHostRetentive

DA . ottt [6-86]
OC_WritelOCONfigRile\ [6-87]
OC_WriteModuleFile [6-88]
OC_WIteOUPULIMAGE . .+« e e v e e e e [6-90
OC WHEESRAM\t [6-92]
Appendix A
INtrOdUCHION. . . . oo A-1
Error Code Returned by APl Functionsccoovvvnnn A
Extended Eror Codesoovirirereii e
Appendix B
INtroduCtion.o B-1

Publication 1747-6.5.3 June 1998

Publication 1747-6.5.3 June 1998

Chapter 1

Introduction

Relationship to
the Open
Controller

Overview

This chapter provides an overview of the 1746 1/0 PCI Interface and the API
software. This chapter also describes how to install the API.

You should have one of the following APIs:
e API for DOS (catalog number 1747-PCIDOS)
e API for Windows NT (catalog number 1747-PCINT)

The API software license agreement allows you to freely distribute the executable.

The API softwarefor the 1746 1/0 PCI Interface is compatible with the API for the
1747 Open Controller. The sample code and header files contain comments and
functions that are supported by the Open Controller but not supported by the 1746
I/0 PCI Interface. The following table lists the differences between the Open
Controller and the 1746 1/0 PCI Interface.

Open Controller

1746 1/0 PCI Interface

User assigns interrupts and memory allocation.

1747-PCIS(2) is a plug-and-play card.

Watchdog can reset the entire system.

Watchdog cannot reset entire system.

Contains OC_ReadRtcSRAM.

Function not supported.

Contains OC_WriteRtcSRAM.

Function not supported.

Does not provide access to user SRAM.

Provides access to user SRAM.

Important: All referencesto Open Controller in the example code or header files
apply to the 1746 1/O PCI Interface.

Publication 1747-6.5.3 June 1988

1-2 Overview

The 1746 1/0 PCI
Interface API

Publication 1747-6.5.3 June 1998

Usethe 1746 |/O PCI Interface API to devel op the software i nterface between your
applicationandthe 1746 1/0 PCI Interface scanner to control local 1/O andto control
remote I/O viathe 1747-SN or 1747-SDN scanners. The API provides callsfor
typical control functions, such as:

» configuring /O files

e initializing the scanner

e accessing the user LEDSs, user jumper, and 3-position switch
* reading 1746 |/O PCI Interface status

¢ enabling/disabling forces

Application

¢

API

'

1746 1/0 PCl Interface
dual port memory

> local I/0

v

remote 1/0 via
1747-SN or 1747-SDN

APl Software for DOS

The DOS API software provides alibrary of C function calls for DOS application
programs to interface with the dual port memory. The DOS API supports any
language compiler that uses the Pascal calling convention.

APl Software for Windows NT

The Windows NT API supports any programming languages that use the

Win32 _stdcall calling conventionfor applicationinterfacefunctions. TheWindows
NT API function namesare exported fromaDL L inundecorated format to simplify
access from other programming languages.

The Windows NT API software consists of two main components:
e the 1746 1/0O PCI Interface device driver (OCdriver)
e the APl library, whichisaDLL (dynamically-linked library)

Overview 1-3

Understanding
the 1746 1/0 PCI
Interface
Architecture

TheWindowsNT AP library isaDLL and must beinstalled on the systemin order
to run an application which usesit. The Windows NT API accessesthe scanner via
the driver created for the bus interface The driver:

alocates resources (interrupt and memory window)

* initializes scanner hardware

e provides access to the scanner’s dual port RAM

e services interrupts from the scanner (priority messages)

Important: Only access the OCdriver through the API library functions.

When the OCdriver is loaded it tries to allocate an interrupt and a memory window
for the memory and interrupt that were allocated using the settings by the PCI bus
at power-up for the dual port RAM.

The 1746 1/0 PCI Interface architecture consists of a PCI card that plugs into a PC
and cablesto a 1746 1/0 chassis. The scanner scans the 1746 local I/0 bus and reads/
writes inputs and outputs to/from the dual port registers.

1747-PCIS 1747-PCIL
dual port memory 1746 backplane interface
Partition: Bytes: cable
PCI bus Scanner register 1K 0
CPU commands | variable status and user LEDs
response variable

3-position switch

input image variable

host data variable

user jumper

watchdog contact

|
|
|
|
|
|
|
|
outputimage | variable |
|
|
|
|
|
|
|

The dual port is an 8K byte memory partition (optionally battery-backed) that
provides an interface between the integrated scanner and your application software
that resides on the host.

Important: The jumper for the battery-backed dual port memory is disabled by
default. You must switch the jumper in order to enable the dual port
memory battery-backed function. By enabling the battery-backed dual
port memory, you will decrease the life of the battery.

Publication 1747-6.5.3 June 1998

1-4 Overview

Scanner Modes

Publication 1747-6.5.3 June 1998

Your application (the code you develop using the API) uses the dual port memory
to communicate with the scanner to handl e control functionson the 1746 backplane,
such as:

e scanner commands and responses

* battery and scanner status

* scan rate frequency and timing

¢ |/Oimage counters

* priority messages and interrupts

* semaphoresto ensure data integrity

* software-generated watchdogs

* control of the 4 user-definable LEDSs, the 2-position jumper, and the 3-
position switch

The scanner functionality of the dual port supports 1/0O control functions, such as:

¢ synchronizing scans to the application

e forcing 1/0

e defining discrete-input interrupts

e defining 1/0 module-driven interrupts (such as for the 1746-BAS module)

e enabling and disabling I/O dots

e resetting I/O

In addition to providing access to the control scanner, the dual port memory also

provides non-volatile (optional battery-backed) storage for:

e 1/Ovaues

e application parameters (timers, counters, presets)

The scanner CPU operatesin six basic modes:
e performing POST (power-on self test)

* waiting for host initialization

e lIdle

* Scan

* Faulted

* non-recoverable fault

After the scanner successfully completes the POST, the scanner waits for an
initialization complete command from the application. Once the scanner receives
this command, the scanner enters Idle mode.

Before the scanner can enter Scan mode, the application must download avalid
I/O configuration to the scanner.

If arecoverable fault occurs, the scanner enters Faulted mode. Use the
OC_ClearFault API function to clear the fault before the scanner can resume
operating in Scan mode.

Overview 1-5

If anon-recoverable fault occurs, reset the scanner (cycle power). Some possible
non-recoverable faults include:

e POST failure

e background diagnostic failure
* internal watchdog timeout

Checking LED Indicators

PCI INTERFACE

STATUS] BATT—]

LED1 [LED2[]
LED3 [LED4[]

STATUS
The STATUS indicator reports the status of the scanner. The following table lists
the LED states for STATUS:
This state: Means: Take this action:
Yellow The scanner is running POST. None
Flashing green The scanner is in idle mode and is None
not scanning /0.
Solid green The scanner is scanning 1/0. None
Flashing red An /0 fault has occurred. Check software to identify
fault condition.
Solid red A scanner internal fault has Power system off and back on. If
occurred. the problem persists, service may
be required.
Off The adapter is not powered up. Turn on power.
Installing the Toinstall the DOS AP, copy the following files to a directory you create. The
DOS API sample code files are optional, but they show how to use the API functions.

This file:

Contains:

ocapil.lib

API functions that you link to your application

ocapi.h

API header file that contains API-referenced structures

sample.c

Sample application program calling the API functions

sampleb.mak

Sample make file for the Borland C compiler

samplem.mak

Sample make file for the Microsoft C compiler

Publication 1747-6.5.3 June 1998

1-6 Overview

Installing the
Windows NT API

Publication 1747-6.5.3 June 1998

Toinstall the Windows NT AP, use the setup utility:

1. Insert the API diskette into a diskette drive.

7.

Itisrecommended that you exit all applicationsbefore starting the setup process.

Select Run from the startup menu, then select the set up. exe program from the
API diskette.

Click on OK to executethe setup utility. Follow thedisplayed instructions. Click
on Next.

The next dialog lets you choose whether to install the API development and
executable files (Complete) or the API executable files (Runtime), or just the
API development files (Devel opment). To develop applications with the API,
you need the development files. To only run applications, only the runtimefiles
are necessary. The development files consist of an include file, import library,
and samplecode. Theruntimefilesconsist of adevicedriver and adynamically-
linked library.

Important: Runtimefilesmay only beinstalled onaWindowsNT system.
However, the development files may be installed on either
Windows NT or Windows 95 systems.

Choose the appropriate install ation option and click on Next.
Specify the destination directory and click on Next.

The necessary files are copied to the disk, and the system registry is updated to
include the OCdriver information.

Choose whether to reboot the system now or later and click on Finish.

Important: Youmust shutdown and reboot the scanner beforeusing the API. (The

setup utility sets the registry Start parameter for OCdriver to
Automatic; therefore, the service manager starts the OCdriver when
the system is booted.)

The Windows NT API usesthesefiles:

This file: Contains:

ocapi.lib Import library in Microsoft COFF format

ocapi.h API header file that contains API-referenced structures
ocapi.dll APIDLL

sample.c Sample application program calling the API functions
sampleb.mak Sample make file for the Borland C compiler
samplem.mak Sample make file for the Microsoft C compiler

Overview 1-7

Installation Details

This section describes the actions the setup utility performsto install the AP
and OCdriver.

If you select Runtime (Complete), the setup utility:

1. copiesthedevicedriver file, ocdri ver, to the system device driver directory
(98yst emRoot % syst enB2\ dri ver s).

2. adds this key and these values to the system registry:

HKEY_LOCAL_MACHINE\SY STEM\CurrentControl Set\Services\OCdriver
ErrorControl: REG_DWORD 0x1
Group: REG_SZ Extended base
Start: REG_DWORD 0x2
Type: REG_DWORD 0x1
HKEY_LOCAL_MACHINE\SY STEM\CurrentControl Set\Services\Drivers\ OCdriver
EventMessageFile= REG_EXPAND_SZ%SystemRoot%\System32\Drivers\OCdriver.sys
TypesSupported= REG_DWORD 0X 00000007

3. copiesthelibrary file, oCapi . dl | , to the %Sy st enRoot % syst enB2 directory.

If you select Runtime & Development, the setup utility performs the same steps as
for Runtime only and the setup utility copiesocapi . I i b, ocapi . h, and the sample
source files to a development directory.

Uninstalling the Windows NT API
To uninstall Windows NT API, use the following instructions.

1. From the Control Panel, select Add/Remove Programs.

2. Fromthelist of installed programs, select Open Control API.
3. Click on Add/Remove.

4. Click on Yes.

All of the API files and registry keys will be deleted.

Publication 1747-6.5.3 June 1998

1-8 Overview

Notes:

Publication 1747-6.5.3 June 1998

Chapter 2

Using the API

Introduction Thischapter describesthe APl and how to useitscomponents. For moreinformation
about developing applications using the API, see chapter 3.

Getting Started To usethe API, make sure you have copied thefollowing filesto your development
directories. The sample files are optional.

This file: Contains:

ocapil.lib API functions that you link to your application (DOS only)

ocapi.lib Import library in Microsoft COFF format (Windows NT only)

ocapi.h API header file that contains API-referenced structures

ocapi.dll API DLL (Windows NT only)

sample.c Sample application program calling the API functions

sampleb.mak Sample MAKE file for the Borland C compiler

samplem.mak Sample MAKE file for the Microsoft C compiler
Your application must link to the appropriate library (ocapi | . I'i b for DOS or
ocapi . I i bforWindowsNT) andincludeocapi . h. Youcan copy thesamplefiles

and adapt them for your application.

Programming The API is supplied as an object code library file (ocapi | . I i b) oraDLL
Conventions (ocapi . dl I') that you link with the host application’s object code using
commercially-available tools.

This convention: Considerations:

The DOS API functions are specified using the C programming language syntax. To allow you to
develop control applications in other programming languages, the APl functions use the standard

Pascal calling convention.
calling convention i) i)
The Windows NT API supports any programming languages that use the Win32 _stdcall calling

convention for application interface functions. The Windows NT API function names are exported
from the DLL in undecorated format to simplify access from other programming languages.

The APlincludes a header file (ocapi . h)thatcontains APl function declarations, data structure

header files definitions, and other constant definitions. The header file is in standard C format.

The API comes with sample files to provide an example application that communicates with the
sample code scanner. The sample files include all source files and MAKE files required to build the sample
application.

The DOS APl is supplied in the large memory model, compatible with both Microsoft and Borland
compilers. The DOS library (ocapi | . | i b)is compiled as a 16-bit MS-DOS library using the
Comp"er support 80386 inStrUCtiOﬂ Set.

The Windows NT library (ocapi . dl |) is compiled for use with Microsoft Visual C++ or
Borland C++.

Publication 1747-6.5.3 June 1998

2-2 Using the API

This requirement:

DOS Considerations

The DOS API isas consistent as possible with APIs for other operating system
platforms. This makesit easier for you to migrate applications and it simplifies
support.

To create a consistent API, careful consideration was given to these requirements:

Considerations:

memory mapping

The dual port RAM, or shared memory, is mapped automatically at power-up by the PCI bus in
the host processor's memory address space on any even 8K boundary between 0xC0000 and
OxDFFFF. For MS-DOS, it is important that any installed memory managers (such as EMM386)
or other TSR software avoid accessing the 8K dual port memory window.

Place the base memory select jumper in 1M position to allow the PCI BIOS to assign a base
memory address.

DOS interrupts

An interrupt is automatically assigned to the scanner by the PCI bus at power-up.

control-break handler

Because communication with the scanner requires memory and interrupt resources (as
described above), improper termination of the host application can leave these resources
allocated by the scanner and unusable by other applications. For this reason the APl includes a
default control-break handler.

The default control-break handler is installed by OC_OpenScanner. If you pressa[Ctrl - C]
or[Ctrl-Break] keysequence, the following prompt is displayed:

Terminate Application? (Y/N) _
Aresponse of Y properly exits the application; a response of Ncauses the application to continue.

Ifyou need a different control-break handler, you must install it after calling the 0C_OpenScanner
function. Always call the OC_CloseScanner function before exiting an application.

Publication 1747-6.5.3 June 1998

Using the API 2-3

This requirement:

Windows NT Considerations

During development, the application must be linked with an import library that
providesinformation about thefunctionscontained withinthe DLL . The APl import
library is compatible with the Microsoft linker. You can generate import libraries
for other programming languages from the DLL.

The Windows NT API can only be accessed by one process at atime. The API is
designed to be multi-thread safe, so that multi-threaded control applications can be
developed. Where necessary, the API functions acquire a mutex before accessing
the scanner interface. In this way, access to the scanner device is serialized. If the
mutex isin use by another thread, a thread will be blocked until it is freed.

To create aconsistent API, careful consideration was given to these requirements::

Considerations:

memory mapping

The NT API device driver detects the Scanner Adapter and automatically configures the memory
window address and interrupt assignment. The base memory address jumper must be positioned
to choose 32 bit addressing. The API and device driver must be installed on the system.

Place the base memory select jumper in 32-bit position to allow the PCI BIOS to assign a base
memory address anywhere in 32-bit memory for protected-mode applications (WinNT). NT
device drivers (1747-PCINT) use the PCI BIOS or OS services to determine the memory window
base address and provide access to the dual port memory.
« To determine the allocated memory base address and interrupt, run the Windows NT
diagnostic found in Administrative Tools.

NT interrupts

An interrupt is automatically assigned to the scanner by the PCI bus at power-up
« To determine the allocated memory base address and interrupt, run the Windows NT
diagnostic found in Administrative Tools.

A group of thread-blocking functionsare provided to aid multi-threaded application
development. The functions are:

¢ OC_ WaitForDIlI

* OC_WaitForEos

¢ OC_WaitForEosDmdOut

* OC WaitForlolnt

¢ OC_ WaitForDmdin

* OC_WaitForExtError

For more information, see chapter 6.

Publication 1747-6.5.3 June 1998

2-4 Using the API

Tools to Use

Publication 1747-6.5.3 June 1998

The API functions support both Microsoft and Borland C compilers. The API disk
includes sample MAKE files for each compiler.

WhenyouusetheDOSAPI andlinktoocapi | . | i b, usetheappropriatecommand-
line switch to select the large memory model. For more information, see your user
manual for your compiler.

If you plan to useaprogramming language other than C, makesurethe programming
language follows the appropriate calling convention (Pascal for the DOS AP,
Win32 _stdcall for Windows NT). After you write your application, use your
compiler tolink toocapi | . i b (DOS) or ocapi . i b (Windows NT).

Using the API

Sample DOS MAKE file for Borland compilers

The following sample file shows how to use a Borland MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**

Title: Makefile for Open Controller APl Sample

Abstract:
This file is used by the Borland MAKE utility to build the
sanpl e application.

Envi r onnent :
1747- OCE Qpen Controller
Ms- DOS
Borland C/C++ Compiler (16-bit)#

TRk S R IR S b o S R R Sk b ok S R R S S S SRR S S S R S O O R R

HHHFEHFFHHHFHFFHRD

Paths to Tools

#

Note: Modify the follow ng paths to
correspond to your environnent.

#

i

CPATH = D:\BCS # Location of Borland tools
CcC = $(CPATH)\ bi n\ Bcc # conpil er

LI NK = $(CPATH)\ bi n\ TLi nk # |inker

MAKE = $(CPATH)\ bi n\ Make # make utility
o

Path to APl Library and Include file

#

Note: Modify the following path to
correspond to your environnent.

..\ocapil.lib # Path to OQpen Controller APl library
. # Path to Open Controller APl include file

-c -v- -w-nm -1$(APIINC
-v- -Tde -d -c

sanpl e. exe : sanpl e. obj $(APILIB) sanpl eb. mak
$(LINK) $(LFLAGS) cOl sanple.obj, $*.exe, $*.map, $(APILIB) cl

cl ean:
del *.exe
del *.obj
del *.map
rebuil d:
$(MAKE) cl ean
$(MAKE)
. C.obj:

$(CO) $(CFLAGS) $*.c

sample.obj: sample.c $(APIINC)\ocapi.h
sampleb.mak

Publication 1747-6.5.3 June 1998

Using the API

Sample DOS MAKE file for Microsoft compilers

The following sample file shows how to use a Microsoft MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**

Title: Makefile for Open Controller APl Sample

#

Abstract:

This file is used by the Mcrosoft Nvake utility to build the
sanpl e applicati on.

#

Envi ronment :

1747- OCE Open Controll er

Vs- DOS

M crosoft C C++ Conpiler (16-bit)
#**
o

Note: The environnent variables LIB and

I NCLUDE nust be set to the path to the

Mcrosoft Clibrary and include files.

For exanpl e:

#

set LIB=D:\MSVC15\LIB

set | NCLUDE=D: \ MSVC15\ | NCLUDE

#

o

Paths to Tools

#

Note: Modify the followi ng paths to

correspond to your environnent.

#

S

CPATH = D:\ MBVC15 # Location of Mcrosoft tools
CcC = $(CPATH) \ bi n\ cl # conpil er

LI NK = $(CPATH)\ bi n\ I i nk # |inker

VAKE = $(CPATH) \ bi n\ nmake # make utility

#
Note: Modify the followi ng path to
correspond to your environnent.

= ..ocapil.lib # Path to Open Controller APl library
NC = .. # Path to Open Controller APl include file

logo /G3 /W8 /AL /O /D /Gx- /1 $(APIINC)
/' NO | PACKC

sanpl e. exe : sanpl e. obj $(APILIB) sanpl em mak
$(LINK) $(LFLAGS) sanple.obj, $*.exe, $*.map, $(APILIB), nul.def

cl ean:
del *.exe
del *.obj
del *.map

rebuil d:
$(MAKE) -f sanpl em mak cl ean
$(MAKE) -f sanpl em nmak

.c.obj:
$(CC) $(CFLAGS) $*.c

sample.obj: sample.c $(APIINC)\ocapi.h
samplem.mak

Publication 1747-6.5.3 June 1998

Using the API 2-7

Sample Windows NT MAKE file for Microsoft compilers

The following sample file shows how to use a Microsoft MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**

Title: Makefile for Open Controller NI APl Sanple

Abstract:
This file is used by the Mcrosoft NMvake utility to build the
sanpl e application.

Envi ronnent :
1747- OCE Qpen Controller
M crosoft Wndows NT 4.0
M crosoft Visual C++

(c) Copyright Allen-Bradl ey

HHHFHIFHFHFHFHHFHHRHH

SRk S R S S R R Sk b e ok S R T S S R S S b S R R O S R R R S o O

Note: The environment variable LIB
must be set to the path to the

M crosoft Clibrary files.

For exanpl e:

set LIB=D:\ MSDEW LI B

Pat hs to Tool s

Note: Modify the following paths to
correspond to your environment.

D: \ MSDEV # Location of Mcrosoft tools
$(CPATH) \ bi n\ cl # conpil er

$(CPATH)\ bi n\ I i nk # |inker

$(CPATH) \ bi n\ nmake # make utility

Path to APl Library and Include file
#

Note: Modify the follow ng paths to
correspond to your environment.

#

He o e e e e e e e e e e e e e e e e eee s

APILIB = ..\apillib\ocapi.lib # Path to Qpen Controller APl library
APIINC = ..\apilinclude # Path to Open Controller APl include file
B o e e e e e e e e e mmmmmeeo oo

Conpi | er/ Li nker Debuggi ng Opti ons
(Define DEBUG for debugging.)

e
i fdef DEBUG

CDEBUG = -Zi -Od

LDEBUG = -debug:full -debugtype:cv
lel se

CDEBUG = - Ox

LDEBUG = /RELEASE

Publication 1747-6.5.3 June 1998

2-8 Using the API

lendi f
e
Conpil er Options
#
-WB Turn on war ni ngs
-GB Optimze code for 80486/ Pentium
-MI' Use Multithreaded runtime lib
#
e
CFLAGS = -WB -GB -M \
-1$(APIINC) -1$(CPATH)\i ncl ude
e
Linker Options
#
Hem e e e e e e e e e e e e a -
LFLAGS =/ NODEFAULTLI B / SUBSYSTEM CONSCLE \
/ | NCREMENTAL: NO / PDB: NONE
Hm e e e e e e e e e e e e e e e
Libraries
#
|ibcmt Mul tithreaded C runtime
kernel 32 Base systemlib
#
Hm e e e e e e e e e e e e e e e
LI BS = libent.lib kernel32.1ib
e
Final target
e
sanpl e. exe : sanpl e.obj $(APILIB)
$(LINK) @<
$(LDEBUG) $(LFLAGS) $(LIBS) $**
<<
@cho Fini shed
cl ean:
del *.exe
del *.obj
del *.nmap
rebui | d:
$(MAKE) -f sanpl em nak cl ean
$(MAKE) -f sanpl em nmak
s
Internedi ate target rules
s
c.obj:
$(CO) @<
/c $(CDEBUG $(CFLAGS) $*.c
<<
Hoo e e e e e e e e e
Internedi ate target dependancies
e

sanpl e. obj: sanple.c $(API I NC)\ocapi.h
sanpl em mak

Publication 1747-6.5.3 June 1998

Using the API 2-9

Sample Windows NT MAKE file for Borland compilers

The following sample file shows how to use a Borland MAKE file. The bold
headings indicate the statements you need to modify for your environment.

#**

Title: Makefile for Open Controller APl Sanple

Abstract:
This file is used by the Borland MAKE utility to build the
sanpl e application.

Envi r onnent :
1747- OCE Open Controller
M crosoft Wndows NT 4.0
Bor | and C++ Conpil er

(c) Copyright Allen-Bradl ey

R I O O o O
Paths to Tools

#

Note: Modify the followi ng paths to

correspond to your environment.

HHHFHIFEHRFHFHHFHEFHERH

#

g

CPATH = D:\BC5 # Location of Borland tools
cC = $(CPATH)\ bi n\ Bcc32 # conpil er

LI NK = $(CPATH)\ bi n\ TLi nk32 # |inker

MAKE = $(CPATH)\ bi n\ Make # make utility
g

Path to APl Library and Include file

#

Note: Modify the following path to
correspond to your environment.

#
g
APIDLL = ..\api\lib\ocapi.dll # Path to Qpen Controller APl library
APIINC = ..\apilinclude # Path to Open Controller APl include file
APILIB = .\ocapi.lib # Borl and conpatible inport library
i
Options
i
CFLAGS = -c -V -4 -tWM -w -1 $(API I NO
LFLAGS = -v -Tpe -d -c -ap -r
i
Final Target
i
sanpl e. exe : sanpl e.obj $(APILIB) sanpl eb. mak
$(LINK) @&
$(LFLAGS) +

D: \ BC5\ LI B\ c0x32. obj +
$*. obj, $*.exe, $*.map
D:\BCS\LIB\inport32.1ib +
D:\BCS\LIB\cw32nt . lib +
$(API LI B)

Publication 1747-6.5.3 June 1998

2-10 Using the API

cl ean:
del *.exe
del *.obj
del *.nmap
del *.lib
rebuil d:

$(MAKE) -f sanpl eb. mak cl ean
$(MAKE) -f sanpl eb. mak

. C.obj:
$(CCO) $(CFLAGS) $*.c
Create a Borl and-conpatible inmport library

$(API LI B): $(APIDLL)
inplib $(APILIB) $(APIDLL)

sample.obj: sample.c $(APIINC)\ocapi.h sampleb.mak

Publication 1747-6.5.3 June 1998

Chapter 3

Developing Applications

Introduction Thischapter describesthe proper programming sequencefor your application. This
chapter also describes how to partition the dual port memory in the 1746 1/0 PCI
Interface.

How the API Each of the API functions falls into one of these four categories:

Functions Are * scanner initiaization

Organized * scanner 1/O configuration

datainput/output
e user interface/miscellaneous

Chapter 6 describes each API function and identifies its functionality group.

Publication 1747-6.5.3 June 1998

3-2 Developing Applications

Programming Follow this programming sequence when you develop your application.
Sequence

1

Access the scanner

2

Initialize the scanner

3

Configure the scanner

4

Control scanner
operation

5

Scan 1/O

Access the scanner

The host application must first call OC_OpenScanner to gain accessto the scanner.
Once an application has access, no other application can gain accessto the scanner.
When the application no longer requires access to the scanner, it must call
OC_CloseScanner to release access of the scanner to other applications.

Once the scanner is opened, you must call OC_CloseScanner before exiting
the application.

Publication 1747-6.5.3 June 1998

Developing Applications 3-3

Initialize the scanner

After the scanner isreset and performsits POST, the scanner waitsfor initialization.

In this state, the scanner can’t be configured or control I/O. The only operational
function is that which controls the LEDs. Any call to a function that requires the
scanner to be initialized returns an error. You must initialize the scanner by sending
it partitioning information before the host application can communicate with the
scanner.

Initialize the scanner by calling the OC_InitScanner function to send the scanner
partitioning information, which defines in bytes the size of the output image, the
input image, and the host retentive data. Each of these memory segments must be
at least large enough to hold their respective data, and must be an even number. If
the input or output partition is initialized smaller than the actual size of the input or
output image for a configuration, the OC_DownloadlOConfiguration function
returns an error. The host retentive data size is optional and can be 0.

To determine the input image and output image sizes, use the
OC_CreatelOConfiguration function to create an 1/O configuration.
OC_CreatelOConfiguration returns an I/O configuration with the number of bytes
of inputs and outputs for each module. If a configuration already exists, you can
use OC_GetlOConfig to return the current I/O configuration. The application can
then calculate the minimum size of the segments required to hold the input and
output images. For more information, see page 3-18.

The API has a defined constant specifying the total number of bytes available for
the three segmenters This constant is specified as:
OCSEGVENTSI ZELIM T

Once the scanner has been initialized properly it cannot be re-initialized unless it
is reset with the OC_ResetScanner function. Once the scanner is reset, scanner
communications are disabled again until the scanner is initialized. The host
application can call OC_GetScannerStatus to determine if the scanner has been
initialized.

If the scanner was previously initialized, the host application can retrieve the
initialization partition information with the OC_GetScannerlnitinfo function
instead of resetting and re-initializing the scanner.

Configure the scanner

To access I/0 modules in arack, you must define the rack sizes and installed module
types for the scanner. You can either create a specific configuration or read the
current configuration. The scanner cannot be set to Scan mode until it has been
configured (received a valid scanner configuration).

If the scanner is in Scan mode and the host application has not downloaded a scanner
configuration, the scanner has already been configured. To control I/O, use
OC_GetlOConfiguration to retrieve the current scanner configuration.

Publication 1747-6.5.3 Junel 1998

3-4 Developing Applications

Publication 1747-6.5.3 June 1998

The application can read the current |/O configuration with the
OC_GetlOConfiguration function. If the scanner isnot in Scan mode, thisfunction
returns the current scanner configuration which can be downl oaded to the scanner
using OC_DownloadlOConfiguration.

If the application requires a specific 1/0 configuration, the application can define
the 1/O configuration structure with the rack sizes and module typesinstalled in
each slot. The application passes this configuration structure to

OC_Createl OConfiguration. OC_Createl OConfiguration returns a scanner
configuration that can be downloaded to the scanner. For more information, see
chapter 5.

Once avalid scanner configuration is successfully downloaded to the scanner via
OC_Downloadl OConfiguration, the application can set the scanner to Scan mode
and control 1/0.

Both OC_Createl OConfiguration and OC_Getl OConfiguration build the
configuration data from an internal database of supported I/O modules.

Control scanner operation

Oncethescanner hasbeen configured, the application can control scanner operation.
The host application can:

¢ et the scanner to Idle or Scan mode

e control the scan time

e control I/0O

* read or write module files

e clear faults

e enable/disable slots

e et /O Idle state

* install/remove forces

* handle module interrupts and discrete input interrupts

The API uses messages to communicate with the scanner. The scan time settings
affect the time allowed by the scanner to process a message. OC_SetScanTime
adjusts the scan time of the application.

The scanner processes messages during any available time that it is not scanning

I/O. If the scan time is set too small, some API functions might take arelatively

long time to complete. If some functions seem to be taking too long to compl ete,
increase the scan time to provide more time for the scanner to process messages. If

the scan time is set too large, I/O won’t update fast enough. For information about
estimating scan time, s&€1SBus Card for 1746 Local 1/0 Installation

Instructions, publication 1747-5.31.

Developing Applications 3-5

Scan 1/0

The scanner provides two basic methods for scanning 1/O: timed scans and
on-demand scans. The host application can use either, or a combination of both.

Typically, the scanner reads inputs from modules and writes outputs to modules
once every scan time. To read inputs and write outputs, the application calls
OC_ReadInputlmage and OC_WriteOutputl mage independently from the
scanner’s scan sequence.

The application can change the behavior of the input and output scans by allowing
the application to have more control over I/O scanning. The application can prevent
the scanner from doing any output scans and allow the application to read inputs
and initialize outputs before the scanner begins to write outputs. This mode allows
the application to pre-scan the inputs before the outputs are written.

The application can set the scanner to a conditional scan mode where the scanner
writes outputs at the next scan time after the application writes data to the output
image. In this mode, the scanner only writes outputs each time the application writes
data to the output image.

The application can also prevent output scans by the scanner and have the scanner
send a message after every input scan. The application can detect an end-of-scan
message and then read the input image, perform logic, and write outputs using
OC_DemandOutputScan to force the scanner to write outputs immediately. This
lets the application synchronize its control loop with the input and output scans.

The application can also disable both input and output scans. In this mode, the
scanner is a slave and input or output scans only take place when requested by the
host application.

Publication 1747-6.5.3 Junel 1998

3-6 Developing Applications

Programming

Example for DOS

Thefollowing DOSexample(sanpl e. ¢ onyour API disk) showshow to program
the above steps. Callouts on the right margin identify the code for each step.

B R EEEEEEEEEEEEEEEREE]

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

FI LE: sanpl e. c
PURPCSE: Sanpl e application code for 1746 1/ O PCl Interface API

SUMVARY: Thi s program

Resets and initializes the scanner.

Di spl ays the scanner firmwvare and hardware versions.

Aut configures the 1/0Oin chassis.

Reads the front panel sw tch position and lights LED 1.
Reads first discrete input npdul e data word.

Wites increnental data to first output nodul e data word.
Cl oses connection to scanner and exits.

ENVI RONMENT: 1747-PCI'S 1746 1/ O PCl Interface

Ms- DOS
Borl and/ M crosoft C/ C++ Conpiler (16-bit)

***/

/*

I NCLUDE FI LES =

#include "ocapi.h”
#include <stdio.h>
#include <dos.h>
#include <time.h>
#include <conio.h>
#include <string.h>

/>
= MODULE WIDE GLOBAL VARIABLES =
*/
HANDLE Handle; /* Software ID to scanner device */
OCIOCFG OCcfg; /* Chassis /0O config. data structure */
I
= FUNCTION PROTOTYPES =
*/
void loexit(int);
I
= MAIN PROGRAM =
*/
void main()
{
int retcode; /* Return code from API calls */
int i;
int slots;
int input_slot, input_found = 0;
int output_slot, output_found = 0;
OCINIT ocpart;
BYTE status;
OCVERSIONINFO verinfo;
BYTE SWpos;
WORD wData;

Publication 1747-6.5.3 June 1998

Developing Applications 3-7

/*

** (Open the scanner

*/

retcode = OC_OpenScanner(&Handle, 0, 0);
if (retcode != SUCCESS)

printf("\nERROR: OC_OpenScanner failed: %d\n”, retcode);

loexit(1);
}
/*
** Reset the scanner
*/

printf("\n\n Going to reset OC, takes 6 seconds to complete...\n");

retcode = OC_ResetScanner(Handle, OCWAIT);
if (retcode != SUCCESS)

printf("\nERROR: OC_ResetScanner failed: %d\n”, retcode);

loexit(1);
}
/*
** Check scanner status register
*/

retcode = OC_GetScannerStatus(Handle, &status);
if (retcode != SUCCESS))

printf("\nERROR: OC_GetScannerStatus failed: %d\n”, retcode);
loexit(1);
}

if (status != SCANSTS_INIT)

printf("\nERROR: POST failure detected: %d\n”, status);
loexit(1);

/*

** |nitialize the DPR partitions

** You can use OC_CreatelOConfiguration to determine the 1/0O image table
** sizes before paritioning the DPR

*/

ocpart.OutputimageSize = 0x800;

ocpart.InputimageSize = 0x800;

ocpart.HostRetentiveDataSize = 0;

retcode = OC_InitScanner(Handle, &ocpart);
if (retcode != SUCCESS)

printf(" \nERROR: OC_InitScanner failed: %d\n”, retcode);

loexit(1);
}
/*
** Display software/hardware versions
*

retcode = OC_GetVersionInfo(Handle, &verinfo);
if (retcode != SUCCESS))

printf("\nERROR: OC_GetVersioninfo failed: %d\n”, retcode);
loexit(1);

printf("\n\n Scanner Firmware Series: %02d Revision: %02d ",
verinfo.ScannerFirmwareSeries, verinfo.ScannerFirmwareRevision);

printf("\n Hardware Series: %02d Revision: %02d”",
verinfo.OCHardwareSeries, verinfo.OCHardwareRevision);

delay(3000);

Access the
scanner
See page 6-48.

Initialize the
scanner
See pages
6-63, 6-33,
and 6-7.

Publication 1747-6.5.3 Junel 1998

3-8

Developing Applications

/*

** Read switch position

*/

retcode = OC_Get Swi t chPosi tion(Handl e, &swpos);

if (retcode != SUCCESS)

{
printf("\nERROR: OC_GetSwitchPosition failed: %d\n”, retcode);
loexit(1);

}
printf("\n\n Switch position: ");
switch(swpos)

case SWITCH_TOP:
printf("Top \n");
break;

case SWITCH_BOTTOM:
printf("Bottom \n");
break;

case SWITCH_MIDDLE:
printf("Middle \n");
break;

}
delay(3000);

/*

** Read auto-config

*/

retcode = OC_GetlOConfiguration(Handle, &OCcfg);
if (retcode != SUCCESS))

printf("\nERROR: OC_GetlOConfiguration failed: %d\n”, retcode);

loexit(1);
}
/*
** Display rack configuration
*

slots = OCcfg.Rack1Size + OCcfg.Rack2Size + OCcfg.Rack3Size;
if (slots >31)
slots = 31;
printf("\n\n Chassis configuration ");
for (i=1;i < slots; i++)

if (OCcfg.SlotCfgl[i].type != Oxff)
printf("\n Slot %2d: Type %2d, Mix %3d %s”,
i, OCcfg.SlotCfg[i].type, OCcfg.SlotCfg[i].mix,
OCcfg.SlotCfg[i].Name);
else
printf("\n Slot %2d: %s", i, OCcfg.SlotCfg[i].Name);

/* Find digital input card */
if (OCcfg.SlotCfg[i].mix < 8 && linput_found)
{

input_found = 1,
input_slot = i;

}
/* Find digital output card */

if ((OCcfg.SlotCfg[i].mix > 7) && (OCcfg.SlotCfg[i].mix < 32) && !output_found)
{

output_found = 1;
output_slot =1i;

}
}
delay(3000);

Publication 1747-6.5.3 June 1998

Developing Applications 3-9

/*

** Downl oad the configuration to the scanner

*/

retcode = OC_Downl oadl OConfi guration(Handle, &0Ccfg);
if (retcode != SUCCESS)

printf("\nERROR: OC_DownloadlOConfiguration failed: %d\n”, retcode);

loexit(1);
}
/*
** Set output update mode to always
*

retcode = OC_SetOutputUpdateMode(Handle, OUTUPD_ALWAYS);
if (retcode != SUCCESS)

printf("\nERROR: OC_SetOutputUpdateMode failed: %d\n”, retcode);

loexit(1);
}
/*
** Set scan time to 5ms, periodic scan mode
*/

retcode = OC_SetScanTime(Handle, SCAN_PERIODIC, 20);
if (retcode != SUCCESS))

printf("\nERROR: OC_SetScanTime failed: %d\n”, retcode);

loexit(1);
}
/*
** Goto Scan Mode
*/

retcode = OC_SetScanMode(Handle, SCAN_RUN);
if (retcode != SUCCESS)

printf("\nERROR: OC_SetScanMode failed: %d\n”, retcode);

loexit(1);
}
/*
** Turn on User LED 1
*
/

retcode = OC_SetUserLEDState(Handle, 1, LED_GREEN_SOLID);
if (retcode != SUCCESS))

printf("\nERROR: OC_SetUserLEDState failed: %d\n”, retcode);
loexit(1);

printf("\n\n LEDZ1 is on solid green now. \n");
delay(3000);

Configure
the scanner
See page
6-11.

Control scanner
operation
See pages 6-70
and 6-73.

Publication 1747-6.5.3 Junel 1998

3-10 Developing Applications

/*
** Read first Input word
*/
retcode = OC_Readl nput | mage(Handl e, NULL, input_slot, 0, 1, &wbData);
if (retcode != SUCCESS)
{
printf("\nERROR: OC_ReadInputimage failed: %d\n”, retcode);
loexit(1);

printf("\n\n First input image data word --> 0x%04x \n”, wData);
delay(3000);

/*
** Write to the first Output word
*/

printf("\n\n Incrementing first discrete output word. \n");
for (wData=0; wData < 256; wData++)

{
retcode = OC_WriteOutputimage(Handle, NULL, output_slot, 0, 1, &wData);
if (retcode != SUCCESS))
printf("\nERROR: OC_WriteOutputimage failed: %d\n”, retcode);
loexit(1);
}
delay (10);
/*
** Must always close the scanner before exiting
*

OC_CloseScanner(Handle);
printf("\n\n Program is done! \n\n");

} /* end main() */

Publication 1747-6.5.3 June 1998

Scan I/0

See page
6-54 and
6-90.

Developing Applications 3-11

IR EEE R R R R RS EEEE R R EEREE R R EEEE R

*

* Nane: |oexit

*

* Descri ption:

*

* Common error handling routine. This routine displays any
* extended error and exits the program

*

* Argunent s:

* retcode : int(input)

* This error code is passed to the exit() routine.
*

* External effects:

* The programis term nated.

*

* Ret urn val ue:

* none

*

*

LEE R AR EEEEEEEEREEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEY

void loexit(int retcode)

OCEXTERR exterr;
char *nmsg;
i f (OC_Get Ext endedError (Handl e, &exterr) == SUCCESS)

{
if (exterr.ErrorCode !'=0)

{
OC_Ext endedErr or Msg(Handl e, &exterr, &nsg);
printf("\NERROR: %s\n”, msg);

}

OC_CloseScanner(Handle);
exit(retcode);

} /* end loexit() */

Publication 1747-6.5.3 Junel 1998

3-12 Developing Applications

Programming Thefollowing WindowsNT example (sanpl e. ¢ onyour WindowsNT AP disk)
Example for shows how to program the above steps. Callouts on the right margin identify the
Windows NT code for each step.

IR R EEEEEEEEEEEEEEEREE RS

Title: Sinple application sanple code for 1746 I/O PCl Interface AP
Abstract:

This file contains a sinple application using the PC
bus interface API

Envi r onnment
1747-PCI'S 1746 1/ O PCl Interface
M crosoft Wndows NT 4.0
M crosoft Visual C++ / Borland C++
(c) Copyright Allen-Bradley *

*
*
*
*
*
*
*
*
*
*
*
*
**/

/*
= I NCLUDE FI LES =

#i ncl ude <w ndows. h>
#i ncl ude <process. h>
#i ncl ude <stdio. h>
#include <stdlib. h>
#i ncl ude <tine. h>

#i ncl ude <conio. h>
#i ncl ude <string. h>
#i ncl ude "ocapi . h"

= MODULE W DE GLOBAL VARI ABLES =

HANDLE CChandl e
OCl OCFG OCcf g;

AR R EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEE]

Entry point:
l oexi t

Description
Common error handling routine. This routine displays any
ext ended error and exits the program

Argunent s:
rc coint (input)
This error code is passed to the exit() routine

External effects
The programis term nated.

Ret urn val ue
none

Access: Public

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

LR R EEREEEEEEREEEEEEEEEEERY

void |oexit
int rc
) {

OCEXTERR exterr
char *nsg;

Publication 1747-6.5.3 June 1998

Developing Applications 3-13

i f (OC_Get Ext endedError (OChandl e, &exterr) == SUCCESS)

{
if (exterr.ErrorCode != 0)
{
OC_Ext endedErr or Msg(OChandl e, &exterr, &msg);
printf("\n\nERROR % %s\n", nsg, exterr.ErrorCode);
}
}

OC_d oseScanner (CChandl e) ;
exit(rc)

} /* end loexit() */

[% Kk ok kK ok ok ok ok kK ok ok ok kK K ok ok ok kR K ok ok ok kR ok ok kR R ok ok ok kR ok ok ok kK ok ok ok ko ok ok kR ok ok ok kK

Entry point:
t Error Event

Descri ption:
Thread to handle errors

*

*

*

*

*

*

* Argunent s:
* none
*

* External effects
* none

*

* Ret urn val ue

* none

*

*

*

*

*

*

*

Access: Public

***/

void tErrorEvent(void *dumy)
{

whi | e(1)

/* Sleep until the scanner
OC_Wai t For Ext Er r or (OChandl e

reports an error */
I NFI NI TE) ;

/* An error has occurred. Perform whatever
/* that is necessary. In this case
/* and exit the process. */

error

loexit(1);
}

} /* end tErrorEvent() */

handling */
we just print a message */

Publication 1747-6.5.3 Junel 1998

3-14 Developing Applications

AR R R R R R R R R R R R R R R R LR

Entry point:
mai n

Descri ption:
Entry point of the PCl 1/O bus interface APl sanple application.

This programresets, initializes, and autoconfigures the scanner.
It displays the scanner firnmware and hardware versions, and

the front panel swtch position.

It lights User LED 1, reads inputs froma 32 pt discrete

i nput nodule, and wites data to the M) file on a BAS nodul e.

Argunent s:
none

Ext ernal effects:
none

Ret urn val ue:
0 if no errors were encountered
1if errors

Access: Public

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

***/

mai n()

nt rc;

nt i;

nt slots;

nt BASsl ot ;

nt | B32slot;

nt fRecreatel Ccfg;
OCINIT ocpart;

BYTE st at us;

OCVERSI ONI NFO ver i nf o;
BYTE swpos;

WORD wDat a, wLen;
BYTE tenp;

BASsl ot = I B32slot = O;
f Recreatel Ccfg = 0;

/* Open the scanner */
if (SUCCESS != (rc = OC_OpenScanner (&0Chandl e)))

Access the
_) scanner
printf("\nERROR OC OpenScanner failed: %\n", rc); See page
loexit(1); 6-48.

}

/* Create an error-handling thread */
if (-1 == (long) _beginthread(tErrorEvent, 0, NULL))
printf("\nERROR _beginthread tErrorEvent failed.\n");

Publication 1747-6.5.3 June 1998

Developing Applications 3-15
/* Reset the scanner */ —
printf("\nResetting the scanner...");
if (SUCCESS != (rc = OC_Reset Scanner (OChandl e, OCCWAIT)))
{
printf("\nERROR OC_Reset Scanner failed: %\n", rc);
loexit(1);
} Initialize the
scanner
/* Check scanner status register */ See pages
if (SUCCESS != (rc = OC_Get Scanner St at us(COChandl e, &status))) gng3664633,

{
printf("\nERROR OC_Get ScannerStatus failed: %\n", rc);

loexit(1);

}

if (status != SCANSTS INT)

{
printf("\nERROR POST failure detected: %\ n", status);
loexit(1);

}

/* Initialize the DPR partitions */

ocpart. Qut put | rageSi ze = 0x800;

ocpart. | nputl mageSi ze = 0x800;

ocpart. Host Retenti veDat aSi ze = 0;

if (SUCCESS != (rc = OC_InitScanner(OChandl e, &ocpart)))

{
printf("\nERROR OC_InitScanner failed: %\n", rc);
loexit(1);

}

/* Display software/ hardware versions */
if (SUCCESS != (rc = OC_GCet Versionlnfo(OChandl e, &verinfo)))
{
printf("\nERROR OC _CetVersionlnfo failed: %\n", rc);
loexit(1);

}
printf("\nOCC APl Series: %2d Revision: %2d ",
verinfo. APl Seri es, veri nfo. APl Revi si on) ;
printf("\nOCdriver Series: 9%2d Revision: %2d ",
verinfo. OCdriverSeries, verinfo.OCdriverRevision);
printf("\nOC Scanner Firmmare Series: %2d Revision: %2d ",
veri nfo. Scanner Fi r mvar eSeri es, verinfo. Scanner Fi r nwar eRevi si on) ;
printf("\nOCC Hardware Series: %2d Revision: %2d\n",
veri nfo. OCHar dwar eSeri es, verinfo. OCHar dwar eRevi si on) ;

/* Read switch position */
if (SUCCESS != (rc = OC_CGet SwitchPosition(OChandl e, &swpos)))
{
printf("\nERROR OC _GetSwitchPosition failed: %\n", rc);
loexit(1);

}

printf("\nSwitch position: ");
swi t ch(swpos)

{

case SW TCH TOP:
printf("Top");
br eak;

case SW TCH BOTTOM
printf("Bottont);
br eak;

case SW TCH M DDLE:
printf("Mddle");
br eak; }

/* Read tenperature */
if (SUCCESS != (rc = OC_Get Tenperature(OChandle, & enp)))

printf("\nERROR OC Get Tenperature failed: %\n", rc);
loexit(1);

}
printf("\nTenperature: %IC ", tenp);

Publication 1747-6.5.3 Junel 1998

3-16 Developing Applications

/* Read auto-config */
if (SUCCESS != (rc = OC_Cet| OConfi guration(OChandle, &0Ccfg)))

printf("\nERROR OC Get| OConfiguration failed: %\ n", rc);
loexit(1);
}

/* Display rack configuration */
slots = OCcfg. RacklSi ze + OCcfg. Rack2Si ze + OCcfg. Rack3Si ze;
if (slots > 31) slots = 31;

printf("\n\nRack configuration:");
for (i=1; i<slots; i++)

if (OCcfg.SlotCfg[i].type !'= Oxff)
{

printf("\nSlot %2d: Type %®d, Mx 93d %",
i, OCcfg.SlotCfg[i].type, OCcfg.SlotCig[i].mx,
OCcfg.SlotCfg[i].Nane);
}

el se

printf("\nSlot %d: %", i, OCcfg.SlotCfg[i].Nane);

/* check for BAS nodules class 1 or 4 */

if (((OCcfg.SlotCigli].mx == 35) || (OCcfg.SlotCig[i].nix == 131))
&& (OCcfg.SlotCig[i].type == 6))

{

if (OCcfg.SlotCfg[i].mx == 35)
{ /* if dass 1 BAS nodule, then ...

OCcfg.SlotCfg[i].mx = 131; /* ...make it class 4 */

OCcfg. SlotCfg[i].Nane = NULL; /* renpve nanme so that OC _Createl OConfiguration
will key off mx/type */

fRecreatel Ocfg = 1;

}
BASsl ot = i;
}

/* check for |B32 modules */
if (OCcfg.SlotCfg[i].mMx ==7)
{

1B32slot = i;

}

/* if we converted a Class 1 BAS nodule to Class 4, recreate the |10 configuration */
/* to insure we get the MD and ML file sizes */
if (fRecreatel Ccfg == 1)

if (SUCCESS != (rc = OC_Createl OConfiguration(&0Ccfg)))

printf("\nERROR OC Createl OConfiguration failed: %\n", rc);
loexit(1);

}

/* Downl oad the configuration to the scanner */
if (SUCCESS != (rc = OC_Downl oadl OConfi gur ati on(OChandl e, &0Ccfg)))

printf("\nERROR OC _Downl oadl OConfiguration failed: %\ n", rc);

| it(1): Configure
} oexit(1) the scanner

See page
6-11.

Publication 1747-6.5.3 June 1998

Developing Applications 3-17

/* Set output update npde to always */ —
if (SUCCESS != (rc = OC_Set Qut put Updat eMbde(CChandl e, OUTUPD_ALWAYS)))

printf("\nERROR. OC Set CQut put Updat eMbde failed: %\n", rc);

loexit(1);
}
/* Set scan time to 5ns, periodic scan node */
if (SUCCESS != (rc = OC_Set ScanTi ne(OChandl e, SCAN_PERI CDI C, 20))) Contrt:ll scanner
operation
printf("\nERROR OC SetScanTine failed: %l\n", rc); See pages 6-70
| oexi t (1) : and 6-73.

}

/* Goto Scan Mode */
if (SUCCESS != (rc = OC_Set ScanMbde(OChandl e, SCAN_RUN)))

printf("\nERROR OC _Set ScanMbde failed: %\n", rc);
loexit(1);
}

/* Turn on User LED 1 */
if (SUCCESS != (rc = OC_Set User LEDSt at e(OChandl e, 1, LED GREEN SCLID)))

printf("\nERROR OC SetUserLEDState failed: %\n", rc);
loexit(1);
}
/* Read word O of |B32 nmodule */
if (1B32slot !'=0)
{ if (SUCCESS!=(rc = 0C_Readl nput!| mage(OChandl e, NULL, I B32slot, 0, 1, &bData)))
{

printf("\nERROR OC_Readl nputlmage failed: %\n", rc);

loexit(1l);
} }
Scan I/0
/* Wite the data read to word 2 of BAS nodule M) file */ g?gf:ﬁgs
wien = 1; if (BASslot !=0) 6-88.

if (SUCCESS!= (rc = OC_WiteMdul eFil e(OChandl e, FILTYP_M), &wData, BASsl ot,
2, wien)))

printf("\nERROR OC WiteMduleFile failed: %\ n", rc);
loexit(1);

}

/* Close the scanner before exiting */ —
OC_d oseScanner (CChandl e) ;

return(0);

} /* end main()*/

Publication 1747-6.5.3 Junel 1998

3-18 Developing Applications

Handling Interrupt
Messages

Handling Errors

Determining
Partition Sizes for
Shared Memory

Modulesthat communicateviadiscreteinput interruptsor moduleinterruptsrequire
special attention. The API bufferstheseinterruptsinternally until they are extracted
viaOC_PollScanner. Theinternal message buffer can hold as many as5 messages.
If the message buffer isfull, the oldest message in the buffer is overwritten by the
next message. Interrupts will be missed if OC_PollScanner is not called by the
application more often than interrupts are received.

For Windows NT, use the OC_WaitForxxx functions.

Every function call returns a status code for the function. Check this status code
before using the data returned by the function. The scanner reports faults and other
errorsviamessages. The API library buffersthese errorsinternally and reportstheir
existence as an Extended Error. The application must periodically call
OC_GetExtendedError to determine if an extended error message exists.

The library buffers extended errorsin a queue. The queue can hold as many as 5
extended errorsat onetime. If the queueisfull when anew extended error isreceived
from the scanner, the oldest extended error islost and ERR_OCOVERRUN is
returned. The host application must call OC_GetExtendedError periodically to
remove existing extended errors from the buffer.

Extended Errors cause the scanner to fault. Once the scanner isfaulted, it isforced
to ldle mode and cannot go to Scan mode until the Extended Errors are extracted
viaOC_GetExtendedError andthefaultisclearedviaOC_ClearFault. For Windows
NT, use the OC_WaitForExtError function.

The host application initializes the scanner by providing partitioning information,
which contains the size of memory to be reserved in the shared memory for the

input and output images. The size of memory to be reserved for each of theimages
must be greater than or equal to the number of input and output words required by

each module. The host application can’t communicate with the scanner until it has

been initialized.

The patrtitioning information is passed to OC_InitScanner in the OCINIT structure,

which is defined as:

typedef struct tagOCINIT {
WORD Qut put | magesSi ze; /* size in bytes */
WORD | nput | mageSi ze; /* size in bytes */
WORD Host Ret enti veDat aSi ze; /* size in bytes */

} OCINIT;

Publication 1747-6.5.3 June 1998

Developing Applications 3-19

To determine the input and output image sizes, call OC_Createl OConfiguration
with a configuration that contains the I/O modulesto be installed.

OC_Createl OConfiguration returns the number of bytes of 1/0 required by each
module. Or you can use OC_GetlOConfig to use the current configuration, if one
exists. Theinput and output sizes are based on the number of words of 1/0 required
by each module. As an estimate, take the total number of input and output words
for all the modulesin the system and multiply by two to get the number of required
bytes. The following code fragment cal culates the number of bytes required by the
input and output images.

CCINIT initinfo;
OCI OCFG i ocfg;
i nt i,nunslots;

/* assuming application has filled iocfg with I/O configuration */
OC_Creat el OConfiguration(& ocfg);

nunsl ots = iocfg. RacklSi ze + iocfg. Rack2Si ze + iocfg. Rack3Si ze;

if (nunslots > 31) nunsl ots = 31;

initinfo.QutputlmgeSize = initinfo.lnputlmgeSize = 0;

for (i=1; i<nunslots ; i++) {
initinfo.Qutputl mgeSize += ((iocfg.SlotCfg[i].QutputSize+l) / 2) * 2;
initinfo.lnputlmgeSize += ((iocfg.SlotCfg[i].|nputSize+l) / 2) * 2;

Any remaining shared memory can be allocated for host retentive data, whichisthe

portion of the dual port RAM that you can use to store datain case power fails. If

the application doesn’t need host retentive data, set its size to 0. If the application
needs host retentive data, the application can determine the amount of memory
available by using the OCSEGMENTSIZELIMIT constant.

This constant specifies the total number of bytes available for the three segment
sizes. To calculate the maximum memory available for the host retentive data, use
this formula:

i nitinfo.Host RetentiveDataSi ze =
OCSEGVENTSI ZELIM t - initinfo.QutputlmageSize - initinfo.lnputlnageSi ze;

If the 1/O configuration changes and causes the image sizes to change, the maximum
memory available for Host Retentive Data will change accordingly, and information
stored in the Host Retentive Data memory may be overwritten.

Publication 1747-6.5.3 Junel 1998

3-20 Developing Applications

Notes:

Publication 1747-6.5.3 June 1998

Chapter 4

Introduction

API Structures

Structure Name:

Using the API Structures

This chapter describesthe structuresthe API uses. These structures are declared in

DII_CFG

Passed to OC_ConfigureDII.
Configures a discrete input
interrupt for a module.

ocapi . h.
Syntax:
typedef struct tagDll_CFG
BYTE Sl ot Num /*
BYTE | d ncludeMask; /*
BYTE | OEdgeType; /*

WORD Preset Count; /*

} DII_CFG

sl ot nunber */

decl are which Discrete Inputs can cause interrupts */
select required transition of each discrete input */

set the nunber of transitions required to cause interrupt */

FORCEDATA

Passed to OC_SetForces.
Configures input and output
forces.

typedef struct tagFORCEDATA
{

BYTE Sl ot Num /*

WORD WordOf fset; /*

BYTE | OType; /*

WORD For ceMask; /*

WORD ForceVal ; /*
} FORCEDATA;

sl ot nunber */
offset to word to force */

sel ects force inputs or outputs */

bits set to 1 are forced, 0 renoves forces */
selects force state of bits set to 1 in ForceMask */

MSGBUF

Returned by OC_PollScanner.
MsgID identifies the message
type. Type-specific data is
contained in MsgDat a] .

#defi ne OCMSGDATASI ZE4
typedef struct tagMSGBUF
{

BYTE Msgl D,

BYTE MsgDat a[OCMSGDATASI ZE] ; /* Type-specific data

} MBGBUF;

/* nunber of bytes of nessage data */

/* Message type

OCEXTERR

Returned by
0C_GetExtendedError. I/0 error
report from scanner.

#defi ne OCERRDATASI ZE3
typedef struct tagOCEXTERR
{

BYTE Error Code;
BYTE Sl ot Num

/* nunber of bytes of error data */

/* Extended error code
/* Associ ated sl ot nunber */

BYTE ErrorDat al OCERRDATASI ZE]; /* Error code data

} OCEXTERR

*/

OCINIT

Passed to OC_InitScanner
function to specify dual port
RAM partition sizes for output
image, input image, and host
retentive data.

typedef struct tagOCINIT
{

WORD CQut put | negeSi ze;
WORD | nput | negeSi ze;

/* size in bytes */
/* size in bytes */

WORD Host RetentiveDataSi ze;/* size in bytes */

} OCOINT;

0CIOCFG

Used by
0C_CreatelOConfiguration,
0C_GetlOConfiguration, and
0C_DownloadlOConfiguration.
Configuration information for a
system. 1, 2, or 3 racks may be
configured for up to 30 1/0
modules. (Slot 0 is reserved for
the 1746 I/0 PCl Interface.)

typedef struct tagOCl OCFG

BYTE Rackl1Si ze;
BYTE Rack2Si ze;
BYTE Rack3Si ze;

OCSLOTCFGS! ot Cf g[OCMAXSLOT] ; / *

} OCl OCFG

/* nunber of slots in Rack 1 */
/* nunber of slots in Rack 2 */
/* nunber of slots in Rack 3 */
configuration for each slot */

Publication 1747-6.5.3 June 1998

4-2

Using the API Structures

Structure Name:

Syntax:

OCSLOTCFG

Configuration information for a
module. The mixand type codes
together form a unique
identification for each module.

typedef struct tagOCSLOTCFG

BYTE nmiXx; /* mx code */
BYTE type; /* type code */
BYTE InputSize; /* nunber of inputs in bytes */
BYTE CQutputSize; /* nunber of outputs in bytes */
WORD MSi ze; /* size of MD file in words */
WORD MLSi ze; /* size of ML file in words */
WORD GSi ze; /* size of Gfile in words */
WORD *GDat a; /* pointer to array of length GSize words */
char *Nane; /* pointer to nodul e nane string */
} OCSLOTCFG

OCVERSIONINFO
Returned by
0C_GetVersionInfo. Software

and hardware version numbers.

typedef struct tagOCVERSI ONI NFO
{

WORD APl Seri es; /* APl series */

WORD APl Revi si on; /* APl revision */

WORD Scanner Fi rmwar eSeries; /* Scanner firnmware series */

WORD Scanner Fi r mvar eRevi sion;/* Scanner firmwvare revision */

WORD OCHar dwar eSeri es; /* Hardware series */

WORD OCHar dwar eRevi si on; /* Hardware revision */

WORD OCdriver Series /* OCdriver series - Wndows NT only
WORD OCdri ver Revi si on /* Ccdriver reviwi on - Wndows NT only */

} OCVERSI ONI NFO,

STSFILE
Scanner status file.

typedef struct tagSTSFILE

WORD wWbr dNunf OCSTSFI LEWSI ZE] ;
} STSFILE;

Publication 1747-6.5.3 June1998

Chapter 5

Introduction

Configuring 1/0

struct {

Configuring 1/0 Modules

This chapter explains how to configure the I/0 modules for your 1746 1/O PCI
Interface system. You can either use the autoconfigure (OC_Getl OConfiguration)
function or build your own configuration (OC_Createl OConfiguration).

A separate |/O configuration utility is available for the PCI SLC I/O businterface
to simplify this process. The utility is on the 1746 1/O PCI Interface utilities disk
that ships with the 1746 1/0 PCI Interface (1747-PCIS[2]). The 1/O configuration
utility (ioconfig.exe) alows an I/O configuration datafile to be created and saved
to disk.

The application configures the scanner by downloading information about the
installed rack sizes and module types. Call the OC_GetlOConfiguration function
to get the current 1/0O configuration or use OC_Createl OConfiguration to build an
I/O configuration. Both of these functions return avalid 1/0O configuration that can
be downloaded to the scanner.

The scanner will not go to Scan mode until the OC_Downloadl OConfiguration
function sends the configuration information. The scanner checks the downloaded
I/O configuration against the installed modul eswhen the application attemptsto set
the scanner to Scan mode. The scanner returns an extended error if the I/0
configuration is not valid and the scanner will fault.

The OC_Createl OConfiguration function requiresastructure containing rack sizes
and modul e types or module names. The structure is:

BYTE Rack1Si ze; /* nunmber of slots in rackl (4,7,10, or 13) */
BYTE Rack2Si ze; /* nunber of slots in rack2 (0,4,7,10, or 13) */
BYTE Rack3Si ze; /* nunber of slots in rack3 (0,4,7,10, or 13) */
OCSLOTCFGSI ot Cf g[31];/* slot information */

} OCl OCFG

Initialize the three rack size variables with the total number of slotsin each rack. If
rack 2 or rack 3isnot installed, set the sizeto 0.

Sl ot Cf g contains information about each dot in the racks. The 1746 |/O PCI
Interface supports as many as 31 slots, numbered 0 to 30. Slot 0 is the adapter slot
(left slot of rack 1) and isinvalid for scanner functions. Each slot is described by
the structure OCSLOTCFG.

Publication 1747-6.5.3 June 1998

5-2 Configuring 1/0 Modules

struct {
BYTE m X; /* Module 1/O0 M x value */
BYTE type; /* Modul e Type */
BYTE I nput Si ze; /* nunber of inputs in bytes */
BYTE Qut put Si ze; /* nunber of outputs in bytes */
WORD MISi ze; /* size of MD file in words */
WORD MLSi ze; /* size of ML file in words */
WORD GSi ze; /* size of Gfile in words */
WORD *@Dat a; /* pointer to array of length GSize words */
char *Nane; /* pointer to nodul e name string */
} OCSLOTCFG

Publication 1747-6.5.3 June 1998

You can specify amodule by name or by mix and type. You only specify G data if
the module uses G files (such as the 1747-SN). If the Nane pointer is NULL,
OC_Createl OConfiguration usesmi x andt ype toidentify the module. See page 4
forthen x andt ype values. OC_Createl OConfiguration suppliesthel nput Si ze,
Qut put Si ze, MDSi ze, MLSi ze, Gsi ze, and Nane fields.

If Narme points to a string containing a valid module name, the module name
identifies the module. OC_Createl OConfiguration suppliesthemi x, t ype,
I nput Si ze, Qut put Si ze, MOSi ze, MLSi ze, and Gsi ze fields.

Initializeempty slotsand slot O with ami x value of OxFF and at ype value of OxFF.

If the module is not in the internal database, OC_CreatelOConfiguration doesn't
alter the OCSLOTCFG.

To support modules not included in the internal database of modules, the host
application can initialize thei x, t ype, | nput Si ze, Qut put Si ze, MSi ze,

MLSi ze, andGSi ze before downloading the I/O configuration to the scanner. See
the I/O module’s user manual to determine the proper configuration information.

Afterthe OC_CreatelOConfiguration and OCGetlOConfiguration functions return,
the 1/O configuration structure must be checked for installed modules with G files.
If the Gsi ze field of a non-empty slot configuration is not zero, then the module

contains a G file. If the module contains a G file, initialEl3at a to point to an

array ofGsi ze words to be loaded into the module during scanner configuration.
See the /0O module’s user manual to determine the proper G file data.

Configuring 1/0 Modules 5-3

Using M0-M1 Files
and G Files

The17461/0O PCI Interface usesM0-M 1 filesand G filesto download configuration
informationto specialty 1/0O modul es. Thefollowing descriptionsdescribethebasics
of MO-M1and Gfiles. For detail ed information, seetheuser manual for the specialty
I/O modul e you are configuring.

MO0-M1 files

MO and M1 files are datafiles that reside in specialty 1/0 modules only. There is
no image for these filesin the dual port memory (like the discrete input and output
imagefiles). The application of these files depends on the function of the particular
specialty 1/O module. Your application program initiates the transfer of thesefiles.
Each transfer isa single request or an API call. With respect to the 1746 1/0 PCI
Interface, the MO fileis amodule output file (awrite-only file) and the M 1 fileisa
moduleinput file (aread-only file).

You can address M0 and M1 filesin your application and they can aso be acted
upon by the specialty 1/0O module - independent of the processor scan.

G files

Some specialty modules (such asthe 1747-SN) use configuration files, which act
as the software equivalent of DIP switches.

Thedatayou enter into the G fileisautomatically passed to the specialty 1/O module
when you enter Scan mode.

Publication 1747-6.5.3 June 1998

5-4 Configuring 1/0 Modules

Supported 1/0
Modules
Module Name:? Description: Class: Mix:” Type:
AMCI-1561 1 35 14
1203-SM1 Class1 1 35 16
1203-SM1 Class 4 4 136 17
1394-SJT 4 136 17
1746-1A4 4-Input 100/120 V ac 0 1 0
1746-1A8 8-Input 100/120 V ac 0 3 0
1746-1A16 16-Input 100/120 V ac 0 5 0
1746-1B8 8-Input (SINK) 24 V dc 0 3 6
1746-1B16 16-Input (SINK) 24 V dc 0 5 6
1746-1B32 32-Input (SINK) 24 V dc 0 7 6
1746-1C16 16-Input dc 0 5 9
1746-H16 16-Input ac 0 5 7
1746-1G16 16-Input [TTL](SOURCE) 5 V dc 0 5 15
1746-IM4 4-Input 200/240 V ac 0 1 1
1746-IM8 8-Input 200/240 V ac 0 3 1
1746-IM16 16-Input 200/240 V ac 0 5 1
1746-IN16 16-Input 24 V ac/V dc 0 5 10
1746-1TB16 16-Input [FAST](SINK) 24V dc 0 5 19
1746-1TV16 16-Input [FAST](SOURCE) 24V dc 0 5 18
1746-IV8 8-Input (SOURCE) 24 V dc 0 3 20
1746-V16 16-Input (SOURCE) 24 V dc 0 5 20
1746-IV32 32-Input (SOURCE) 24 V dc 0 7 20
1746-0A8 8-Output(TRIAC) 100/240 V ac 0 27 3
1746-0A16 16-Output(TRIAC) 100/240 V ac 0 29 3
1746-0AP12 Enhanced ac 0 28 3
1746-0B8 8-Output [TRANS](SOURCE)10/50 V dc 0 27 13
1746-0B16 16-Output [TRANS](SOURCE)10/50 V dc 0 29 13
1746-0B16E 16-Output dc 0 29 20
1746-0B32 32-Output [TRANS](SOURCE) 10/50 V dc 0 31 13
1746-0BP8 8-Output dc 0 27 21
1746-0BP16 16-Output [TRANS 1 amp](SRC) 24V dc 0 29 21
1746-0G16 16-Output [TTL](SINK) 5 V dc 0 29 15
1746-0V8 8-Output [TRANS](SINK)10/50 V dc 0 27 14
1746-0V16 16-Output [TRANS](SINK)10/50 V dc 0 29 14
1746-0V32 32-Output [TRANS](SINK) 10/50 V dc 0 31 14
1746-0W4 4-Output [RELAY] V ac/V dc 0 25 0
1746-0W8 8-Output [RELAY] V ac/V dc 0 27 0
1746-0W16 16-Output [RELAY] V ac/V dc 0 29 0
1746-0X8 8-Output [ISOLATED RELAY] V ac/V dc 0 27 1
1746-0VP16 16-Output [TRANS 1 amp] (SINK) 24V dc 0 29 22

a.The module names shown in this table correspond to those used by the OC_GetlOConfiguration and
OC_CreatelOConfiguration functions.

b.The mix code for a module is composed of one byte field. The upper 3 bits represent the class of the
module, and the lower 5 bits represent the 1/0 mix of the module.

Publication 1747-6.5.3 June 1998

Configuring 1/0 Modules 5-5

Module Name:? Description: Class: Mix: Type:
1746-104 2-Input 100/120 V ac 2-Output [RLY] 0 8 0
1746-108 4-Input 100/120 V ac 4-Output [RLY] 0 1 0
1746-1012 6-Input 100/120 V ac 6-Output [RLY] 0 15 0
1746-INT4 4 thermocouples, isolated 1 35 15
17465c-INOAVI Spectrum Controls, 4 Analog Outputs 1 35 19
17465c-IN14VI Spectrum Controls, 4 Analog Inputs 1 35 20
17465sc-INO4| Spectrum Controls, 4 Analog Outputs 1 35 21
1746sc-INI4| Spectrum Controls, 4 Analog Inputs 1 35 22
1746-Ni4 4 Channel Analog Input 1 44 1
1746-NI8 8 Analog Inputs 1 35 26
1746-NI8 8 Analog Inputs 3 127 26
1746-NI04| Analog Comb. 2 In & 2 Current Out 1 32 1
1746-NI04V Analog Comb. 2 In & 2 Voltage Out 1 32 2
1746-F104| Fast Analog Comb 2 In & 2 Current Out 1 32 24
1746-FI04V Fast Analog Comb 2 In & 2 Voltage Out 1 32 18
1746-NOA4| 4 Channel Analog Current Output 1 54 1
1746-N04V 4 Channel Analog Voltage Output 1 54 2
1746-NT4 4 Channel Thermocouple Input Module 1 35 10
17465c-NT8 Spectrum Controls, 4 Analog inputs isolated 1 35 33
1746-NR4 4 Channel RTD/Resistance Input Module 1 35 13
1746-HSCE High Speed Counter/Encoder 3 127 5
1746-HS Single Axis Motion Controller 1 33 3
1746-HSRV SLC Servo Single AX MC 3 101 14
1746-HSTP1 Stepper Controller Module 1 35 12
1746-BAS1¢ BASIC Module - 5/01 Configuration 1 35 6
1746-BAS2° BASIC Module - 5/02 Configuration 4 131 6
1746-QS Synchronized Axes 4 136 27
1746-QV Open Loop Velocity 4 131 15
1747-DCM1¢ Direct Commun. Module (1/4 RACK) 1 32 25
1747-DCM2° Direct Commun. Module (1/2 RACK) 1 33 25
1747-DCM3° Direct Commun. Module (3/4 RACK) 1 34 25
1747-DCM4° Direct Commun. Module (FULL RACK) 1 35 25
1747-MNET Module Interface 4 158 "
1747-SDN DeviceNet Scanner 4 136 6
1747-SN Remote I/0 Scanner 4 136 8
1747-DSN1° Distributed 1/0 Scanner - 7 Blks 1 35 7
1747-DSN2° Distributed /0 Scanner - 30 Blks 4 136 7
1747-KE1° Interface Module, Series A 1 42 9
1747-KE2° Interface Module, Series B 1 35 9

a.The module names shown in this table correspond to those used by the OC_GetlOConfiguration and
OC_CreatelOConfiguration functions.

b.The mix code for a module is composed of one byte field. The upper 3 bits represent the class of the
module, and the lower 5 bits represent the I/0 mix of the module.

c.Some modules can have multiple configurations. To distinguish between different configurations of the
same module, a single digit is appended to the module name.

Publication 1747-6.5.3 June 1998

5-6 Configuring 1/0 Modules

Notes:

Publication 1747-6.5.3 June 1998

Chapter 6

Library of Routines

Introduction The MS-DOS API isarun-time library that can be linked with most industry
standard programming language compilers using the Pascal calling convention.

TheWindowsNT APl isa32-bit DLL that can belinkedwithmostindustry-standard
programming language compilers.

This chapter provides the programming information for each routine and identifies
which operating system supports the routine. The calling convention for each API
function is shown in C format.

Publication 1747-6.5.3 June 1998

6-2 Library of Routines OC_CalculateCRC

0C_CalculateCRC OC_CalculateCRC calculates a 16-bit CRC.

Syntax:
void OC_Cal cul at eCRC(BYTE *buf Ptr, WORD bLen, WORD *Crc);

Parameters:
Parameter: Description:
buf Ptr Points to the buffer that contains the bytes for the CRC calculation
bLen Number of bytes for which to calculate the CRC
Cc A word that returns the calculated CRC
Description:

Thisfunction is useful for verifying data integrity. For example, a CRC might be appended to data stored
in the host retentive data partition. When the datais |ater retrieved, a new CRC can be calculated and
compared to the old CRC to ensure the datais valid.

Return Value;
none

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

BYTE buffer[100];
WORD buffer_crc;
i nt r et code;

retcode = OC _Cal cul ateCRC(buffer, 100, &buffer_crc);

Publication 1747-6.5.3 June 1998

OC_ClearFault Library of Routines 6-3

0C_ClearFault OC_ClearFault clears any fault condition of the scanner.

Syntax:
i nt OC_Cl ear Faul t (HANDLE handl e) ;

Parameters:

Parameter: Description:

handl e Must be a valid handle returned from OC_OpenScanner
Description:

All extended error information must be retrieved before the fault can be cleared.

If the scanner encounters an error condition, it generates an extended error and faults. The fault forcesthe
scanner into Idle mode. The scanner cannot be placed into Scan mode until the fault is cleared.

Return Value:

Name: Value: Description:

SUCCESS 0 fault was cleared successfully

ERR_OCACCESS 2 handl e does not have access to the scanner
ERR_OCEXTERR 11 scanner extended error message, see 0C_GetExtendedError
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCRESPONSE 10 scanner did not respond to request

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt ret code;
retcode = OC O earFault(Handle);

Publication 1747-6.5.3 June 1998

6-4 Library of Routines OC_CloseScanner

0C_CloseScanner This function must always be called before exiting the application.

Syntax:
i nt OC_Cl oseScanner (HANDLE handl €e) ;

Parameters:

Parameter: Description:

handl e Must be a valid handle returned from OC_OpenScanner
Description:

This function releases control of the scanner device, releases the interrupt assigned by OC_OpenScanner,
and disables the segment address assignment.

ATTENTION: The system might become unstable if you don’t call 0C_CloseScanner before exiting
the application.

Return Value:

Name: Value: Description:
SUCCESS 0 scanner was closed successfully
ERR_OCACCESS 2 handl e does not have access to the scanner

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC_C oseScanner(Handle);

Publication 1747-6.5.3 June 1998

OC_ConfigureDlI Library of Routines 6-5

0C_ConfigureDII OC_ConfigureDII allowsanapplicationtoreceiveamessagefromthescanner when
an input bit pattern of a discrete 1/O module matches a compare value.

Syntax:
i nt OC _Confi gureDl | (HANDLE handl e, DIl _CFG *diicfqg);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
diicfg Points to the DIl configuration

Description:

The application configures the compare val ue using this function and when the comparison completes, the
scanner generates a message to the application. The application must then call OC_Poll Scanner to retrieve

the message.
TheDI | _CFGstructure is defined as:

typedef struct {
BYTE SlotNum /* slot nunber 1-30*/
BYTE | d ncludeMask;/* bits all owed mask */
BYTE | OEdgeType;/* bit pattern to conpare */
WORD Preset Count;/* nunber of matches */

} DI _CFG
This value: Means:
Must contain the slot number of a Class 0 Discrete Input module. An I/0 error report
Sl ot num is generated if the scanner determines the slot does not contain a valid discrete input

module.

Should contain the bits in the discrete input module to include in the comparison.
Only bits 0 - 7 of word 0 of the module can be configured for DII's. I O ncl udeMask
is a bit-mapped mask. Any bit set to 1 in this mask includes the corresponding bit of
the discrete input module in the comparison. Any bit set to 0 is ignored.

1 O ncl udeMask

Defines the bit pattern to compare. Only bits that correspond to bits set to 1 in

I O ncl udeMask are used. Only bits 0 - 7 are valid. | OEdge Type is a bit-mapped
| OEdgeType value. If a bit is set to 1, the comparison for the bit matches when its corresponding

discrete input bit changes from 0 to 1. If a bit is set to 0, the comparison for the bit

matches when its corresponding discrete input bit changes from 1 to 0.

When Pr eset Count is 0 or 1, the scanner generates a message each time the
Pr eset Count comparison matches. When it is between 2 and 65535, the message is generated
when the number of comparison matches meets Pr eset Count .

The scanner recognizes amatch when every hit inthel O ncl udeMask hasfinished transitioning. After a
message is generated, another message will be generated as soon as the next specified number of
matches occurs.

To disable DlI's, set O ncl udeMask to 0 with a validsl ot Num DII's are disabled by default on reset.

Publication 1747-6.5.3 June 1998

6-6 Library of Routines

OC_ConfigureDlI

Return Value;

Name: Value: Description:

SUCCESS 0 discrete input interrupt (DIl) was configured successfully
ERR_OCACCESS 2 hand! e does not have access to the scanner
ERR_OCRESPONSE 10 scanner did not respond to request

ERR_OCSCANCFG 14 scanner has not been configured

ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
DI _CFG diicfg;
i nt r et code;

diicfg.Slotnum= 6;/* Slot 6 has discrete input nodule */
diicfg.ldncludeMask = 1;/* bit 0 is the input trigger */

= 1;/* bit 0 nust toggle fromlow to high */
= 3;/* bit 0 nust toggle 3 times */

retcode = OC _ConfigureD | (Handle, &diicfg);

diicfg. | OCEdgeType
di i cfg. Preset Count

/* Use OC_Pol | Scanner() to check for DI nessages */

Publication 1747-6.5.3 June 1998

OC_CreatelO Configuration Library of Routines 6-7

0C_CreatelO OC_Createl OConfiguration creates a scanner configuration from an application-
Configuration specific ingtallation of rack sizes and installed modules. See chapter 5 for more
information.
Syntax:

i nt OC_Creat el OConfi gurati on(OCl OCFG *i ocf g) ;

Parameters:

Parameter: Description:

iocfg Specifies the rack sizes and installed modules
Description:

Modules can be specified by name or by mix and type. The function automatically fillsin the rest of the
required information in the OCI OCFG structure.

Thisfunction returnsini ocf g the scanner configuration information obtained from the rack sizes and
installed moduletypesspecifiedini ocf g. Thescanner configuration can then be downl oaded to the scanner
with OC_Downloadl OConfiguration, which allowsthe application to control the number of racks and their
sizes and the position and type of modulesinstalled in the racks.

The OCl OCFGstructure is defined as:

typedef struct tagOCl OCFG

{

BYTE RacklSi ze; /* nunber of slots in Rack 1 */

BYTE Rack2Si ze; /* nunber of slots in Rack 2 */

BYTE Rack3Si ze; /* nunber of slots in Rack 3 */

OCSLOTCFG Sl ot Cf g[OCMAXSLOT] ; /* configuration for each slot */
} OCl OCFG

Return Value;

Name: Value: Description:

SUCCESS 0 I/0 configuration was read successfully

18 at least one module was not found in the internal database
ERR_OCUNKNOWN The S| ot Cf g data for the unknown module is not altered; the remaining
modules are configured.

Considerations:
Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

6-8 Library of Routines OC_CreatelO Configuration

Example:

OCl OCFG i ocfg;

i nt retcode, nunslots, i;

char module_name[] = "1746-BAS”;
iocfg.Rack1Size = 10; /* 10 slot chassis */
iocfg.Rack2Size = 7; /* 7 slot chassis */
iocfg.Rack3Size = 0; /* Only 2 chassis */

numslots = iocfg.Rackl1Size + iocfg.Rack2Size + iocfg.Rack3Size;

for (i=1; i<numslots; i++){
iocfg.SlotCfg[i].mix = OCEMPTYMIX;
iocfg.SlotCfg[i].type = OCEMPTYTYPE; /* Empty all slots */

}
iocfg.SlotCfg[6].mix = 35;

iocfg.SlotCfg[6].type = 6; /* Slot 6 has 1746-BAS module */
or

iocfg.SlotCfg[6].name = module_name; /* Use name instead */

/* Add additional module information to */
/* match the physical /0O configuration */

retcode = OC_CreatelOConfiguration(&iocfg);
/* Use OC_DownloadlOConfiguration() to download the information */

Publication 1747-6.5.3 June 1998

OC_DemandInputScan Library of Routines 6-9

0C_DemandinputScan OC_DemandlnputScan forces the scanner to immediately perform an input scan.

Syntax:
i nt OC_Demandl nput Scan(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If mode is:
OCWAIT 0C_DemandIinputScan waits for the input scan to be
node .
completed before returning to the caller.
OCNOWAITOC_DemandInputScan returns immediately.
Description:

If an I/O scanisin progress when thisfunction is called, the input scan is performed after the current scan
has completed.

The scanner updates the input image with data read from the modules. Use OC_ReadlI nputlmage to read
data from the input image.

Return Value;

Name: Value: Description:

SUCCESS 0 demand input request was successful
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC_Demandl nput Scan(Handle, OCWAIT);

Publication 1747-6.5.3 June 1998

6-10 Library of Routines OC_DemandOutputScan

0C_DemandQutputScan OC_DemandOutputScan forcesthe scanner to immediately perform an output scan.

Syntax:
i nt OC_DenmandCQut put Scan(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If rode is:
OCWAIT 0C_DemandOutputScan waits for the output scan to be
node .
completed before returning to the caller.
OCNOWAITOC_DemandOutputScan returns immediately.
Description:

The scanner updates modul e outputsfrom the datain the output image. Use OC_WriteOutputl mageto write
datato the output image.

Return Value:

Name: Value: Description:

SUCCESS 0 demand output request was successful
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handl e;
i nt r et code;

retcode = OC _DemandQut put Scan(Handle, OCWAIT);

Publication 1747-6.5.3 June 1998

OC_DownloadlO Configuration Library of Routines 6-11

0C_DownloadIO OC_Downloadl OConfiguration downloads an I1/O configuration to the scanner.
Configuration

Syntax:
i nt OC_Downl oadl OCConf i gurati on(HANDLE handl e, OClI OCFG *i ocf g);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
iocfg Specifies the rack sizes and installed modules
Description:

The scanner must be in Idle mode to receive an |/O configuration. This function forces the scanner to Idle
mode to download the configuration.

The scanner checks the downloaded I/O configuration for validity, and if there are any errors, an extended
error might be generated. If an error is generated, the scanner will fault.

The OCI OCFGstructureis defined as;

typedef struct tagOCl OCFG

BYTE Rack1Si ze; /* nunber of slots in Rack 1 */

BYTE Rack2Si ze; /* nunber of slots in Rack 2 */

BYTE Rack3Si ze; /* nunber of slots in Rack 3 */

OCSLOTCFG Sl ot Cf g[OCMAXSLOT] ;/* configuration for each slot */
} OCl OCFG

Return Value:

Name: Value: Description:

SUCCESS 0 I/0 configuration was downloaded successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCOUTOFMEM 17 unable to allocate memory for configuration data
ERR_OCRESPONSE 10 scanner did not respond to request

Publication 1747-6.5.3 June 1998

6-12 Library of Routines OC_DownloadlO Configuration

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
OCl OCFG i ocfg;
i nt r et code;

/* Either OC _Createl OConfiguration() or OC GetlCConfiguration() were */
[* called previously to fill in iocfg’ structure */

retcode = OC_DownloadlOConfiguration(Handle, &iocfg);

Publication 1747-6.5.3 June 1998

OC_EnableEOSNotify Library of Routines 6-13

0C_EnableEOSNotify OC_EnableEOSNotify controls whether end-of-scan notification messages are
generated by the scanner.

Syntax:
i nt OC_Enabl eECSNot i f y(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If rode is:
EOSMSG_ENABLE the scanner generates an end-of-scan
message
after each scan. Use the OC_PollScanner
function
node to retrieve end-of-scan messages.
EOSMSG_DISABLE the scanner does not generate End-of-
scan
messages. End-of-scan messages are
disabled
after the scanner has been reset.
Description:

There are three types of end-of-scan messages:

This type of message: Is generated after:

OCMSG_EOS_DMDIN a 0C_DemandInputScan command has completed
OCMSG_EOS_DMDOUT a 0C_DemandOutputScan command has completed
0CMSG_EQS each timed I/0 scan

End-of-scan messages are generated from the scanner to the API viainterrupts after each scan. The scan

rate is controlled by the OC_SetScanTime function and end-of-scan interrupts are generated at the scan

rate. Enabling end-of-scan messages can affect the performance of the application due to the overhead

incurred in processing these interrupts. An alternative method to synchronize with the scanner’s I/O scan
is to monitor the scanner watchdog register, which is incremented at the end of each timed I/O scan. See
OC_GetScannerWatchdogCount.

Publication 1747-6.5.3 June 1998

6-14 Library of Routines OC_EnableEOSNotify

Return Value;

Name: Value: Description:

SUCCESS 0 notification was generated successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;

i nt ret code;
retcode = OC _Enabl eECSNoti fy(Handl e, EOSMSG _ENABLE) ;
/* Use OC_Pol | Scanner() to check ECS nessages */

Publication 1747-6.5.3 June 1998

OC_EnableForces Library of Routines 6-15

0C_EnableForces OC_EnableForces enables/disables forces for all inputs and outputswith entriesin
the force files on the scanner.

ATTENTION: Enabling forces will potentially change the
output data values that your application
was previously controlling.

Syntax:
i nt OC_Enabl eFor ces(HANDLE handl e, int nobde);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If rode is:
FORCE_ENABLE forces are enabled
mode FORCE_DISABLE forces are disabled
FORCE_CLEAR forces are disabled and all input and
output forces
are cleared from the force files.
Description:

If nol/Oforcesareintheforcefiles, OC_EnableForces does not enable forces and instead returns an error.
All forces are disabled by defaullt.

Return Value;

Name: Value: Description:

SUCCESS 0 forces were updated successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCNOFORCES 15 no forces installed, scanner cannot enable forces
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured

Publication 1747-6.5.3 June 1998

6-16 Library of Routines OC_EnableForces

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handl e;
i nt r et code;

/* Use OC _Set Forces() to configure forcing information first */
retcode = OC_Enabl eForces(Handl e, FORCE_ENABLE);

Publication 1747-6.5.3 June 1998

OC_EnableSlot Library of Routines 6-17

0C_EnableSlot OC_EnableSlot enables fine tuning of the I/O scanning process.

Syntax:
i nt OC_Enabl eS| ot (HANDLE handl e, int slotnum int state);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
sl ot num Must contain a valid slot number.
If st at e is:
SLOT_ENABLE the module is released from its reset state and is
state included in the I/0 scan
SLOT_DISABLE the module is no longer included in the I/0 scan and
any outputs remain at their last state
Description:

Thisfunction enables or disablesthe scanner from scanning the modulein aspecificsl ot num Thisapplies
to both the input and output scan. Slots that are disabled are not included in the I/O scan. By default, all
sots are enabled.

Return Value:

Name: Value: Description:

SUCCESS 0 module was updated successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCNOFORCES 15 no forces installed, scanner cannot enable forces
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handl e;
i nt r et code;
retcode = OC Enabl eSl ot (Handl e, 6, SLOT_DI SABLE); /* Exclude slot 6 */

Publication 1747-6.5.3 June 1998

6-18 Library of Routines OC_ErrorMsg

0C_ErrorMsg OC_ErrorMsg returns a descriptive text message associated with the API return
valueerr code.

Syntax:

int OC ErrorMsg(int errcode, char **nsgQ);

Description:

Thenull-terminated message string is placed in astatic buffer that isreused each timethisfunctioniscalled.
A pointer to this buffer isreturned in nsg.

Return Value;

Name: Description:
SUCCESS errcode wasvalid. msg points to corresponding error description.
ERR_OCPARAM errcode wasinvalid. nsg points to unknown error code string.

Considerations:
Supported in the DOS API library and the Windows NT API library.

Example:

HANDLE Handl e;
char *ne(g;
i nt rc;

if (SUCCESS != (rc = OC_OpenScanner (&Handl e)))

{
/* Open failed - display error nessage */
CCError Msg(rc, &nsg);
printf(“Error: %s\n”, msg);

}

Publication 1747-6.5.3 June 1998

OC_ExtendedErrorMsg Library of Routines 6-19

0C_ExtendedErrorMsg OC_ExtendedErrorMsg returns a descriptive text message associated with an
extended error.

Syntax:
i nt OC_Ext endedError Msg(HANDLE handl e, OCEXTERR *exterr, char **nsg);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
exterr Points to an extended error
Points to a static buffer that contains a null-terminated message string for
nmsg .
the associated extended error
Description:

Thisfunction isuseful when displaying an error message. You should use OC_GetExtendedError to obtain
the message before using OC_ExtendedErrorMsg to display the message. If you don’t use
OC_GetExtendedError first, OC_ExtendedErrorMsg displays a null message.

The OCEXTERR structure is defined as:

#def i ne OCERRDATASI ZE 3 /* nunber of bytes of error data */
typedef struct tagOCEXTERR
{
BYTE Error Code; /* Extended error code */
BYTE Sl ot Num /* Associ ated sl ot nunber */
BYTE ErrorDat a[| OCERRDATASI ZE]; /* Error code data */
} OCEXTERR;

See appendix A for error codes.

Return Value:

Name: Value: Description:
SUCCESS 0 extended error information was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:
Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

6-20 Library of Routines OC_ExtendedErrorMsg

Example:

HANDLE Handl e;

OCEXTERR exterr;

char *nsg;

i nt r et code;
/* Shoul d al ready have called OC Get ExtendedError() to obtain exterr */
retcode = OC_Ext endedError Msg(Handl e, &exterr, &mrsg);

printf‘ERROR:%s\n", msg);

Publication 1747-6.5.3 June 1998

OC_GetBatteryStatus Library of Routines 6-21

0C_GetBatteryStatus OC_GetBatteryStatus gets the current state of the battery of the scanner.

Syntax:
i nt OC GetBatteryStatus(HANDLE handl e, BYTE *batstate);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner

If bat st at e is:
bat st at e BATTERY_GOOD battery voltage is good
BATTERY_LOW battery voltage has dropped below a reliable level

Description:
The battery provides backup power for the host retentive data (dual port RAM).

Return Value;

Name: Value: Description:

SUCCESS 0 battery state was read successfully

ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
BYTE batt _sts;
i nt r et code;

retcode = OC CetBatteryStatus(Handl e, &batt_sts);

Publication 1747-6.5.3 June 1998

6-22 Library of Routines OC_GetDevicelnfo

0C_GetDevicelnfo OC_GeDevicelnfo returns information about the scanner device.

Syntax:
i nt OC_Get Devi cel nfo(HANDLE handl e, OCDEVI CElI NFO *devi nf o) ;

Description:

The OCDEVICEINFO is defined as:

{
WORD Scanner Type; /* scanner device type */
WORD Scannerlrq; /* allocated interrupt */
WORD Scanner Menory; /* dual -port nmenory access */
WORD Control l o; /* PCIS control registers address */
WWORD SRAM Si ze /* size of available SRAMin bytes */

} OCDEVI CElI NFG,

handl e must be avalid handle returned from OC_OpenScanner.

Return Value:

Name: Description:
SUCCESS The extended error information was read successfully.
ERR_OCACCESS handl e does not have access to scanner

Considerations:

Supported in the DOS API library and the Windows NT API library.

Description:

HANDLE Handl e;
QOCDEVI CElI NFO devi nf o;

/* display size of avail abl e SRAM */

OC_Get Devi cel nfo(Handl e, &devi nfo);
printf(“SRAM Size is %ld bytes\n”, devinfo.SRAM_Size);

Publication 1747-6.5.3 June 1998

OC_GetExtendedError Library of Routines 6-23

0C_GetExtendedError OC_GetExtendedError reads extended error information from the scanner.

Syntax:
i nt OC_Get Ext endedEr r or (HANDLE handl e, OCEXTERR *buf);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
Contains the extended error information
buf If no extended error information is available, the error code field of buf
will be 0.
Description:

The extended error information is written during Scan mode or its configuration. An API function that
determines that the scanner has responded with an error returns an error code of ERR_OCEXTERR.
OC_GetExtendedError retrieves the extended error information written by the scanner and removes the
error from the scanner.

Thelibrary buffers extended errorsin a queue. The queue can hold as many as 5 extended errors at one
time. If the queueisfull when anew extended error isreceived from the scanner, the oldest extended error
islost and ERR_OCOVERRUN isreturned. The host application must call this function periodically to
remove existing extended errors from the buffer.

The OCEXTERR structure is defined as:

#def i ne OCERRDATASI ZE 3 /* nunber of bytes of error data */

typedef struct tagOCEXTERR
BYTE Error Code; /* Extended error code */
BYTE Sl ot Num /* Associated slot nunber */
BYTE ErrorDat a[| OCERRDATASI ZE]; /* Error code data */

} OCEXTERR,

See appendix A for error codes.

Return Value;

Name: Value: Description:

SUCCESS 0 extended error information was read successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCOVERRUN 16 an error message has been discarded

Publication 1747-6.5.3 June 1998

6-24 Library of Routines OC_GetExtendedError

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
CCEXTERRext err;
i nt r et code;
retcode = OC_Cet Ext endedError(Handl e, &exterr);

Publication 1747-6.5.3 June 1998

OC_Getlnputimage UpdateCounter Library of Routines 6-25

0C_Getinputimage OC_GetlInputl mageUpdateCounter reads the value of the input image update
UpdateCounter counter from the scanner and placesit into count .
Syntax:

i nt OC_Get I nput | mageUpdat eCount er (HANDLE handl e, BYTE *count);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
count Contains the value of the input image update counter
Description:

The input image update counter isincremented by the scanner after each input scan.

Theinput image update counter isonly incremented if the scanner isin Scan mode, input scans are enabled,
and inputs are present. Use the counter to determine whether a change occurred; the value of the counter is
not important. It ispossibleto configureasystem with no inputs; in this case, theinput image update counter
would not be incremented.

Return Value:

Name: Value: Description:

SUCCESS 0 input image update counter was read successfully
ERR_OCACCESS 2 handl! e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

Considerations:
Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
BYTE count;

i nt r et code;

retcode = OC_Cetl nput | nageUpdat eCount er (Handl e, &count);

Publication 1747-6.5.3 June 1998

6-26 Library of Routines OC_Getlnputimage UpdateCounter

Publication 1747-6.5.3 June 1998

OC_GetlOConfiguration Library of Routines 6-27

0C_GetlOConfiguration OC_GetlOConfiguration queries the 1/0 rack about the installed rack sizes and
I/0 modulesin each 1746 chassis.

ATTENTION: 0C_GetlOConfiguration can take several
milliseconds to complete, depending upon the rack
configuration. While it is executing, 1/0 scanning and DII's
are disabled.

Syntax:
i nt OC_Get | OConfi gurati on(HANDLE handl e, OCI OCFG *i ocf g);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner

Specifies the rack sizes and installed modules
iocfg Use the information ini ocf g as input to 0C_DownloadlOConfiguration
to configure the scanner.

Description:

If the scanner isin Scan mode and OC_Getl OConfiguration returns successfully, OC_Getl OConfiguration
enablesthe host application to access /0. The scanner must have previously received avalid configuration
prior to going to Scan mode.

The OCl OCFGstructure is defined as:

typedef struct tagOCl OCFG

BYTE Rack1Si ze; /* nunber of slots in Rack 1 */

BYTE Rack2Si ze; /* nunber of slots in Rack 2 */

BYTE Rack3Si ze; /* nunber of slots in Rack 3 */

OCSLOTCFG Sl ot Cf g[OCMAXSLOT] ;/* configuration for each slot */
} OCl OCFG

Publication 1747-6.5.3 June 1998

6-28 Library of Routines OC_GetlOConfiguration

Return Value;

Name: Value: Description:

SUCCESS 0 I/0 configuration was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCRESPONSE 10 scanner did not respond to request

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
QOCl OCFG i ocfg;
i nt r et code;

retcode = OC_Getl| OConfiguration(Handle, & ocfg);
/* Use OC_Downl oadl OConfi guration() to downl oad the information */

Publication 1747-6.5.3 June 1998

OC_GetlLastFaultCause Library of Routines 6-29

0C_GetLastFaultCause OC_GetL astFaultCause retrieves the cause of the last fault.

Syntax:
i nt OC_Get Last Faul t Cause(HANDLE handl e, BYTE *Faul t Code, int *Sl ot Num;

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner

Points to the address that contains the fault cause
Faul t Code If the value returned in Faul t Code is 0, the scanner has not received
any faults since it has been reset.

Sl ot Num Slot number that caused the fault

Description:

When the scanner faults, an extended error is generated. The error code and slot number of the most recent
faultisretained and returned by thisfunction. Thefault causeisaduplicate of the most recent extended error.

The OC_ClearFault function clears the fault in the scanner but does not clear the cause of the last fault.

See Appendix A for error codes.

Return Value:

Name: Value: Description:

SUCCESS 0 fault was cleared successfully

ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see 0C_InitScanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;

BYTE st atus, Fault Cause;
i nt Faul t Sl ot ;

i nt r et code;

OC_Get Scanner Status (Handl e, &status);
if (status = SCANSTS_FAULT)

{
}

retcode = OC_Cet Last Faul t Cause (Handl e, &FaultCause, &FaultSlot);

Publication 1747-6.5.3 June 1998

6-30 Library of Routines OC_GetMeasuredScan Time

0C_GetMeasuredScan OC_GetM easuredScanTime returnsthe maximum and | ast observed 1/0 scan times.
Time

Syntax:
i nt OC_Get Measur edScanTi ne(HANDLE Handl e, WORD *maxtinme, WORD *lasttine);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
mext i me Returns the maximum scan time
lasttinme Returns the last scan time
Description:

The scanner calculates these values at the end of each I/O scan. The values are represented in units of 250
microseconds.

The scan times are reset to zero when changing to Scan mode, and are not valid until the end of the second
I/O scan. Only the timed /O scans are measured; the demand input or output scans are not.

Return Value:

Name: Value: Description:

SUCCESS 0 measured scan time was read successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;

WORD max_time, last_tine;
i nt r et code;

retcode = OC_CGet MeasuredScanTi me(Handl e, &max_tinme, & ast_tinme);

Publication 1747-6.5.3 June 1998

OC_GetScannerlnitinfo Library of Routines 6-31

0C_GetScannerinitinfo This function retrieves current information about the shared memory partitioning.

Syntax:
i nt OC_Get Scanner | nitlnfo(HANDLE handle, OCINIT *scaninit);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
. Points to the structure that contains the initialization information this
scaninit .
function returns
Description:

If the scanner has not been initialized, OC_GetScannerlnitinfo returns an error.

If the scanner has been previously initialized, an application can retrieve the current scanner partitioning
information with this function instead of resetting and re-initializing the scanner.

The OCl NI T structure us defined as:

typedef struct tagCCINI T

WORD Cut put | mageSi ze; /* size in bytes */

WORD | nput | nageSi ze; /* size in bytes */

WORD Host RetentiveDataSi ze; /* size in bytes */
} OCNT;

Return Value;

Name: Value: Description:

SUCCESS 0 scanner initialization information was retrieved successfully
ERR_OCACCESS 2 handl e does not have access to the scanner

ERR_OCINIT 5 scanner has not been initialized, see 0C_InitScanner
ERR_OCPOST 7 scanner POST failed, see 0C_GetScannerStatus

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

6-32 Library of Routines OC_GetScannerlnitinfo

Example:

HANDLE Handl e;
OCINIT scaninit;
i nt r et code;

retcode = OC_Get Scannerlnitlnfo(Handle, &scaninit);
if (retcode == SUCCESS)

{
printf("Input Image Size = %d bytes \n”, scaninit.InputimageSize);
printf("Output Image Size = %d bytes \n”, scaninit.OutputimageSize);
printf("Host Retentive Data Size = %d bytes \n”,
scaninit.HostRetentiveDataSize);

}

else

/* handle error */

Publication 1747-6.5.3 June 1998

OC_GetScannerStatus Library of Routines 6-33

0C_GetScannerStatus OC_GetScannerStatus reads the current status of the scanner.

Syntax:
i nt OC_Get Scanner St at us(HANDLE handl e, BYTE *scansts);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
scansts Status of the scanner

Description:

If OC_GetScannerStatus returns SUCCESS, scanst s has one of these values:

Has this

This value: hex value: Means the:

SCANSTS_BPIC 4 POST backplane IC test failed; scanner is halted

SCANSTS_CRC 2 software CRC checksum failed

SCANSTS_DPR 5 POST dual port RAM test failed; scanner is halted

SCANSTS_FAULT 13 scanner faulted; scanner is in Scan mode

SCANSTS_IDLE 11 scanner initialized; scanner is in Idle mode

SCANSTS_INIT 10 POST passed; waiting for OC_InitScanner from host

SCANSTS_INT 8 POST interrupt test failed; scanner is halted

SCANSTS_POST 1 power-on self test (POST) is in progress

SCANSTS_RAM 3 POST RAM test failed; scanner is halted

SCANSTS_SCAN 20 scanner initialized; scanner in Scan mode

SCANSTS_THERM 6 POST thermometer test failed; scanner is halted

SCANASTS_TIMER 7 POST timer test failed; scanner is halted

SCANSTS_WDOG 12 scanner watchdog timeout; scanner is halted
Return Value:

Name: Value: Description:

SUCCESS 0 scanner status was read successfully

ERR_OCACCESS 2 hand! e does not have access to scanner

ERR_OCEXTERR " scanner extended error message (Scanst s is returned)

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

6-34 Library of Routines OC_GetScannerStatus

Example:

HANDLE Handl e;
BYTE scanst s;
i nt r et code;

retcode = OC_Get Scanner St atus(Handl e, &scansts);

Publication 1747-6.5.3 June 1998

OC_GetScanner WatchdogCount Library of Routines 6-35

0C_GetScanner OC_GetScannerWatchdogCount reads the contents of the watchdog register of the
WatchdogCount scanner.
Syntax:

i nt OC_Get Scanner Wat chdogCount (HANDLE handl e, BYTE *count);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
count Returns the watchdog register contents
Description:

The watchdog register isincremented by the scanner after every timed 1/O scan.

Thisregister isincremented in both Scan and Idle modes, and isincremented even if both output and input
scansaredisabled. The control application can monitor thisregister to ensurethat the scanner isfunctioning
normally. It isaso useful for synchronizing with the I/O scan.

Return Value;

Name: Value: Description:
SUCCESS 0 watchdog was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
BYTE wdog_count ;
i nt r et code;

retcode = OC_Cet Scanner Wat chdogCount (Handl e, &wdog_count);

Publication 1747-6.5.3 June 1998

6-36 Library of Routines OC_GetStatusFile

0C_GetStatusFile OC_GetStatusFile reads a copy of the current scanner system status file into the
STSFI LE structure pointed to by st sfi | on the scanner.

Syntax:
i nt OC _Get St at usFi | e(HANDLE handl e, STSFILE *stsfil);

Parameters:

Parameter: Description:

handl e Must be a valid handle returned from OC_OpenScanner

stsfil Points to the STSFI LE structure that contains scanner system status
Description:

The statusfile is updated by the scanner at the end of each /O scan.

The STSFI LE structure is defined as;

typedef struct tagSTSFILE

{
WORD wWr dNunf OCSTSFI LEWSI ZE] ;
} STSFILE;

The statusfile is organized by words. The status file uses these classifications to define the data each word
contains:

This classification: Means the data:

is used primarily to monitor scanner options or status. This
status information is usually not written by the application, except to
clear a function such as a minor error bit.

.) . can be written by application to select scanner options while
dynamic configuration

in Scan mode.
The status file contains:
Word/Bit: Classification: Description:
Scanner mode/status
bit 4 bit 3 bit 2bit 1bit 0
1 0 000= (16) download in progress
00t 0/4 status 1 0 001= (17) Idle mode (program)
1 1 110= (30) Scan mode (run)

All other values for bits 0-4 are reserved.

Forces enabled bit

075 status This bit is set if forces have been enabled.

Publication 1747-6.5.3 June 1998

OC_GetStatusFile

Library of Routines 6-37

Word/Bit: Classification: Description:
Forces installed bit

0/ status This bit is set is forces have been installed.

0/7 t0 0/12 reserved
Major error halted bit
This bit is set by the scanner when a major error is encountered. The
scanner enters a fault condition. Word 2, Fault Code will contain a code

013 dvnamic confiquration which can be used to diagnose the fault condition.

y g When bit 0/13 is set, the scanner places all outputs in a safe state and

sets the Status LED to the fault state (flashing red).
Once a major fault state exists, the condition must be corrected and bit 0/
13 cleared before the scanner will accept a mode change request.

0/14 reserved
First pass bit
The bit is set by the scanner to indicate that the first 1/0 scan following

0/15 status . o - .
entry into Scan mode is in progress. The scanner clears this bit following
the first scan.

1/0to 1/10 reserved
Battery low bit

1/11 status This bit is set by the scanner when the Battery Low LED is on. It is cleared
when the Battery Low LED is off.
DIl overflow bit

112 status This bit is set by the scanner when a DIl interrupt occurs and the scanner
is unable to successfully transmit the DIl Received priority message to the
host.

1/13t01/15 reserved
Major error fault code
A code is written to this word by the scanner when a major error occurs.

2 status See word S:0/13. The code defines the type of fault. If not zero, the upper
byte indicates the slot associated with the error. This word is not cleared
by the scanner.
I/0 slot enables
These two words are bit mapped to represent the 30 possible I/0 slots in
an SLC 500 system. Bits 3/0 through 4/14 represent slots 0-30 (slot 0 is
reserved for the 1746 1/0 PCl Interface). Bit 4/15 is unused.

3to4 dynamic configuration When a bit is set (default condition), it allows the /0 module in the
referenced slot to be updated in the I/0 scan. When a bit is cleared, the
corresponding 1/0 module will no longer be included in the 1/0 scan.
Changes to the I/0 slot enable bits will take affect at the end of the next
I/0 scan.
Maximum observed scan time
This word indicates the maximum observed interval between consecutive

5 status I/0 scans. The interval time is reported in units of 250 ms.
Resolution of the observed scan time is +0 to -250 ms. For example, the
value 10 indicates that 2.25-2.5 ms was the longest scan time.

6 dynamic configuration Index register

y g This word indicates the element offset used in indexed addressing.

I/0 interrupt pending
These two words are bit-mapped to the 30 1/0 slots. Bits 7/1 through 8/
14 refer to slots 1-30. Bits 7/0 and 8/15 are not used.

7108 status

The pending bit associated with a slot is set when an interrupt request is
received from that slot. This bit is set regardless of the state of the 1/0
interrupt enabled bit (wee word 9 and 10).

Publication 1747-6.5.3 June 1998

6-38 Library of Routines

OC_GetStatusFile

Word/Bit:

Classification:

Description:

I/0 interrupt enabled
These two words are bit-mapped to the 30 I/0 slots. Bits 9/1 through 10/
14 refer to slots 1-30. Bits 9/0 and 10/15 are not used.

9010 status The corresponding enable bit must be set in order for an I/0 interrupt
received priority message to be generated when a module issues an
interrupt request.

11/0to 11/8 reserved
I/0 scan toggle bit

11/9 status This bit is cleared upon entry into Scan mode and is toggled (changes
state) at the end of every 1/0 scan.

DIl reconfiguration bit
11/10 dynamic configuration If the bit is set by the host, the DIl function will reconfigure itself at the end

of the next I/0 scan.

11/11 to 11/
15

reserved

12

status

Last I/0 scan time

This word indicates the current observed interval between consecutive I/
0 scans. The interval time is reported in units of 250 ms.

Resolution of the last scan time is +0 to -250 ms. For example, the value
10 indicates that 2.25-2.5 ms was the last scan time.

13

dynamic configuration

DIl function enable
Avalue of zero written to this word will disable the discrete input interrupt
function. Any non-zero value will enable the function.

14

dynamic configuration

DIl slot number

This word is used to configure the DIl function. The slot number (1-30)
that contains the discrete 1/0 module should be written to this word. The
scanner will fault if the slot is empty or contains a non-discrete I/0 module.
This word is applied upon detection of the DIl reconfigure bit 11/10 or upon
entry to Scan mode.

15

dynamic configuration

DIl bit mask

This word contains a bit-mapped value that corresponds to the bits to
monitor on the discrete 1/0 module. Only bits 0-7 are used in the DII
function. Setting a bit indicates that it is to be included in the comparison
of the discrete I/0 module’s bit transition to the DIl compare value (word
16). Clearing a bit indicates that the transition state of that bit is a “don’t
care.”

This word is applied upon detection of the DIl reconfigure bit 11/10 and
at the end of each I/0 scan.

16

dynamic configuration

DIl compare value

This word contains a bit-mapped value that corresponds to the bit
transitions that must occur in the discrete I/0 module for a count or
interrupt to occur. Only bits 0-7 are used in the DIl function. Setting a bit
indicates that the bit must transition from a 0 to a 1 to satisfy the compare
condition for that bit. Clearing a bit indicates that the bit must transition
from a 1 to a 0 in order to satisfy the compare condition for that bit. An
interrupt or count will be generated upon the last bit transition of the
compare value.

This word is applied upon detection of the DIl reconfigure bit 11/10 and
at the end of each I/0 scan.

Publication 1747-6.5.3 June 1998

OC_GetStatusFile

Library of Routines 6-39

Word/Bit: Classification:

Description:

DIl preset

When this value is 0 or 1, an interrupt is generated each time the bit
transition comparison is satisfied (see words 15 and 16). When this value
is 2-65535, a count occurs each time the bit transition comparison is

17 dynamic configuration satisfied. When the total number of counts equals the DIl preset value, an
interrupt will be generated.
This word is applied upon detection of the DIl reconfigure bit 11/10 and
at the end of each 1/0 scan.
DIl accumulator
The DIl accumulator contains the number of count transitions that have

18 status :
occurred (see word 17). When a count occurs and the accumulator is
greater than or equal to the preset value, a DIl interrupt is generated.
Scanner firmware series

19 status This word indicates the scanner firmware series number. The series and
revision numbers are used to identify versions of firmware.
Scanner firmware revision

20 status This word indicates the scanner firmware revision number. The series and
revision numbers are used to identify versions of firmware.
1746 1/0 PCl Interface hardware series

21 status This word indicates the 1746 1/0 PCl Interface hardware series number.
The series and revision numbers are used to identify versions of firmware.
1746 1/0 PCl Interface hardware revision

22 status This word indicates the 1746 I/0 PCl Interface hardware revision number.
The series and revision numbers are used to identify versions of firmware.
Scanner RAM size

23 status This word indicates the size of RAM in 16-bit K words. For example, a
value of 64 indicates 64K words, or 128K bytes.
Scanner flash ROM size

24 status This word indicates the size of flash ROM in 16-bit K words. For example,

a value of 64 indicates 64K words, or 128K bytes.

Return Value:

Name: Value: Description:

SUCCESS 0 system status file was read successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCSCANCFG 14 scanner has not been configured

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
STSFI LE stsfile;
i nt r et code;

retcode = OC _GetStatusFile(Handle, &stsfile);

Publication 1747-6.5.3 June 1998

6-40 Library of Routines

OC_GetSwitchPosition

0C_GetSwitchPosition OC_GetSwitchPosition reads the current position of the three-position front-panel
switch from the scanner.

Syntax:

i nt OC _Get Swi t chPosi ti on(HANDLE handl e, BYTE *swpos);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If swpos is:
SWDOS SWITCH_TOP switch is in the top position
" SWITCH_MIDDLE switch is in the middle position
SWITCH_BOTTOM switch is in the bottom position
Description:

The switch position has no effect on the scanner. The application can use this switch for any purpose.

The scanner must be initialized before you can monitor the switch position.

Return Value;

Name: Value: Description:

SUCCESS 0 switch position was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see 0C_InitScanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
BYTE SW_pos;

i nt r et code;

retcode = OC _Cet SwitchPosition(Handle, &sw_pos);

if (sw_pos == SWTCH BOTTOM)
OC_Set ScanMbde (Handl e, SCAN_IDLE);

Publication 1747-6.5.3 June 1998

OC_GetTemperature Library of Routines 6-41

0C_GetTemperature OC_GetTemperature reads the current temperature of the 1746 1/0O PCI Interface’s
built-in thermometer.

Syntax:
i nt OC_Get Tenper at ur e(HANDLE handl e, BYTE*tenp);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
tenp Returns the temperature in degrees Celsius
Description:

The temperature is updated every 10 seconds by the scanner.

The optimal operating temperature range for the 1746 1/0 PCI Interface is 0° to 60°C. When
OC_GetTemperature returns a value of 75_ C or higher, the 1746 1/0O PCI Interface is operating beyond its
optimal operating temperature range and you need to correct the situation.

The scanner must be initialized before you can monitor the temperature.

Return Value:

Name: Value: Description:

SUCCESS 0 temperature was read successfully

ERR_OCACCESS 2 handl! e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
BYTE t enp;

i nt r et code;

retcode = OC_Get Tenperature(Handle, &enp);

Publication 1747-6.5.3 June 1998

6-42 Library of Routines OC_GetUserJumper State

0C_GetUserJumper OC_GetUserJumperState reads the state of the user selectable jumper.
State

Syntax:
i nt OC_Get User Junper St at e(HANDLE handl e, BYTE *j npr);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If j npr is:
j mpr JUMPER_PRESENT jumper is installed
JUMPER_ABSENT jumper is not installed
Description:

The scanner reads the state of the jumper once during its POST and does not continually monitor the state
of the jumper.

The scanner must be initialized before you can monitor the jumper position.

Return Value;

Name: Value: Description:

SUCCESS 0 switch position was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
BYTE j mpr;

i nt r et code;

retcode = OC _CGet UserJunper State(Handle, & npr);

Publication 1747-6.5.3 June 1998

OC_GetUserLEDState Library of Routines 6-43

0C_GetUserLEDState OC_GetUserL ED State reads the status of one of the four user-defined LEDs.

Syntax:
i nt OC_Get User LEDSt at e(HANDLE handl e, int |lednum int *state);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
Must be a value from 1 to 4, which corresponds to LED 1, LED 2, LED 3,
| ednum
and LED 4
If st at e is:
LED_OFF LED is off
LED_RED_SOLID LED is on, red solid
state LED_GREEN_SOLID LED is on, green solid
LED_RED_FLASH LED is on, red flashing (LED1 and LED2
only)
LED_GREEN_FLASH LEDison, greenflashing (LED1 and LED2
only)
Description:

The application can use this function to determine the current state of the LEDs.

Return Value;

Name: Value: Description:
SUCCESS 0 LED was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;

i nt | ed_state;
i nt r et code;

retcode = OC _Get User LEDSt ate(Handle, 1, & ed_state);

Publication 1747-6.5.3 June 1998

6-44 Library of Routines OC_GetVersionlnfo

0C_GetVersioninfo OC_GetVersionInfo retrieves the current version of the API library, 1746 1/0O PCI
Interface hardware, and scanner firmware.

Syntax:
i nt OC_Get Ver si onl nf o(HANDLE handl e, OCVERSI ONI NFO *veri nfo);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
. Returns the current version of the API library, 1746 1/0 PCl Interface
verinfo)
hardware, and scanner firmware
Description:

The scanner must be initialized before this function returns valid version information.
The OCVERSI ONI NFO structure is defined as:

typedef struct tagOCVERSI ONI NFO

{
WORD API Seri es; /* APl series */
WORD API Revi si on; /* APl revision */
WORD Scanner Fi r mnvar eSer i es; /* Scanner firmmnare series */
WORD Scanner Fi r mnvar eRevi si on; /* Scanner firmnare revision */
WORD OCHar dwar eSer i es; /* Hardware series */
WORD OCHar dwar eRevi si on; /* Hardware revision */

} OCVERSI ONI NFG,

The Windows NT version uses the above structure with these additional members:

WORD OCDriverSeries; /* Device driver series */
WORD QOCDriver Revi si on /* Device driver series revision */

Return Value:

Name: Value: Description:

SUCCESS 0 version information was read successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

OC_GetVersioninfo Library of Routines 6-45

Example:

HANDLE Handl e;
OCVERSI ONI NFO veri nfo;
i nt r et code;

retcode = OC_Get Versionlnfo(Handle, &erinfo);

Publication 1747-6.5.3 June 1998

6-46 Library of Routines OC_InitScanner

0C_InitScanner Thisfunction initializesthe shared memory interface between the host and scanner
and this function configures the shared memory partitioning.

Syntax:
i nt CC_| ni t Scanner (HANDLE handle, OCINIT *scaninit);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
o Points to the structure that contains the initialization information passed
scaninit . .
from the application
Description:

If the scanner is executing POST when this function is called, ERR_OCPOST is returned.

If the scanner has been previoudly initialized and the partition information inscani ni t isidentical tothe
current scanner partitioning, OC_InitScanner returns successfully.

If the scanner has been previously initialized and the partition information in scani ni t isdifferent from
the current scanner partitioning, OC_InitScanner returns an error value that indicates that the scanner was
previously initialized. The scanner must bereset viaOC_ResetScanner beforetheinitialization information
can be changed. If the scanner has already beeninitialized, you can call OC_GetScannerlnitinfo to retrieve
current partition information.

The OCI NI T structure is defined as:

typedef struct tagCOCINI T

WORD Cut put | mageSi ze; /* size in bytes */

WORD | nput | nageSi ze; /* size in bytes */

WORD Host RetentiveDataSi ze; /* size in bytes */
} OCNT;

Publication 1747-6.5.3 June 1998

OC_InitScanner Library of Routines 6-47

Return Value;

Name: Value: Description:

SUCCESS 0 scanner was initialized successfully

ERR_OCACCESS 2 hand! e does not have access to the scanner

ERR_OCMEM 3 shared memory not found

ERR_OCPAR 6 initialization failed due to invalid partition information

ERR_OCPOST 7 POST in progress or scanner POST failed, see 0C_GetScannerStatus
ERR_OCREINIT 4 scanner has already been initialized

e
o

ERR_OCRESPONSE scanner did not respond to request

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
OCINIT scaninit;

i nt ret code;
scani nit. | nputl mageSi ze = 128; /* 64 words for input inmage */
scani nit. Qut put | nageSi ze = 128; /* 64 words for output inage */

scani ni t. Host Ret enti veDat aSi ze = 500; /* 256 words for host data area */
retcode = OC_InitScanner(Handle, &scaninit);

Publication 1747-6.5.3 June 1998

OC_OpenScanner Library of Routines 6-48

0C_OpenScanner OC_OpenScanner acquires access to the scanner device and sets a unique ID that
the application uses to access the scanner in subsequent functions.

Syntax:

DCSi nt OC_OpenScanner (HANDLE *handl e, 0, 0);
NT int OC_OpenScanner (HANDLE *handl e) ;

Important: The two argument values of zero areignored by the DOS AP
function.They are a carryover from the Open Controller API.

Description:

This function must be called before any of the other scanner access functions can be used.

ATTENTION: After 0C_OpenScanner has been called, 0C_CloseScanner must be called before
exiting the application.

Return Value:

Name: Value: Description:

SUCCESS 0 scanner was opened successfully
ERR_OCOPEN 1 scanner is already open
ERR_OCMEM 3 shared memory not found

Considerations:

Supported in the DOS AP library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC_QpenScanner(&Handle, 0, 0);

Publication 1747-6.5.3 June 1998

OC_PetHostWatchdog Library of Routines 6-49

0C_PetHostWatchdog OC_PetHostWatchdog increments the host-to-scanner watchdog register of the
scanner.

Syntax:
void OC_Pet Host Wat chdog(HANDLE handl e) ;

Parameters:

Parameter: Description:

handl e Must be a valid handle returned from OC_OpenScanner
Description:

OC_PetHostWatchdog must be called at time interval s less than the timeout value specified in the
OC_SetHostWatchdog function.

Return Value:

Name: Value: Description:
SUCCESS 0 watchdog was updated successfully
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
retcode = OC_Pet Host Wat chdog(Handl e);

Publication 1747-6.5.3 June 1998

6-50 Library of Routines OC_PollScanner

0C_PollScanner OC_PallScanner reads module I/O interrupt, discrete input interrupt, and end-of -
scan notification messages from the scanner.

Syntax:
i nt OC _Pol | Scanner (HANDLE handl e, int MsgFilter, MSGBUF *nsgbuf);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If MsgFi | ter is:
OCMSG_DIINT
OCMSG_IOINT,
OCMSG_EOQS, 0C_PollScanner returns a message only
OCMSG_EOS_DMDIN of the corresponding type, if any
or
MsgFi | ter OCMSG_EOS_DMDOUT
OCMSG_ANY 0C_PollScanner searches for a
message, in
the order OCMSG_DIINT, OCMSG_IOINT,
OCMSG_EOS_DMDIN,
OCMSG_EQOS_DMDOUT, then
0CMSG_EOQS, from any of the sources.
nsgbuf A structure that contains scanner messages
Description:

The MBGBUF structure is defined as:

typedef struct {

BYTE Msgl D;
BYTE MsgData[4];
} MSGBUF;

The Msgl D member of the nsgbuf structure will be one of the following values:

This value: Means:

OCMSG_NONE No message available

OCMSG_IOINIT I/0 module interrupt message, see 0C_SetModulelnterrupt
OCMSG_DIINT Discrete input interrupt message, see 0C_ConfigureDII

End-of-scan notification message from 0C_DemandinputScan command,
see 0C_EnableEOSNotify

End-of-scan notification message from 0C_DemandOutputScan
command, see 0C_EnableEOSNotify

0CMSG_EOS_DMDIN

0CMSG_EOS_DMDOUT

End-of-scan notification message for timed I/0 scan, see

0CMSG_EOS 0C_EnableEOSNotify

Publication 1747-6.5.3 June 1998

OC_PollScanner Library of Routines 6-51

The data returned in the MsgDat a member array depends upon the value in Msgl D:

This Msgl D: Returns:
Msgl D=OCCMSG_| O NT MsgDat a[0] slot number that generated the interrupt

MsgDat a[0] mask of last bit transition that generated the interrupt
Msgl D=OCCMSG_DI | NT MsgDat a[2] lowbyte of count of matches that generated the interrupt
MsgDat a[3] highbyte of count of matches that generated the interrupt

Msgl D=OCVBG_EOS_DMDI N
MsgID=0CMSG_EOQS_DMDOUT
MsgID=0C_EOS

MsgDat a[0] number of scans that occurred since the last end-of-scan
message of this type was read

Separate queues hold messages received from each source. The host application must call OC_Poll Scanner
periodically to read messages from each enabled source to prevent messages from being discarded. If a
message queue is full when anew messageis received, the oldest message is discarded and the next call to
OC_PollScanner resultsin areturn value of ERR_OCOVERRUN. The queue can hold as many as

five messages.

Return Value:

Name: Value: Description:

SUCCESS 0 scanner was polled successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCOVERRUN 16 amessage has been discarded

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
MSGBUF nmsgbuf ;
i nt r et code;

retcode = OC_Pol | Scanner(Handl e, OCMSG_ANY, &nmsgbuf);
/* Check nsgbuf.Msgl D for what nessage is available */

Publication 1747-6.5.3 June 1998

6-52 Library of Routines OC_ReadHostRetentive Data

0C_ReadHostRetentive OC_ReadHostRetentiveData reads the host-retentive-data partition of the scanner.
Data

Syntax:
i nt OC_ReadHost Ret ent i veDat a(HANDLE handl e, BYTE *buf, WORD of fset, WORD | en);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
buf Contains the data that is read
The data is read of f set bytes from the beginning of the data partition
of f set If the number of bytes from of f set to the end of the partition is smaller
than | en, no bytes will be read and ERR_OCPARAM is returned.
| en Defines how many bytes to read
Description:

Datais not read past the end of the host-retentive-data partition.

It is recommended that you verify the integrity of the data stored in the host-retentive-data partition. You
can use the OC_CalculateCRC function to generate a 16-bit CRC.

Important: The jumper for the battery-backup dual-port memory is disabled by
default. You must switch the jumper to enable the battery-backup

feature.
Return Value:
Name: Value: Description:
SUCCESS 0 host retentive data was written successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OQCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

OC_ReadHostRetentive Data Library of Routines 6-53

Example:

HANDLE Handl e;

BYTE retent _dat a[500] ;
i nt ret code;

retcode = OC_ReadHost RetentiveData(Handle, retent_data, 0, 500);

Publication 1747-6.5.3 June 1998

6-54 Library of Routines OC_ReadInputimage

0C_ReadInputimage OC_ReadInputlmage reads the current input image from the scanner.

Syntax:

i nt OC_Readl nput | mage(HANDLE handl e, WORD *i npi ngcpy, int sl otnum WORD of fset, WORD
I en, WORD *i magebuf);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If i npi mycpy is:
NULL 0C_ReadInputimage reads data directly from the input image
i npi mgcpy in the scanner’s shared memory.
not NULL OC_ReadInputimage reads data from i npi ngcpy which
contains a copy of the scanner’s input image.
If sl ot numis:
positive input data for that slot is read into the array pointed to by
sl ot num i magebuf . Theni magebuf contains | en words of input
of f set data starting at word of f set of the module in the slot. Data
| en will not be read past the end of the input image for the slot.
-1 the entire input image is read into the array pointed to by
i magebuf, and of f setand | en are ignored.
i magebuf Must point to an array that is large enough to accept the amount of data
9 in the requested input image
Description:

To guarantee that a series of callsto OC_Readlnputlmage read data from a single input scan,
OC_ReadInputlmage can first be called to read the entire input image into alocal buffer pointed to by

i magebuf , with thei npi ngcpy pointer set to NULL and sl ot numsetto-1. Thei magebuf buffer can
then be passed asi npi ngcpy in subsequent OC_Readl nputlmage calls to retrieve the slot data from the
copy of the input image. This preserves input image file integrity across multiple callsto
OC_ReadInputlmage.

If fileintegrity is not necessary, the host application can seti npi ngcpy to NULL and access data directly
from shared memory.

Publication 1747-6.5.3 June 1998

OC_Readinputimage Library of Routines 6-55

Return Value;

Name: Value: Description:

SUCCESS 0 input image was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;

WORD i nput dat a[2] ;
i nt r et code;

retcode = OC_Readl nputl mage(Handle, NULL, 6, O, 2, inputdata);

/* Read slot 6 data, first 2 words, directly fromthe input inmage */
/* table to inputdata buffer */

Publication 1747-6.5.3 June 1998

6-56 Library of Routines OC_ReadlOConfigFile

0C_ReadI0OConfigFile OC_ReadlOConfigFile reads the configuration data that is already stored in the
DOSfile created using OC_Writel OConfigFile.

Syntax:
i nt OC_Readl CConfi gFi | e(OCl OCFG *i ocfg, char *fil enane);

Parameters:
Parameter: Description:
i oct A structure that contains a copy of the configuration data that is in
9 fil enane
fil ename References a file that was created using 0C_WritelOConfigFile
Description:

If G filedataisincluded in the configuration file, OC_Readl OConfigFile allocates memory for the data
and initializes the G data values to point to the allocated memory. The host application should rel ease the
alocated memory viathefree() function whenit is no longer needed.

Return Value:

Name: Value: Description:
SUCCESS 0 I/0 configuration file was read successfully
ERR_OCFILERROR 19 error encountered while opening or reading the file

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:
OCl OCFG i ocfg;
i nt r et code;

/* DOS file naned RACKL. CFG, is storing the rack configuration info. */
retcode = OC_ReadlOConfigFile(&iocfg, "RACK1.CFG");
/* Use OC_DownloadlOConfiguration() to download the information */

Publication 1747-6.5.3 June 1998

OC_ReadModuleFile Library of Routines 6-57
0C_ReadModuleFile OC_ReadModuleFile reads a data file from a module.
Syntax:
i nt OC_ReadModul eFi | e(HANDLE handl e, BYTEftype, WORD*nfil e, int sl ot num WORD of f set,
WORD | en);
Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
Defines the module type as:
ftvpe FILTYP_MO Mo file
yp FILTYP_M1 M1 file
FILTYP_G G file
Buffer file that contains data read from the module at sI ot num
nfile The data in nf i | e is read from the module starting at word of f set .
This function does not read data past the end of the module file for the slot.
sl ot num Must be a valid slot number
of f set Must be valid word number within module file
len Number of words read from the module located at sI ot numon the
scanner into the buffer nfi | e
Description:

Thisfunction accessesan internal datafile of the sel ected module. 1/0 scanning isblocked whilethisaccess

takes place.

Return Value:

Name: Value: Description:

SUCCESS 0 file was read successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

6-58 Library of Routines OC_ReadModuleFile

Example:

HANDLE Handl e;
WWORD filedata[2];
i nt ret code;

retcode = OC_ReadModul eFil e(Handle, FILTYP_ML, filedata, 6, 3, 2);
/* Reads words 3 and 4 fromnodule in slot 6. */

Publication 1747-6.5.3 June 1998

OC_ReadOutputimage Library of Routines 6-59

0C_ReadOutputimage OC_ReadOutputl mage reads the current output image from the scanner.

Syntax:

i nt OC_ReadQut put | nrage(HANDLE handl e, WORD *out i ngcpy, int slotnum
WORD of fset, WORD | en, WORD *i nagebuf);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner

If out i mycpy is:

NULL 0C_ReadOutputimage reads data directly from the output
out i ngcpy image in the scanner’s shared memory.

not NULL OC_ReadInputimage reads data from out i ngcpy which

contains a copy of the scanner’s output image.

If sI ot numis positive, the output image for that slot is read into the array
sl ot num pointed to by i magebuf . Theni magebuf is filled with | en words of
of f set output data starting at word of f set of the module in the slot.
| en If sl ot numis -1, the entire output image is read into the array pointed

to by i magebuf, and of f set and | en are ignored.

. Must point to an array that is large enough to accept the amount of data
i mgebuf . .
in the requested output image
Description:

Since the scanner never changes data in the output image, it is not necessary to copy the image, as with the
OC_ReadInputlmage function, to preserve file integrity. It is supported, however, to provide a consistent
interface.

Return Value;

Name: Value: Description:

SUCCESS 0 output image was read successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

6-60 Library of Routines OC_ReadOutputimage

Example:

HANDLE Handl e;

WWORD out put dat a[2] ;
i nt r et code;

retcode = OC_ReadCut put | mage(Handl e, NULL, 6, O, 2, outputdata);

/* Read slot 6 data, first 2 words, directly fromthe output inmage */
/* table to outputdata buffer */

Publication 1747-6.5.3 June 1998

OC_ReadSRAM Library of Routines 6-61

0C_ReadSRAM OC_ReadSRAM reads data from the battery-backed user memory.

Syntax:
i nt OC_ReadSRAM HANDLE Handl e, BYTE *bufptr, DWORD offset, DWORD | ength);

Description:

The battery-backed memory may be used to storeimportant data that needs to be preserved in the event of
apower failure. The size of the available memory in bytes may be obtained using OC_GetDevicelnfo.

Important: It isrecommended that the integrity of data stored in the user memory
be verified by some means. The OC_CalculateCRC function may be
used to generate a 16-bit CRC that may be used for this purpose.

handl e must beavalid handlereturned from OC_OpenScanner. buf pt r pointsto abuffer to bereceive
thedata. of f set specifiesthe offset within the memroy to begin reading. | engt h specifiies the number
of bytesto be read.

If of fset +/ engt h points past the end of the memory, no bytes will be written and ERR_OCPRAM
will be returned.

Return Value:

Name: Description:

SUCCESS data was read successfully

ERR_OCACCESS handl e does not have access to scanner
ERR_OCPARAM of f set +| engt h points past the end of the memory

Considerations:

Supported in the Windows NT AP library only.

Publication 1747-6.5.3 June 1998

6-62 Library of Routines OC_ReadSRAM

Example:

Byte buf[100]; /*buffer of 100 bytes of inportant data*/
HANDLE handl e;
Word crc, crc_saved;

/* Read 100 bytes of data fromoffset O in SRAM */
OC_ReadSRAM handl e, buf, 0, 100);
/* Cal cul ate CRC */
OC_Cal cul at eCRC(buf, 100, &crc);
/* Read saved CRC at offset 100 in SRAM */
OC_ReadSRAM handl e, &crc_saved, 100, 2);
/* Check CRC */
if (crc !'= saved_crc)
printf*‘ERROR: Data is corrupted.\n”);

Publication 1747-6.5.3 June 1998

OC_ResetScanner Library of Routines

6-63

0C_ResetScanner OC_ResetScanner generates atemporary hard reset to the scanner.

ATTENTION: This call stops scanning and resets
outputs.

Syntax:
i nt OC_Reset Scanner (HANDLE handl e, int nobde);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If node is:
OCNOWAIT 0C_ResetScanner returns after releasing the reset
node .
signal to the scanner.
OCWAIT 0C_ResetScanner returns after POST is completed.
Description:

After the reset is generated, the scanner begins to execute its POST.

Return Value:

Name: Value: Description:

SUCCESS 0 scanner was reset successfully
ERR_OCACCESS 2 handl e does not have access to the scanner
ERR_OCPOST 7 scanner POST failed

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC _Reset Scanner(Handle, OCWAIT);

Publication 1747-6.5.3 June 1998

6-64 Library of Routines OC_SetForces

0C_SetForces OC_SetForcesinstalls and removes input and output forces to the scanner.

Syntax:
i nt OC_Set For ces(HANDLE handl e, FORCEDATA *f or cedat a)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
forcedata Defines the inputs and outputs to force.
Description:

If theresult of OC_SetForcesremovesall I/O forces, the scanner disablesforces. If any I/O forces are later
installed, OC_EnableForces must be called to re-enable forces.

The FORCEDATA structure is defined as:

typedef struct tagFORCEDATA {

BYTE Sl ot Num [* Sl ot Number of local 1/0O or 1747-SN nodul e (1-30)*/
WORD WordOfset; /* Word Offset in I/Oinmage */
BYTE | Olype; /* Selects Input or Qutput |Image */
WORD For ceMask; /* Install/Renove bitnmask */
WORD ForceVal ; /* Install value bitnmask */
} FORCEDATA;

This value: Means:

Sl ot Num Sl ot Numand Wor dOf f set select the word of I/0 that contains the bits

Wor dOf f set to be forced

| OType | OType must be FORCE_INPUTS or FORCE_OUTPUTS

All 16 bits of the word are installed/removed according to For ceMask
and For ceVal

Each bit in For ceMask that is set to 0 will have its force removed. Each
bitin For ceMask that s set to 1 will have its force installed. For each bit
that has its force installed, the corresponding bitin For ceVval determines
the state of the force. For bits that have their force removed, the
corresponding bit in For ceVval is ignored.

For ceMask
For ceVal

Publication 1747-6.5.3 June 1998

OC_SetForces Library of Routines 6-65

Return Value;

Name: Value: Description:

SUCCESS 0 I/0 forces were configured successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE handl e;
FORCEDATA f or ces;
i nt r et code;

/* Force low byte of input word 1 of slot 6 to Ox5A */
forces. Sl ot Num = 6;

forces. WrdOf fset = 1;

forces. | OType = FORCE_| NPUTS;

forces. ForceMask = 0xO0O0FF;

forces. ForceVal = 0x005A;

retcode = OC_Set Forces(handle, &forces);
/* Must call OC _Enabl eForces() to actually apply the force data */

Publication 1747-6.5.3 June 1998

6-66 Library of Routines OC_SetHostWatchdog

0C_SetHostWatchdog OC_SetHostWatchdog sets the host-to-scanner watchdog delay and mode of the
scanner.

Syntax:
i nt OC_Set Host Wt chdog(HANDLE handl e, int node, WORD del ay) ;

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If node is:
WATCHDOG_IGNORE the host-to-scanner watchdog is
disabled (default)
WATCHDOG_IDLE a watchdog timeout causes the scanner to fault.
node The status LED is set to flashing red, the I/0 is
reset, I/0 scanning stops, and internal scanner
error of 0x0B is set, and the major error code is
set to 0x40. Use OC_ClearFault before the
scanner can be set to Scan mode
del a Specifies the watchdog timeout in multiples of 100ms and can have any
y value from 1 (100ms) to 65535 (6553.5s).
Description

Once the Host Watchdog is enabled, the host application must call OC_PetHostWatchdog more often than
the time specified as the watchdog timeout. If the host application does not call OC_PetHostWatchdog for
atime longer than the watchdog timeout, then the action specified by node is performed.Return Value

Return Value:

Name: Value: Description:

SUCCESS 0 host watchdog was set successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC_Set Host WAt chdog(Handl e, WATCHDOG | DLE, 10);
/* Watchdog tines out in 1 second and places scanner in idle node */

Publication 1747-6.5.3 June 1998

OC_SetlnputUpdate Mode Library of Routines 6-67

0C_SetInputUpdate OC_SetInputUpdateM ode controls how the scanner updates inputs.
Mode

Syntax:
i nt OC_Set | nput Updat eMbde(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If node is:
INUPD_NEVER the scanner does not scan inputs unless explicitly
requested by the 0C_DemandIinputScan function.
node INUPD_ALWAYS the scanner continuously updates inputs on
every scan.
By default, the input update mode is INUPD_ALWAYS. A change in status
of the input update mode takes effect at the start of the next scan.
Description:

This function does not affect output image scanning.

Return Value;

Name: Value: Description:

SUCCESS 0 conditional scan was set successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized; see 0C_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handl e;
i nt r et code;

retcode = OC_Set | nput Updat eMode(Handl e, | NUPD_NEVER);
/* Must use OC _Demandl nput Scan() function to obtain new input data */

Publication 1747-6.5.3 June 1998

6-68 Library of Routines OC_SetlOldleState

0C_SetlOldieState OC_Setl Ol dleState controlsthe state of 1/0 when the scanner goesfrom Scan mode
to Idle mode.

Syntax:
i nt OC_Set |1 O dl eSt at e(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If node is:
mode IDLESTATE_HOLD module I/0’s maintain their last state.
IDLESTATE_RESET module I/0’s are reset by the scanner.
The default I/0 idle state is IDLESTATE_RESET.
Description:

The 1/O will always be reset in the case of afault.

Return Value;

Name: Value: Description:

SUCCESS 0 I/0 state was changed successfully

ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized; see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC Setl A dleState(Handle, |DLESTATE HOLD);

/* Qutputs will remain in |ast state when scanner goes to idle node */

Publication 1747-6.5.3 June 1998

OC_SetModulelnterrupt

Library of Routines 6-69

0C_SetModulelnterrupt OC_SetModulelnterrupt enables, disables, or acknowledges the module interrupt
for theslot s| ot numon the scanner.

Syntax:

i nt OC_Set Modul el nt errupt (HANDLE handl e, int slotnum int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
sl ot num Must be a valid slot number
If node is:
mode IOINT_DISABLE the module interrupt is disabled (default)
IOINT_ENABLE the module interrupt is enabled
I0INT_ACK the module interrupt is acknowledged.
Description:

When amodule interrupt is received, the scanner generates a module interrupt message that the host
application canread by callingthe OC_Poll Scanner function. After retrieving themoduleinterrupt message,
the host application should immediately acknowledge the module interrupt and then service the module
interrupt message. The module interrupt must be acknowledged before another can be received from that

module.

Return Value;

Name: Value: Description:

SUCCESS 0 module interrupt was processed successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC_Set Modul el nterrupt(Handle, 6, 1O NT_ENABLE);
/* Slot 6 nmodul e now enabl ed to generate nodule interrupts. */

/* Use OC Pol | Scanner() to check for Mdule Interrupt messages.

*/

Publication 1747-6.5.3 June 1998

6-70 Library of Routines OC_SetOutputUpdate Mode

0C_SetOutputUpdate OC_SetOutputUpdateM ode controls how the scanner updatesreal outputsfromthe
Mode Output Image.
Syntax:

i nt OC_Set Qut put Updat eMode(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner

If node is:

OUTUPD_NEVER the scanner does not write outputs from the output
image unless explicitly requested by the
0C_DemandOutputScan function

OUTUPD_CHANGE the scanner writes outputs only when the scanner

mode output image is written via 0C_WriteOutputimage,
but does not continuously update outputs from the
output image every scan

OUTUPD_ALWAYS the scanner continuously updates outputs from the
output image on every scan.

By default, the output update mode is OUTUPD_NEVER. A change in status

of the output update mode will take effect at the start of the next scan.

Description:

This function does not affect input image scanning.

Setting the output update mode to OUTUPD_NEVER allows the host application to read the input image
and perform logic to determine the initial state of outputs. Once the output image is written with theinitial
state data, the output update mode can be changed to allow updating of the outpuits.

Setting the output update mode to OUTUPD_CHANGE allows the host application to signal the scanner

to write outputs by calling OC_WriteOutputimage. This setting allows the scanner’s minimum scan time
to be reduced (since it is only scanning inputs most of the time), and is provided as a performance
enhancement.

Setting the output update mode to OUTUPD_ALWAYS forces the scanner to write outputs from the output
image on every scan.

Publication 1747-6.5.3 June 1998

OC_SetOutputUpdate Mode Library of Routines 6-71

Return Value;

Name: Value: Description:

SUCCESS 0 conditional scan was set successfully
ERR_OCACCESS 2 hand! e does not have access to the scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handl e;
i nt r et code;

retcode = OC_Set Qut put Updat eMbde(Handl e, OUTUPD_NEVER);
/* Must use OC _DemandCQut put Scan() function to send new out put data */

Publication 1747-6.5.3 June 1998

6-72 Library of Routines OC_SetScanMode

0C_SetScanMode OC_SetScanM ode changes the scan mode of the scanner.

Syntax:
i nt OC_Set ScanMbde(HANDLE handl e, int node);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If node is:
SCAN_IDLE the scanner changes to Idle mode and stops
node scanning I/0
SCAN_RUN the scanner changes to Scan mode and begins
scanning 1/0.
Description:

The scanner must be properly configured before going to Scan mode.

OC_SetScanMaodewill fail if there are any unread extended errorsor faults. Call OC_GetExtendedError to
extract all extended errors and call OC_ClearFault to clear any faults before calling OC_SetScanM ode.

Before the scanner changes to Scan mode, it compares the downloaded /O configuration to the racks and
I/0O modules actually installed. If there are any problems, an extended error is generated and
OC_SetScanModereturns an error. If the scanner finds no problems, the scanner isin Scan mode when this
function returns.

Return Value;

Name: Value: Description:

SUCCESS 0 scan mode was set successfully

ERR_OCACCESS 2 handl e does not have access to the scanner
ERR_OCFAULT 13 scanner is faulted

ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

ERR_OCRESPONSE 10 scanner did not respond to request

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:
HANDLE Handl e;
i nt r et code;
retcode = OC_Set ScanMbde(Handl e, SCAN _RUN); /* Scan |/ O */

Publication 1747-6.5.3 June 1998

OC_SetScanTime Library of Routines 6-73

0C_SetScanTime OC_SetScanTime sets the 1/0 scan time and 1/0 scan interval of the scanner.

Syntax:
i nt OC_Set ScanTi me(HANDLE handl e, int node, int tine);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If node is:
SCAN_PERIODIC t i me determines the frequency of I/0 scans in
multiples of 250us and must contain a value
mode between 1 and 255.
. SCAN_DELAYED t i me determines the delay between I/0 scans in
time . .
multiples of 10us and must contain a value
between 1 and 256.
The default mode is SCAN_PERIODIC and the defaultt i me is 10 if
0C_SetScanTime is not used to change the scan time.
Description:

A scan time change will take effect when the scanner transitions from |dle mode to Scan mode.

Return Value;

Name: Value: Description:

SUCCESS 0 scan time was set successfully

ERR_OCACCESS 2 hand! e does not have access to the scanner
ERR_OCINIT 5 scanner has not been initialized, see 0C_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC_Set ScanTi ne(Handl e, SCAN_PERI ODI C, 20);
/* Scan set to start every 5 nmsec. */

Publication 1747-6.5.3 June 1998

6-74 Library of Routines OC_SetUserLEDState

0C_SetUserLEDState OC_SetUserL EDState sets the state of a user-defined LED

Syntax:
i nt OC_Set User LEDSt at e(HANDLE handl e, int |ednum int state);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
Must be a value from 1 to 4, which corresponds to LED1, LED2, LED3, and
| ednum
LED4
If| edst at e is:
LED_OFF LED is off
LED_RED_SOLID LED is on, red solid
| edst at e LED_GREEN_SOLID LED is on, green solid
LED_RED_FLASH LED is on, red flashing (LED1 and LED2
only)
LED_GREEN_FLASH LEDison, greenflashing (LED1 and LED2
only)
Description:

The application can use the four user LEDs for any purpose.

Return Value:

Name: Value: Description:

SUCCESS 0 LED was updated successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library.

Example:

HANDLE Handl e;
i nt r et code;

retcode = OC _Set User LEDSt at e(Handl e, 1, LED GREEN SOLID);

Publication 1747-6.5.3 June 1998

OC_SetupPowerFail Action Library of Routines 6-75

0C_SetupPowerFail OC_SetupPowerFail Action registers the action to be taken when a power fail
Action interrupt is received from the scanner.
Syntax:

i nt OC_Set upPower Fai | Acti on(HANDLE handl e, BYTE *bufptr, WORD of fset, WORD |l ength, void
(*cal Il back) ());

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
If buf ptr is:
NULL no data is copied (default)
buf ptr Not NULL at power fail | engt h bytes of data are copied from
buf pt r to the host retentive data partition starting at
of fset.
of f set Specifies the offset within the host retentive data partition to begin copying
Number of bytes to copy
| ength If I engt h points beyond the end of the host retentive data partition, it is
truncated
If cal | back is:
NULL no callback function is executed (default)
cal | back Not NULL the power fail interrupt routine calls this function after
copying the data to the host retentive data partition
(if configured)
Description:

You can configure the power failure action in four ways:

* No action (default); the power failure interrupt isignored (buf pt r isNULL; cal | back isNULL)

e Copy ablock of datato the host retentive data partition in dual port RAM (buf pt r pointsto the data
tosave; cal | back isNULL)

e Execute auser callback function (buf pt r isNULL; cal | back pointsto the routineto call)

* Copy ablock of data and execute acallback function (buf pt r pointsto the datato save; cal | back
points to the routine to call)

A system typically has at least 10 milliseconds, and possibly as much as 50 milliseconds or more between
the power fail interrupt and the loss of power. The duration of thisinterval isafunction of the power supply
and system configuration, and it varies from system to system. You might need to experiment to determine
the typical value for a particular system.

Datais copied to the host retentive data partition at the rate of approximately 1K bytes per millisecond.

Declare buf pt r as static if the OC_SetupPowerFail function is used other than in mai n() ; otherwise
random data will be sent to the host retentive data area.

Publication 1747-6.5.3 June 1998

6-76 Library of Routines OC_SetupPowerFail Action

Return Value;

Name: Value: Description:

SUCCESS 0 power fail action was registered successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see OC_InitScanner
ERR_OCPARAM 8 parameter contains invalid value

Considerations:

Supported in the DOS API library only.

Example:
Thisexampleisfor DOS only.

HANDLE Handl e;

BYTE buf fer1[100];
BYTE buf f er 2[100] ;
i nt r et code;
voi d Power Fai | Save(void) /* power fail callback routine */
{
| en = 100;
OCC WiteRtcSRAM buffer2, 0, & en); /[* Put data in protected area */
}

retcode = OC_Set upPower Fai |l Acti on(Handl e, bufferl, 0, 100, PowerFail Save);

Publication 1747-6.5.3 June 1998

OC_WaitForDlI Library of Routines 6-77

0C_WaitForDII Blocks the calling thread until a DIl interrupt is received from the scanner or
nsTi meout milliseconds have elapsed.

Syntax:
i nt OC Wit For DI | (HANDLE handl e, DWORD nsTi neout)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
msTi meout Specifies the number of milliseconds to wait
Set to INFINITE to wait forever
Description:

If aDIl has been received since the last OCMSG_DIINT message was retrieved with the OC_PollScanner
function, OC_WaitForDII returns SUCCESS immediately.

Return Value:

Name: Value: Description:

SUCCESS 0 a DIl was received

ERR_RESPONSE 10 s Timeout milliseconds elapsed without a DII
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the Windows NT AP library only.

Example:

HANDLE handl e;
intrc;
MSGEBUF di i M5G

/* Wait for 10 seconds for a DIl */
rc = OC_WiitForDl I (handl e, 10000);
switch(rc) {
case SUCCESS:/* got a DIl */
/* fetch the DIl nmessage */
CC_Pol | Scanner (handl e, OCVSG DI | NT, &di i M5G) ;
br eak;
case ERR OCRESPONSE:/* tined out */
printf(“\nTimed out waiting for DII\n");
break;
default;
printf(“\nError'\n”);
break;

Publication 1747-6.5.3 June 1998

6-78 Library of Routines OC_WaitForEos

0C_WaitForEos Blocksthe calling thread until an end-of-scan (EOS) notification is received from
the scanner or nsTi neout Milliseconds have elapsed.

Syntax:
i nt OC_Wi t For Eos(HANDLE handl e, DWORD nsTi neout)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
msTi meout Specifies the number of milliseconds to wait
Set to INFINITE to wait forever
Description:

If an EOS message has been received since the last OCM SG_EOS message was retrieved with the
OC_PollScanner function, OC_WaitForEos returns SUCCESS immediately.

You can use this function to synchronize a control application with the 1/0 scan. Seethe
OC_EnableEOSNotify function.

Return Value;

Name: Value: Description:

SUCCESS 0 an EOS message was received

ERR_RESPONSE 10 s Timeout milliseconds elapsed without an EOS
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the Windows NT API library only.

Publication 1747-6.5.3 June 1998

OC_WaitForEos Library of Routines 6-79

Example:

HANDLE handl e;
intrc;
MSGBUF eos MSG

/* Wait for 10 seconds for the ECS */
rc = OC_Wit For Eos(handl e, 10000);
switch(rc) {
case SUCCESS:/* got ECs*/
/* reset the ECS event*/
CC_Pol | Scanner (handl e, OCMSG_ECS, & 0sNMSG) ;
br eak;
case ERR OCRESPONSE:/* tined out */
printf(“\nTimed out waiting for EOS\n");
break;
default;
printf(“\nError'\n”);
break;

Publication 1747-6.5.3 June 1998

6-80 Library of Routines OC_WaitForEosDmdin

0C_WaitForEosDmdin Blocks the calling thread until ademand input end-of-scan (EOS) notification is
received from the scanner or nsTi neout milliseconds have elapsed.

Syntax:
i nt OC_Wai t For EosDmdl n(HANDLE handl e, DWORD nsTi nmeout)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
msTi meout Specifies the number of milliseconds to wait
Set to INFINITE to wait forever
Description:

If ademand input EOS message has been received since the last OCMSG_EOS DMDIN message was
retrieved with the OC_PollScanner function, OC_WaitForEosDmdin returns SUCCESS immediately.

You can use this function to synchronize a control application with the 1/0 scan. Seethe
OC_EnableEOSNotify and OC_Demandl nputScan functions.

Return Value;

Name: Value: Description:

SUCCESS 0 demand input EOS message was received
ERR_RESPONSE 10 s Timeout milliseconds elapsed without an EOS
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the Windows NT API library only.

Publication 1747-6.5.3 June 1998

OC_WaitForEosDmdIn Library of Routines 6-81

Example:

HANDLE handl e;
intrc;
MSGBUF eos MSG

/* Request an input scan, but don’t wait */
OC_DemandInputScan(handle, OCNOWAIT);

/* Could have other code here */

/* Wait 1 second for the EOS */
rc = OC_WaitForEosDmdin(handle, 1000);
switch(rc) {
case SUCCESS:/* got EOS*/
/* reset the EOS_DMDIN event*/
OC_PollScanner (handle, OCMSG_EOS_DMDIN,&eosMSG);
/* do logic, etc. synchronized with the 1/0 scan */
break;
case ERR_OCRESPONSE:/* timed out */
printf(“\nTimed out waiting for EOS\n");
break;
default;
printf(“\nError'\n”);
break;

Publication 1747-6.5.3 June 1998

6-82 Library of Routines OC_WaitForEosDmdOut

0C_WaitForEosDmdOut Blocks the calling thread until a demand output end-of-scan (EOS) notification is
received from the scanner or nsTi neout milliseconds have elapsed.

Syntax:
i nt OC_Wi t For EosDnmdCut (HANDLE handl e, DWORD nsTi meout)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
msTi meout Specifies the number of milliseconds to wait
Set to INFINITE to wait forever
Description:

If ademand output EOS message has been received sincethelast OCMSG_EOS DMDOUT message was
retrieved with the OC_PollScanner function, OC_WaitForEosDmdOut returns SUCCESS immediately.

You can use this function to synchronize a control application with the 1/0 scan. Seethe
OC_EnableEOSNotify and OC_DemandOutputScan functions.

Return Value;

Name: Value: Description:

SUCCESS 0 demand output EOS message was received
ERR_RESPONSE 10 s Timeout milliseconds elapsed without an EOS
ERR_OCACCESS 2 handl e does not have access to scanner

Considerations:

Supported in the Windows NT API library only.

Publication 1747-6.5.3 June 1998

OC_WaitForEosDmdOut Library of Routines 6-83

Example:

HANDLE handl e;
intrc;
MSGBUF eos MSG

/* Request an output scan, but don't wait */
OC_DemandOutputScan(handle, OCNOWAIT);

/* Could have other code here */

/* Wait 1 second for the EOS */
rc = OC_WaitForEosDmdOut(handle, 1000);
switch(rc) {
case SUCCESS:/* got EOS*/
/* reset the EOS_DMDOUT event*/
OC_PollScanner (handle, OCMSG_EOS_DMDOUT,&e0osMSG);
/* do logic, etc. sychronized with the I/O scan */
break;
case ERR_OCRESPONSE:/* timed out */
printf(“\nTimed out waiting for EOS\n");
break;
default;
printf(“\nError'\n”);
break;

Publication 1747-6.5.3 June 1998

6-84 Library of Routines OC_WaitForExtError

0C_WaitForExtError Blocks the calling thread until an extended error is received from the scanner or
nsTi meout milliseconds have elapsed.

Syntax:
i nt OC_Wai t For Ext Error (HANDLE handl e, DWORD nsTi nmeout)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
msTi meout Specifies the number of milliseconds to wait
Set to INFINITE to wait forever
Description:

If an extended error has been received since the last extended error message was retrieved with the
OC_GetExtendedError function, OC_WaitForExtError returns SUCCESS immediately.

Return Value:

Name: Value: Description:

SUCCESS 0 an extended error occurred

ERR_RESPONSE 10 msTi meout milliseconds elapsed without an extended error
ERR_OCACCESS 2 hand! e does not have access to scanner

Considerations:

Supported in the Windows NT API library only.

Example:

HANDLE handl e;
intrc;
OCEXTERRext err

/* Error handler thread */

while(1) {/* loop forever */
OC Wit For Ext Error (handl e, | NFIN TE);
/* fetch the error data */
OC_Get Ext endedError (handl e, &exterr);
/*handl e the error */

Publication 1747-6.5.3 June 1998

OC_WaitForloInt

Library of Routines 6-85

0C_WaitForloint

Syntax:

Blocks the calling thread until a module interrupt is received from the scanner or
nsTi meout milliseconds have elapsed.

i nt OC_ Wi t For | ol nt (HANDLE handl e, DWORD nsTi meout)

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
msTi meout Specifies the number of milliseconds to wait
Set to INFINITE to wait forever
Description:

If amodule interrupt has been received since the last OCMSG_IOINT message was retrieved with the
OC_PollScanner function, OC_WaitForlolnt returns SUCCESS immediately.

Return Value:

Name:

Value: Description:

SUCCESS

0 a module interrupt was received

ERR_RESPONSE

10 nsTi meout milliseconds elapsed without a module interrupt

ERR_OCACCESS

2 handl e does not have access to scanner

Considerations:

Supported in the Windows NT AP library only.

Example:

HANDLE handl e;

intrc;

MSGBUF mi nt M5G

/* Wait for 10 seconds for a nodule interrupt*/
rc = OC_WiitForlolnt(handl e, 10000);

switch(rc) {

case SUCCESS:/* got a nodule interrupt*/
/* fetch the nodul e interrupt nessage */
OC_Pol | Scanner (handl e, OCMSG_| O NT, & nt MSG) ;
/* handl e the nodule interrupt */

br eak;

case ERR _OCRESPONSE: /* timed out */
printf(*\nTimed out waiting for module interrupt\n”);

break;
default;

printf(“\nError'\n”);

break;

Publication 1747-6.5.3 June 1998

6-86 Library of Routines OC_WriteHostRetentive Data

0C_WriteHostRetentive OC_WriteHostRetentiveDatawrites data to the host-retentive-data partition of the
Data scanne.

Syntax:
i nt OC WiteHost RetentiveDat a(HANDLE handl e, BYTE *buf, WORD offset, WORD | en);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
buf Contains the data that is read
The data is written of f set bytes from the beginning of the data partition
of f set If the number of bytes from of f set to the end of the partition is smaller
than | en, no bytes are written and ERR_OCPARAM is returned.
| en Defines how many bytes to write
Description:

Datais not written past the end of the host-retentive-data partition.

It is recommended that you verify the integrity of the data stored in the host-retentive-data partition. You
can use the OC_CalculateCRC function to generate a 16-bit CRC.

Datawritten to the host retentive data partition of the shared memory is battery-backed, and will beretained
if power isremoved from the rack, aslong as the battery voltage is good.

Return Value;

Name: Value: Description:

SUCCESS 0 host retentive data was written successfully
ERR_OCACCESS 2 handl e does not have access to scanner
ERR_OCINIT 5 scanner has not been initialized, see 0C_InitScanner
ERR_OCPARAM 8 parameter contains an invalid value

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:

HANDLE Handl e;

BYTE retent _dat a[500] ;
i nt r et code;

retcode = OC_WiteHostRetentiveData(Handle, retent_data, 0, 500);

Publication 1747-6.5.3 June 1998

OC_WritelOConfigFile Library of Routines 6-87

0C_WritelOConfigFile OC_Writel OConfigFile writes the configuration data contained in thei ocf g
structureto thefilenamed f i | enane.

Syntax:
i nt OC Witel OConfigFil e(OCl OCFG *i ocfg, char *fil enane);

Parameters:
Parameter: Description:
i oct A structure that contains the configuration data that is to be written to
9 fil ename
fi1 ename References the file to write
If fil ename does not exist, it is created.
Description:

Configuration files created by OC_Writel OConfigFile can be read by OC_Readl OConfigFile.

The OCl OCFG structure is defined as:

typedef struct tagOCl OCFG

BYTE Rack1Si ze; /* nunber of slots in Rack 1 */

BYTE Rack2Si ze; /* nunber of slots in Rack 2 */

BYTE Rack3Si ze; /* nunber of slots in Rack 3 */

OCSLOTCFGSI ot Cf g OCMAXSLOT] ; /* configuration for each slot */
} OCl OCFG

Return Value;

Name: Value: Description:
SUCCESS 0 I/0 configuration file was written successfully
ERR_OCFILERROR 19 error encountered while opening or writing the file

Considerations:

Supported in the DOS API library and the Windows NT API library

Example:
OCl OCFG iocfg
int retcode;

[* Either OC_CreatelOConfiguration() or OC_GetlOConfiguration() were */
[* called previously to fill in ’iocfg’ structure */

retcode = OC_WritelOConfigFile(&iocfg, "RACK1.CFG”);

Publication 1747-6.5.3 June 1998

6-88 Library of Routines OC_WriteModuleFile

0C_WriteModuleFile OC_WriteModuleFile writes a data file to a module.

Syntax:

i nt OC Wi teMdul eFil e(HANDLE handl e, BYTE ftype, WORD *nfile, int slotnum WORD
of fset, WORD | en);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner
Defines the module type as:
ftvpe FILTYP_MO Mo file
yp FILTYP_M{ M1 file
FILTYP_G G file
Buffer file that contains data read from the module at sI ot num
nfile The datain nf i | e is written to the module starting at word of f set .
This function does not write data past the end of the module file for the slot.
sl ot num Must be a valid slot number
of f set Must be valid word number within module file
len Number of words written from the module located at s| ot numon the
scanner into the buffernfi | e
Description:

Thisfunction accessesan internal datafile of the selected module. I/O scanning isblocked whilethisaccess
takes place.

Return Value;

Name: Value: Description:

SUCCESS 0 file was read successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCRESPONSE 10 scanner did not respond to request
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

OC_WriteModuleFile Library of Routines 6-89

Example:

HANDLE Handl e;
WWORD filedatal?2];
i nt r et code;

fil edata[0] Ox55AA;
fil edata[1] OXAASS5;

retcode = OC_WiteMdul eFil e(Handl e, FILTYP_M), filedata, 6, 3, 2);
/* Wites words 3 and 4 fromnodule in slot 6 */

Publication 1747-6.5.3 June 1998

6-90 Library of Routines OC_WriteOutputimage

0C_WriteOutputimage OC_WriteOutputlmage updates the output image on the scanner.

Syntax:

i nt OC Wi teCut putl mage(HANDLE handl e, WORD *outi ngcpy, int sl otnum
WORD of fset, WORD | en, WORD *i nagebuf);

Parameters:
Parameter: Description:
handl e Must be a valid handle returned from OC_OpenScanner

If out i mycpy is:

NULL 0C_WriteOutputimage writes data directly to the output
image in the scanner’s shared memory; if the update mode
is OUTUPD_CHANGE, the scanner is signalled to update

out i ngcpy the outputs

not NULL OC_WriteOutputimage writes data to out i ngcpy; the
output image data is not affected

If file integrity is not necessary, the host application can set out i mgcpy

to NULL.

If sI ot numis positive, the output image for that slot is written from the
array pointed to by i magebuf . Then | en words of output data starting

sl ot num at word of f set are written to the module in the slot, and will not write
of f set .
len past the end of the output image for the slot.
If sl ot numis -1, the entire output image is written from the array pointed
to by i magebuf, and of f set and | en are ignored.
. Must point to an array that is large enough to accept the amount of data
i mgebuf .
from the requested output image
Description:

To guarantee that changesto the output image resulting from aseries of callsto OC_WriteOutputlmage are

posted to the I/0 modules in asingle output scan, OC_WriteOutputlmage can be called to modify alocal

copy of the output image, then finally called to write the entire copy of the output image to the scanner’s
shared memory. This preserves output image file integrity across multiple calls to OC_WriteOutputimage.

Return Value;

Name: Value: Description:

SUCCESS 0 output image was written successfully
ERR_OCACCESS 2 hand! e does not have access to scanner
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCSCANCFG 14 scanner has not been configured
ERR_OCSLOT 12 slot number is invalid

Considerations:

Supported in the DOS API library and the Windows NT API library

Publication 1747-6.5.3 June 1998

OC_WriteOutputimage Library of Routines 6-91

Example:

HANDLE Handl e;

WWORD out put dat a[2] ;
i nt ret code;

out putdata[0] = Ox55AA;
out putdat a[1] = OxAA55;

retcode = OC_WiteQutputlmge(Handl e, NULL, 6, 0, 2, outputdata);

Publication 1747-6.5.3 June 1998

6-92 Library of Routines OC_WriteSRAM

0C_WriteSRAM OC_WriteSRAM wires data to the battery-backed user memory

Syntax:
int OC_WiteSRAM HANDLE Handl e, BYTE*bufptr, DWORD offset, DWORD | ength);

Description:

The battery-backed memory may be used to storeimportant data that needs to be preserved in the event of
apower failure. The size of the available memory in bytes may be obtained using OC_GetDevicelnfo.

Important: It isrecommended that the integrity of data stored in the user memory
be verified by some means. The OC_CalculateCRC function may be
used to generate a 16-bit CRC that may be used for this purpose.

handl e must beavalid handlereturned from OC_OpenScanner. buf pt r pointsto the datato bewritten.
of f set specifies the offset within the memroy to begin writing. | engt h specifiies the number of bytes
to be written.

If of fset +/ engt h points past the end of the memory, no bytes will be written and ERR_OCPRAM
will be returned.

Return Value:

Name: Description:

SUCCESS data was written successfully

ERR_OCACCESS handl e does not have access to scanner
ERR_OCPARAM of f set +| engt h points past the end of the memory

Considerations:

Supported in the Windows NT API library only.

Example:

Byte buf[100]; [*buf fer of inportant data*/
Word crc;
HANDLE handl e;

/* Save 100 bytes of data to offset O in SRAM */
OC Wit eSRAM handl e, buf, 0, 100);

/* Cal cul ate CRC */

CC_Cal cul at eCRC(buf, 100, &crc);

/* Wite data CRC to offset 100 in SRAM */

OC WiteSRAM handl e, &crc, 100, 2);

Publication 1747-6.5.3 June 1998

Appendix A

Introduction

Error Code

Returned by API

Functions

Error Codes

This appendix describes the error code data.

Most of the API functions return values (see chapter 6). These are the values
returned by the API functions to indicate success or possible error conditions
(but not all are returned by each function):

Name: Return Value: Description:
SUCCESS 0 function returned successfully
ERR_OCACCESS 2 handle does not have access to scanner
ERR_OCEXTERR " scanner responded with an extended error message
ERR_OCFAULT 13 request denied because scanner faulted
ERR_OCFI LERROR 19 error occurred while reading/writing disk file
ERR OCINIT 5 scanner has not been initialized
ERR_OC| OCFG 9 1/0 configuration is invalid
ERR_OCMVEM 3 shared memory cannot be found
ERR_OCNOFORCES 15 no forces installed, cannot enable forces
ERR_OCOPEN 1 scanner already open
ERR_OCOUTOFMEM 17 memory allocate failed
ERR_OCOVERRUN 16 DII, 1/0 initialization, or error report message overrun
ERR_OCPAR 6 initialization failed due to invalid partition information
ERR_OCPARAM 8 parameter contains invalid value
ERR_OCPCST 7 scanner POST failure
ERR OCREINIT 4 scanner has already been initialized
ERR_OCRESPONSE 10 scanner did not respond to request successfully
ERR_OCSCANCFG 14 scanner 1/0 configuration not downloaded
ERR_OCSLOT 12 slot number is invalid
ERR_OCUNKNOWN 18 unknown module type

20

ERR_OCNOTSUPP

function not supported on this platform

Publication 1747-6.5.3 June 1998

A-2 Error Codes

Extended Error The OC_GetExtendedError function returns error information in a structure of
Codes type OCEXTERR. This structure is five bytes in length and contains this
information:
Table A.1
OCEXTERR Structure
Buffer Offset: Bytes: Description:
0 1 extended error code
1 1 associated slot or file number
2 3 error code data

When the scanner encounters an error, the extended error code and associated slot
(if any) iswritten to the extended error code and slot number fields. Error-dependent
information iswritten to theremaining field and the scanner goesto Idlemode. The
extended error codes that can be reported by the scanner are:

Table A.2
Extended Error Codes

Extended Error Code: Description:

0x00 No errors present
0x01 Downloaded directory file is invalid
0x08 Internal software error
0x12 Downloaded configuration is corrupted
0x21 Power fail on expansion rack occurred
O0x2E Invalid DIl input slot
0x40 Host Watchdog Timeout
0x50 Data error while accessing module
0x51 Stuck PINT error
0x52 Module is missing
0x53 Module detected in unused slot
0x54 Module type does not match downloaded configuration
0x55 Module I/0 mix does not match downloaded configuration
0x56 Rack type does not match downloaded configuration
0x57 Specialty 1/0 module lock memory command timeout
0x58 Specialty /0 module fault
0x59 Specialty /0 module command timeout
0x5A Module interrupt problem
0x5B G file configuration error
0x5C MO/M1 file configuration error
0x3D Unsupported interrupt service requested by module
Ox5E 1/0 driver error
0x60 - Ox8F Module specific errors (see 1/0 module documentation)
0x90 MINT occurred on disabled slot
0x91 PINT occurred on disabled slot
0x93 Unsupported module error
0x94 Module has been inserted or reset
0xFO Internal scanner error

Publication 1747-6.5.3 June 1998

Error Codes A-3

Theerror code dataprovidesinformation specific to the cause of all extended errors,
except OxFO (see Table A.3). Thefirst byte of the error code data contains a
subsystem identifier.

Table A.3
First Byte of Error Code Data - Scanner Communications Subsystem Error Codes
Subsystem ID: Description:
0x06 Scanner Communications
0x08 Backplane Interface (module 1/0)

The second byte of the error code data provides details about the subsystem
identifier.

Table A.4
Second Byte of Error Code Data - Scanner Communications Subsystem Error Codes
Error Code: Description:
0x00 Download error - invalid directory file pointer block
0x01 Download error - change to Idle mode failed
0x02 Download error - configuration file CRC failed (byte 1 contains
the file number)

0x03 Download error - directory CRC failed
0x04 Download error - input or output image exceeds partition

allocation (byte 1 contains 0 for output image, 1 for input)

The third byte of the Error Code Data provides details about the Subsystem
Error Codes.

Table A5
Third Byte of Error Code Data - Backplane Interface Subsystem Error Codes
Error Code: Description:
0x01 Rack configuration verify error
0x02 DIl configuration error
0x03 I/0 error occurred while updating slot enables
0x06 1/0 error occurred while polling for PINT
0x07 Bad module mode change attempted
0x08 Slot error occurred during mode change
0x09 Source of module interrupt not found
0x0A Corrupted directory file detected when going to run mode
0x0C 1/0 error occurred while servicing module interrupt
0x0D Module interrupt from disabled slot
0x0E Interrupting module requested unsupported service
0xOF 1/0 error while performing input scan
0x10 I/0 error while performing output scan
0x11 Verified read or write error

Publication 1747-6.5.3 June 1998

A-4 Error Codes

Publication 1747-6.5.3 June 1998

If the extended error codeisan internal scanner error (0xF0), the slot number is set
to 0 and thefirst byte of the Error Code Data containsthe source of the error. Table
9 lists the internal scanner extended error sources.

Table A.6
Internal Scanner Errors
Error Code: Description:

0x03 Scanner message queue full
0x06 Internal scanner watchdog timeout
0x07 CRC checksum failure
0x09 Invalid message
0x0A RAM failure
0x0B

Host watchdog timeout

Appendix B

Introduction

Testing Function Calls

Both the DOS API and the Windows NT APl come with a utility program called
api _test. exe. Thisinteractive program lets you execute, from the keyboard,
every API call for the 1746 1/0 PCI Interface. Use the source code of the utility
program, along with the executable program, to test different argument values for
each function call and to verify correct scanner operation.

Another DOS utility program called ocdi ag. exe comes with the 1746 1/0 PCI
Interface hardware. Use this utility program to verify:

* hardware operation
e scanner functionality
e 1/O control

The Windows NT utility programisoc_nt . exe. To get a copy of this utility:
* contact A-B Technical Support Services at 440-646-6800
or

* download a copy from the Technical Support Services bulletin board at 440-
646-5441

Use the - d option when executing the self-unzipping file so that you preserve
subdirectory structures.

Publication 1747-6.5.3 June 1998

B-2 Testing Function Calls

Notes:

Publication 1747-6.5.3 June 1998

Allen-Bradley

N Publication Problem Report
If you find a problem with our documentation, please complete and return this form.

Pub. Name API Software for 1746 1/0 PCl Interface

Cat. No. 1747-PCIDOS, -PCINT pp o 1747-65.3 Pub.Date June 1998 PartNo. 955132-74

Check Problem(s) Type: Describe Problem(s): Internal Use Only

[] Technical Accuracy [[]text [] illustration

[] Completeness [] procedure/step [] illustration [] definition [] info in manual

What information is missing? | [] example [] guideline [] feature (accessibility)

[] explanation [] other [[] info notin
manual

[] Clarity

What is unclear?

[] Sequence

What is not in the right order?

[] Other Comments

Use back for more comments.
Your Name Location/Phone

Return to: Marketing Communications, Allen-Bradley Co., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118Phone: (440)646-3176

FAX:

(440)646-4320

Publication ICCG-5.21-August1995

PN955107-82

PLEASE FASTEN HERE (DO NOT STAPLE)

Other Comments

PLEASE FOLD HERE

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE
N Roclawell Automation
Allen-Bradley

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

PLEASE REMOVE

, Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve
’N Roclewell utomation productivity and quality for more than 90 years. We design, manufacture and support a broad

A IIen-Bradley range of automation products worldwide. They include logic processors, power and motion
control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the
world’s leading technology companies.

Worldwide representation.

Argentina ¢ Australia » Austria » Bahrain » Belgium ¢ Brazil « Bulgaria « Canada ¢ Chile » China, PRC « Colombia ¢ Costa Rica ¢ Croatia * Cyprus ¢ Czech Republic + Denmark
Ecuador ¢ Egypt ¢ El Salvador Finland « France « Germany ¢ Greece » Guatemala * Honduras « Hong Kong ¢ Hungary ¢ Iceland « India « Indonesia « Ireland ¢ Israel Italy
Jamaica « Japan « Jordan « Korea ¢ Kuwait » Lebanon « Malaysia « Mexico ¢ Netherlands « New Zealand « Norway ¢ Pakistan ¢ Peru Philippines ¢ Poland ¢ Portugal » Puerto
Rico « Qatar « Romania * Russia-CIS « Saudi Arabia Singapore ¢ Slovakia ¢ Slovenia ¢ South Africa, Republic « Spain « Sweden ¢ Switzerland ¢ Taiwan * Thailand ¢ Turkey
United Arab Emirates ¢ United Kingdom ¢ United States ¢ Uruguay ¢ Venezuela ¢ Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Publication 1747-6.5.3 — June 1998 PN 955132-74
Copyright 1998 Allen-Bradley Company, Inc. Printed in USA

	1747-6.5.3, API Software for 1746 I/O PCI Interface
	Important User Information
	Using This Manual
	Table of Contents
	Chapter 1 - Overview
	Introduction
	Relationship to the Open Controller
	The 1746 I/O PCI Interface API
	Understanding the 1746 I/O PCI Interface Architecture
	Scanner Modes
	Installing the DOS API
	Installing the Windows NT API

	Chapter 2 - Using the API
	Introduction
	Getting Started
	Programming Conventions
	Tools to Use

	Chapter 3 - Developing Applications
	Introduction
	How the API Functions Are Organized
	Programming Sequence
	Programming Example for DOS
	Programming Example for Windows NT
	Handling Interrupt Messages
	Handling Errors
	Determining Partition Sizes for Shared Memory

	Chapter 4 - Using the API Structures
	Introduction
	API Structures

	Chapter 5 - Configuring I/O Modules
	Introduction
	Configuring I/O
	Using M0-M1 Files and G Files
	Supported I/O Modules

	Chapter 6 - Library of Routines
	Introduction

	Appendix A - Error Codes
	Appendix B - Testing Function Calls
	Allen-Bradley Publication Problem Report
	Back Cover

