SIEMENS

SIMATIC S5

S5-155U
CPU 948

Programming Guide

This manual has the order number:

6ESS5 998-3PR21

10/98
C79000-G8576-C848
Release 04

Contents

Introduction

User Program

Program Execution

Operating Statuses and Program
Execution Levels

Interrupt and Error Diagnostics

Integrated Special Functions

Extended Data Block DX 0

Memory Assignment and Memory
Organization

Memory Access Using Absolute
Addresses

Multiprocessor Mode and Com-
munication in the S5-155U

PG Interfaces and Functions

Appendix

Indexes:
Abbreviations
Key Words

The List of Operations, order no.
6ES5 997-3UA22, is included
with this manual.

© 0O N oo o B~ W N PP

I =
N B O

[HEN
W

Safety Guidelines

/N
/N
/N

This manual contains notices which you should observe to ensure your own personal safety, as well as to protect
the product and connected equipment. These notices are highlighted in the manual by a warning triangle and are
marked as follows according to the level of danger:

Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are not
taken.

Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are not
taken.

Caution
indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular
part of the documentation.

Qualified Personnel

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are defined
as persons who are authorized to commission, to ground, and to tag circuits, equipment, and systems in accor-
dance with established safety practices and standards.

Correct Usage

/N

Trademarks

Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been ap-
proved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and
operated and maintained as recommended.

SIMATIC®, SIMATIC NET® and SIMATIC HMI® are registered trademarks of SIEMENS AG. Third parties using
for their own purposes any other names in this document which refer to trademarks might infringe upon the rights
of the trademark owners.

Copyright © Siemens AG 1998 All rights reserved Disclaimer of Liability

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
createdby patentgrantor registration of a utility model or design, are

reserved. corrections included in subsequent editions. Suggestions for
. improvementare welcomed.

Siemens AG

Bereich Automatisierungs- und Antriebstechnik © Siemens AG 1998

Geschaeftsgebiet Industrie-Automatisierungssysteme
Postfach 4848, D-90327Nuernberg

Subject to change without prior notice.

Siemens Aktiengesellschaft 6ES5998-3PR21

We have checked the contents of this manual foragreementwiththe
hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary

Contents

11
1.2
13
14
15
1.6
1.7
18

21

211
212
2.13
214
2.15
2.2

221
222
2.3

231
2.3.2
2.3.3
234
24

24.1
242
243

INtrOdUCHION e — 1-3

Area of Application for the S5-155U withthe CPU 948. 1-4
Typical Mode of Operation of a CPU e e 1:-5.

The Programsin a CPU. e e e e 1-7

Which Operands are available to the User Program?. 1-11
How much Memory is available for the User Program? 1-14
How to Tackle Programming. e 1:15
Programming TOOISo 1-18
Converting User Programs of the CPU 928B forthe CPU948. 1-19
USEr Program . ..o e e 2-3

STEP 5 Programming Languageot e 2:4 ..

The LAD, CSF, STL Methods of Representation. 2-4
Structured Programmingttt e e 2-5

STEP 5 Operations.ot e e e . 2- 6
Number Representationt 2 -8

STEP 5 Blocks and Storing them in Memory. i 12.. 2 -
Program, Organization and Sequence Blocks. 6...2-1
Organization Blocks as User Interfaces i, 2-.18.
Organization Blocks for Special Functions. 2.-22..
Function BIOCKS oo e 2-23
Structure of Function Blocks. e 2-24
Programming Function BIOCKS s 2-.26

Calling Function Blocks and Assigning Parameterstothem.............. 2-28
Special Function BIOCKS. e 2-33

Data BIOCKSo e e 2-35
Creating Data BIOCKS e 2-37
Opening Data BIOCKS e 2-38

Special Data BIoCKS e 2-41

CPU 948 Programming Guide
C79000-G8576-C848-04 iii

Contents

3.1
3.2
3.3
3.4
341
3.5
351
3.5.2
3.5.3
354
3.55

4.1

4.2

42.1
422
423
4.3

43.1
43.2
4.3.3
434
4.3.5
4.3.6
4.3.7
4.3.8
4.4

44.1
442
443
444

5.1
5.2
5.3
5.4
541
5.4.2
5.4.3

Program EXeCULION. o e 3-3
Principle of Program EXeCULioN. 3:4
Program Organizationt e e 3-5
Storing Program and Data BloCks., 3.-.10.
Processing the User Program.ot e e e 3:-11
Definition of Terms used in Program Execution i 2..3-1
STEP 5 Operations with Examples i i 3.-.15..
BasiC Operationst e e 3-19
Programming Examples in the STL, LAD and CSF Methods of Representation. 3-34
Supplementary OperationsS.ottt e 3-49
Executive Operationst 3-59
Semaphore OperationsSot e e 3-75
Operating Statuses and Program Execution Levels 4-3
Program Execution Levels. 4.- 4
STOP MOAe . ..o e 4-9
SOFT STOP . . e 4-9
HARD STOP . .. e e e e 4-13
OVERALL RESET . .ot e e e e, 4.-14
START-UP MOQE e e e e e e 4-16
MANUAL and AUTOMATIC COLD RESTART e 4-17
MANUAL and AUTOMATIC WARM RESTART. e 4-18
Comparison between COLD RESTART and WARM RESTART 4-21
RETENTIVE COLD RESTARTo e e e e -22. 4
Comparison of COLD RESTART and RETENTIVE COLD RESTART 4-23
User Interfaces for Start-Up.o e 4-24
Extended AUTOMATIC WARM RESTART with the CPU 948 (HOT RESTART). 4-27
Interruptions during START-UP e e 4-28

RUN MOde e 4-29
Cyclic Program EXeCULIONottt e e e e 4 -30
Specifying Time and Interrupt-Driven Program Execution 4-32
Time-Controlled Program Execution.t 4233
Interrupt-Driven Program EXeCUtion.t e 4-:41
Interrupt and Error DIagnoStiCso ot 5-3
Frequent Errors in the User Program e 5-4..
Error Information 5-5
Procedure for Error ANalysis ot e 5-8
Control Bits and Interrupt Stack e 5-9
COoNtrol BitS . ..ot e —— 5-10
ISTACK Contento e e e e e e e e 5-14
Example of Error Diagnosis using the ISTACK. i 9..5-1

CPU 948 Programming Guide
C79000-G8576-C848-04

Contents

5.5 Error Handling Using Organization Blocks i ... 20. 5-
5.6 Causes of Error and Reactions of the CPU. -23...5
5.6.1 OB 19: Calling a Logic Block That Is Not Loaded (KB) 5-24
5.6.2 OB 19: Calling a Data Block That Is Not Loaded (KDB)., 5-24
5.6.3 OB 23/24, OB 28/29:Timeout Error (QVZ)t e 25.5-
5.6.4 OB 25: Addressing Error (ADF) o 5-.26

5.6.5 OB 26: Cycle Time Exceeded Error (ZYK)o 27..5-
5.6.6 OB 27: (Substitution Error SUF). e 5:-28

5.6.7 OB 30: Parity Error and Timeout Error in the User Memory (PARE) 5-28
5.6.8 OB 32: Load and Transfer Error (TRAF) i e =29.. 5
5.6.9 OB 33: Collision of Timed Interrupts Error (WEFES/WEFEH) 5-30
5.6.10 OB 34: Error with G DB/GX DX (FEDBX)ot e e 5-32
5.6.11 OB 35: Communication EITOrSt e e iea s 5:32

5.6.12 OB 36: Error in Self-test 5-33

5.7 S-St . . o 5-34

571 OVEIVIEW . .ottt e e e e e e e 5-34

5.7.2 Description of the Test FUNCLIONS it 5.-.35

B.7.3 SeHNGS . . o ot e 5-37

574 Error Handlingo e . 5-38

6 Integrated Special FUNCLIONS e e 6:-3

6.1 INrodUCHION o e e e ———— 6-4

6.2 OB 121: Set/Read System TiMettt e e e 6-8.

6.3 OB 122: "Disable Interrupts” On/Off 6.-.12.

6.4 OB 124: Delete STEP 5 BIOCKS. 6.-14

6.5 OB 125: Generate STEP 5 BIOCKS.o 6-.17.

6.6 OB 126: Define, Transfer Process Images 20...6-
6.7 OB 129: Battery Stateo e 6.- 25

6.8 OB 131:Delete ACCUS 1,2,3and 4.t e 6.-.26..

6.9 OB 132/133: Roll-Up ACCU/ROII-DOWN ACCU.ot e e 6-27
6.10 OB 141: "Disable Single Cyclic Timed Interrupts” On/Off. 6-29
6.11 OB 142: "Delay All Interrupts" On/Off 6 -32

6.12 OB 143: "Delay Single Cyclic Timed Interrupts” On/Off 6-35
6.13 OB 150: Set/Read System Timet e e 6-.38.

6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt o... 6-43
6.15 OB 153: Set/Read Time for Delayed Interrupt. i 50.. 6 -
6.16 OB 180: Variable Data BIOCK ACCESS oot e 6.-53..

6.17 OB 181: Test Data Blocks (DB/DX)ottt e 6 -.57.

6.18 OB 182: Copy Data Area.ottt e e 6.- 59

6.19 OB 202 to 205: Multiprocessor Communication 6 - 62

CPU 948 Programming Guide
C79000-G8576-C848-04 \Y

Contents

6.20 OB 222: Restart Cycle Monitoring Timet e :63.6

6.21 OB 223: Compare Start-Up Modes. e 6.-.64 ..

6.22 OB 254/255: Copy/Duplicate Data BIOCKS e 65.. 6 -

7 Extended Data BIOCK DX 0.ot 7:3

7.1 APPHCAtiON . . .o e —— 7-4

7.2 Structure Of DX 0. .. ot 7-5

7.21 Example of INnput in DX 0. . ..ot e s 7-7

7.3 Parameters for DX Ot e e 7-8

7.4 Examples of Parameter Assignment 7:12 ..

7.41 STEP 5 Programmingttt e e e e e 7.-12

7.4.2 Parameter Assignment using the PG Screen Form. i i 7-14

8 Memory Assignment and Memory Organization., 8-3

8.1 Structure of the Memory Ar€a. oot e e 8-4

8.2 Memory Assignmentinthe CPU 948 8.-5...

8.2.1 Memory Assignment for the System RAM 6...8-

8.2.2 Memory Assignment for the Peripherals 8.-8...

8.3 User Memory Organization inthe CPU 948. 0..8-1

8.3.1 Block Headers in User MEMOIY it e et 8.-12

8.3.2 Block Address Listin Data BIOCK DB 0.t i 8.-.13.

8.3.3 RIRJI AICA . . .o e 8-14

8.3.4 RS/IRT AlCA. . .. it 8-15

8.3.5 Bit Assignment of the System Data Words. i -.18..8

8.3.6 Addressable System Data Areaot e 8:42

9 Memory Access Using Absolute AddreSSsesot 9-3

9.1 INrodUCHIONot e e e ———— 9-4

9.2 Memory Access via Address IN ACCU Lt e e 8...9-

9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly 9-9

9.2.2 Examples of Accessto DW > 255 9.-15.

9.2.3 LDI/TDI: Loading to or Transferring from a 32-Bit Memory Area Indirectly 9-17

9.3 Transferring Memory BIOCKS. e 9-.19

9.4 Operations with the Base Address Register (BR Register)o ... 9-22

9.4.1 Operations for Transfer between Registers. i 9-:23...

9.4.2 Accessing the Local MEMOIY e 9.-:24

9.4.3 Accessing the Global Memory e 9.-25

9.4.4 Accessing the Dual-Port RAM Memoryt 29..9-

10 Multiprocessor Mode and Communication inthe S5-155U 10-3

10.1 Multiprocessor Mode. o e 10-4

10.1.1 When to use the Multiprocessor Mode i 10.-4

10.1.2 What Communications Mechanisms are Available?. 10-4
CPU 948 Programming Guide

Vi C79000-G8576-C848-04

Contents

10.1.3 Exchanging Data via IPC Flags.o e e e, 10.-5
10.1.4 Exchanging Data via Handling Blocks i 10.- 8.
10.1.5 What needs to be Programmed for the Multiprocessor Mode? 10-9
10.1.6 How to Create Data BIock DB 1. e e a e 10.-9
10.1.7 Starting up in the Multiprocessor Mode i 10.- 13.
10.1.8 TeSt MOde.o e 10-14
10.2 Multiprocessor COmmUNICAtION. oottt e e e e 10: 15
10.2.1 INtrodUCHION . . .o et e e e e e e ———— 10 - 15
10.2.2 How the Transmitter and Receiver are Identified 16 . 10 -
10.2.3 Why Datais Buffered e 10 - 17
10.2.4 How the Buffer is Processed and Managedt 18.. 10 -
10.2.5 System Start-Up e 10-21
10.2.6 Calling Communication OBS.ttt e 10 - 22
10.2.7 How to Assign Parameters to Communication OBS.0t 10 - 23
10.2.8 How to Evaluate the Output Parameters. 10 - 24. .
10.3 Runtimes of the Communication OBS.t e -.31. 10
10.4 INITIALIZE Function (OB 200).ot e e 10 -.33
1041 FUNCHON .« . .ottt e e e e e e e e e e e e e 10 - 33
10.4.2 Call Parameters.o e 10 - 35
10.4.3 Input Parameters. i e rrrieeeeeee. 1035
10.4.4 Output Parameters e e 10 - 38
10.5 SEND Function (OB 202)ottt e e e 10:- 40
1051 FUNCHON . . .ot e e e e e e e e e e 10 - 40
10.5.2 Call Parameters.o 10 - 40
10.5.3 Input Parameters.o e e e 10240
10.5.4 Output Parameters o e e 10 - 42
10.6 SEND TEST Function (OB 203).ttt e e e e 10-45
10.6.1 FUNCHION . . .o ottt e e e e e e e e e e e e 10 - 45
10.6.2 Call Parameters. e 10 - 45
10.6.3 Input Parameters.o e e e i, 10245
10.6.4 Output Parameters e e 10 - 45
10.7 RECEIVE Function (OB 204).t e e e 10 - 47
10.7.1 FUNCHON . . .o o e e e e e e e e e e e e e e 10 - 47
10.7.2 Call Parameters.o e 10 - 47
10.7.3 Input Parameters.t e e e e e .. 10247
10.7.4 Output Parameters e 10 - 48
10.8 RECEIVE TEST Function (OB 205)« .t e 51 10 -
L10.8.1 FUNCHION . . .ttt e e e e e e e e e e e e e e 10-51
10.8.2 Call Parameters.o 10-51
10.8.3 Input Parameters. ot e e e i, 10- 51
10.8.4 Output Parameters e 10-51

CPU 948 Programming Guide
C79000-G8576-C848-04 Vii

Contents

10.9 APPHCAtiONS . . . oo e 10 - 53
10.9.1 Calling the Special Function OB using Function Blocks. 10-53
10.9.2 Transferring Data BIOCKS. e 10 - 60
10.9.3 Extending the IPC Flag Area.t e e i 10.- 66

11 PG Interfaces and FUNCLIONS e 11:-3

121 OVEIVIEW ..ottt e e e e e e e e 11 -4
11.2 PG FUNCHONS . . .ottt e e e e e e e e e e e 11-5
11.21 Info 11-6

11.2.2 Installation o e e e 11-7
11.2.3 Program TeSt.o e 11-8
11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface. 11-16
11.4 Parallel Operation of Two Serial PG Interfaces 17. 11 -
12.4.1 Installationo 11 -19
12.4.2 OPEIALON . o vttt et e e e e e e 11-19
11.4.3 Sequence in Certain Operating Situations. i, 11-21..
11.5 PG Functions viathe S5 BUS.o 11.-.27
11.5.1 Applicationo ———— 11 - 27
11.5.2 How the PG Functions Work viathe S5Bus 29. 11 -
11.5.3 Installation and Getting Started 11.- 31
11.5.4 Condition Codes Indicating Problems. 11.-.35

12 APPENAIX . o .t 12 -3

13 INOEXES . . o ot e ——— 13-3

CPU 948 Programming Guide
Vil C79000-G8576-C848-04

Introduction 1

Contents of Chapter 1

11

1.2

13

14

15

1.6

1.7

18

Area of Application for the S5-155U withthe CPU 948 1-4
Typical Mode of Operation of a CPU e 1-5
The Programsin a CPU e 7)., 1-
Which Operands are available to the User Program?. 1-11
How much Memory is available for the User Program? 1-14
How to Tackle Programming? e 1-15
Programming TOOIS.o b -18. 1
Converting User Programs of the CPU 928B forthe CPU948.\ 1-19

CPU 948 Programming Guide
C79000-G8576-C848-04 1-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Introduction

Aims of the manual

Contents of Chapter 1

CPU 948 Programming Guide

C79000-G8576-C848-04

1

This manual is intended to provide specialized information about
programming the CPU 948 for users who already have basic
knowledge of programming PLCs and want to use the CPU 948 in the
S5-155U programmable controller. If you do not yet have this basic
knowledge, we strongly advise you read the documentation
introducing the programming language STEP 5 /3/ or take part in a
course at our training center. SIEMENS provides comprehensive
training for SIMATIC S5. For more detailed information, contact your
local SIEMENS office.

Chapter 1 explains how to use the manual and deals with the areas of
application of the S5-155U programmable controller with the

CPU 948 and its structure.

The chapter explains the typical mode of operation of a CPU and the
structure of the CPU program.

You will also find a few suggestions about how to tackle
programming and will learn some of the features of the CPU 948
which are important for programming.

If you have already worked with the CPU 946/947 and would like to
know the differences between these modules and the CPU 948, refer
to Section 1.8.

Chapter 1 also informs you about differences between versions A0l
and A02 of the CPU 948 and explains points you should remember
when converting "928B" programs for the CPU 948.

Area of Application for the S5-155U with the CPU 948

1.1 Area of Application for the S5-155U with the CPU 948

SIMATIC S5 family

Suitability

The S5-155U programmable controller belongs to the family of
SIMATIC S5 programmable controllers. With the CPU 948, it is the
most powerful multiprocessor unit for process automation (open and
closed loop control, signalling, monitoring, logging).

Owing to its modularity and high performance, it can be used for
medium to extremely large control systems as well as for complex
automation tasks at the plant and process supervision level.

The S5-155U with the CPU 948 is particularly suitable for the
following:

Tasks requiring fast bit and word-oriented processing and fast
reaction times, i.e. with extremely fast open and closed loop controls.
Examples of this are fast processes in mechanical engineering
(bottling plant, packing machines or similar systems) and in the
automobile industry.

Tasks requiring an extremely high storage capacity and fast access
times, e.g. in the automobile industry, process and plant
engineering.

Tasks requiring fast communication with other CPUs installed in
the PLC and operating in the multiprocessor mode and with CP
modules (e.g. when connected to bus systems, host computers, for
visualization, operation and monitoring).

Complex tasks which can be handled efficiently and clearly using
the high level languages C and SCL.

CPU 948 Programming Guide
C79000-G8576-C848-04

Typical Mode of Operation of a CPU

1.2 Typical Mode of Operation of a CPU

Mode of operation ofa CPU The following modes of operation are possible in a CPU:

.)

Cyclic processing Time-controlled processing Interrupt-driven processing

Cyclic processing This is the main part of all activities in the CPU. As the name already
says, the same operations are repeated in an endless cycle.

Cyclic processing can be divided into three main phases, as follows:

Phase Sequence CPU Process

All the input modules assigned to the
1 |CPU are scanned by the system

program and the values read in are
stored in the process image of the Read in process mage Input 1 1.3
inputs (PII). of the inputs —)— Input | 14
Input | 1.5
The values contained in the PIl are Evaluate input signals,
2 | processed by the user program and the set output signals
values to be output are entered in the
process image of the outputs (PI1Q). '
The values contained in the process _ Output Q 2.0
3 |image of the outputs are output by the e s Image > Ouput Q 31
system program to the output modules Output Q 4.7
assigned to the CPU.

CPU 948 Programming Guide
C79000-G8576-C848-04 1-5

Typical Mode of Operation of a CPU

Time-controlled processing

6

Interrupt-driven processing

(! D))

Processing according to
priority

°g

In addition to the cyclic processingne-controlled processing is

also available for processes requiring control signals at constant
intervals, e.g. non-time critical monitoring functions performed every
second.

If the reaction to a particular process signal must be particularly fast, this
should be handled wiihterrupt-driven processing. With, for example,

a system interrupt, triggered via an interrupt generating module, you
can activate a special processing section within your program.

The types of processing listed above are handled by the CPU
according to theipriority .

Since a fast reaction is required to a time or interrupt event, the CPU
interrupts cyclic processing to handle a time or interrupt event. Cyclic
processing therefore has the lowest priority.

Whether or not the time-controlled processing is more important than
the interrupt controlled processing depends, among other things, on
the particular task. For this reason, the priority of time and
interrupt-driven processing on the CPU 948 can be selected.

CPU 948 Programming Guide
C79000-G8576-C848-04

The Programs in a CPU

1.3 The Programs in a CPU

The program existing on every CPU is divided into the following:
» thesystem program
and

» theuser program.

System program The system program organizes all the functions and sequences of the
CPU which do not involve a specific control task (refer to Fig. 1-2).

Execute start-up I
Update process image

of the inputs

Output process image
of the outputs

user
%\H I program @

System ~ Call

processing

\ (inter-
((k) faces)
\ ;

Communication with
the PG Handle errors

Manage memory I

Fig. 1-1 Tasks of the system program

CPU 948 Programming Guide
C79000-G8576-C848-04 1-7

The Programs in a CPU

Tasks

User interfaces

Storing the system program

System program defaults

Modifying the defaults

The tasks include the foIIowiné).
e cold and warm restart,

e updating the process image of the inputs and outputting the
process image of the outputs,

« calling the cyclic, time-controlled and interrupt-driven programs,
e detection and handling of errors,
* memory management,

e communication with the programmer (PG).

As the user, you can influence the reaction of the CPU to particular
situations and errors via special interfaces to the system program.

After switching on the power supply to the PLC (POWER UP) the
system program is read from the EPROM to the internal operating
system RAM.

The following chapters, except for Chapter 7, describeefeult

system reactionto process events or errors. Depending on the
defaults, the CPU changes to the stop mode if an operation code error
occurs and the error organization block is not loaded.

You can modify the system response by assigning parameters for the
data block DX 0.
Chapter 7 describes the system respofa@wing modification.

D When operating with seval CPUs (multipcessing) further tasks are involved.

CPU 948 Programming Guide
C79000-G8576-C848-04

The Programs in a CPU

User program

Tasks

CPU 948 Programming Guide
C79000-G8576-C848-04

The user program contains all the functions required for processing a
specific control task In general terms, these functions can be
assigned to the interface provided by the system program for the
various types of processing, as follows:

Type of processing Task

Cold and warm restart To provide the conditions under which
the other processing functions can start
from a defined status following a cold or
warm restart of the control system (e.g.
assigning specific values to signals).

Cyclic processing Constantly repeated signal processing
(e.g. logic operations on binary signals
reading in and analyzing analog values
specifying binary signals for output,
outputting analog values).

Time-controlled Special, time-dependent processing with

processing the following time conditions:

- faster than the average cycle,

- at a time interval greater than the
average cycle time,

- at a specified point in time.

Interrupt-driven processing Special, fast reactions to certain process
signals.

Error reaction Handling problems within the normal
sequence of the program.

The Programs in a CPU

Structure
| User program |
Code blocks
Organization Program Function Sequence
blocks blocks blocks blocks
OB PB FBIFX SB
STEP 5 STEP 5 STEP 5 STEP 5
operations operations operations operations
FB 8 Fu
Fso1 =1 126 S
SEGMENT 1
FW? NAME :TRANS
113 R Q
F 503 Q53 0005 L IB 3
0006 T FW 200
0007 :C DB 5
0008 :DO FW 200
0009 'L DW 0
000A T QW 6
000B :BE
Data blocks
DB 1 KH = 0101;
static or dynamic data 2 KEZ M
(bits, bytes, words, double words) 4 KY = Z_Vg;
8 m:
7
DX 1. KH = FFFF;
static or dynamic data I I HE
(bits, bytes, words, double words) 4 KH = FFFF;
5. KH = FFFF;
6. KH = FFFF;
7:
Fig. 1-2 Structure of a STEP 5 user program
Storing the user program After programming the user program, you must load it in the user
memory of the CPU 948 (directly from the PG) or via a memory card
whose contents are copied to the user memory by an OVERALL
RESET of the CPU.
Interfaces to the Organization blocks are available as interfaces to the system program
system program for the special types of processing.

CPU 948 Programming Guide
1-10 C79000-G8576-C848-04

Which Operands are available to the User Program?

1.4 Which Operands are available to the User Program?

The CPU 948 provides the following operand areas for programming:
e process image and I/Os

« flags (F flags and S flags)

 timers/counters

» data blocks

Process image of the inputs

and outputs PII/PIQ
Characteristics Size
The user program can access the following data typ&28 bytes
in the process image extremely quickly: each for
- single bits, inputs and
- bytes, outputs
- words,
- double words
I/O area (P area)

Characteristics Size

The user program can access the I/O modules dire@B6 bytes

via the S5 bus. each for
inputs and
The following data types are possible: outputs
- bytes,
- words.
Extended I/O area (O area)
Characteristics Size

The user program can access the I/O modules dire@B6 bytes

via the S5 bus. each for
inputs and
The following data types are possible: outputs
- bytes,
- words.

CPU 948 Programming Guide
C79000-G8576-C848-04 1-11

Which Operands are available to the User Program?

F flags

S flags (extended flag area)

Characteristics Size

The flag area is a memory area which the user 2048 bits
program can access extremely quickly with certain
operations.
The flag area should be used ideally for working data
required often.
The following data types can be accessed:

- single bits,

- bytes,

- words,

- double words.
Single flag bytes can be usedgrprocessor
communication flags(IPC flags) to exchange data
between the CPUs in the multiprocessor mode (refer
to Chapter 10). IPC flags are updated by the system
program at the end of the cycle via a buffer in the
coordinator or CP/IP.

Characteristics Size

The CPU 948 also contains an additional flag area| tB2 768 bits
S flag area. The user program can also access thig area

extremely quickly as with the F flags.

S flagscannot however by used agtual operands
with function block calls nor d®C flags for data

exchange between the CPUs. The bit test operations of

the CPU 948 can also not be used with the S flags

These flags can only be used with the PG system
software "S5-DOS" from version 3.0 upwards or
"S5-DOS/MT" from version 1.0 upwards.

CPU 948 Programming Guide
C79000-G8576-C848-04

Which Operands are available to the User Program?

Timers (T)

Counters (C)

Data words in the current data
block

CPU 948 Programming Guide
C79000-G8576-C848-04

Characteristics Size
The user program loads timer cells with a time value | 256 timer
between 10 ms and 9990 s and by means of a start cells
operation, decrements the timer from this value at the
preselected intervals until it reaches the value zero.

Characteristics Size

The user program loads counter cells with a start value 256
(max. 999) and then increments or decrements them. counters

Characteristics

Size

byte, word or double word format. With STEP 5
operations, you can always access the "current” data
block (refer to Section 2.4.2).
The following data types can be accessed:
- single bits,
- bytes,
- words,
- double words.

A data block contains constants and/or variables in the 256

words

1

1)

In data blocks with a length greater than 256 words, you can only access data

words with the numbers > 255 with operations for absolute memory access

(refer to Chapter 9).

How much Memory is available for the User Program?

1.5 How much Memory is available for the User Program?

For storing logic and data blocks, the CPU 948 only has the user
memory in the internal RAM.

The CPU 948 is available with two versions of the user memory:
e Version 1: with 640 Kbytes,

e Version 2: with 1,664 Kbytes.

CPU 948 Programming Guide
1-14 C79000-G8576-C848-04

How to Tackle Programming

1.6 How to Tackle Programming

If you are an experienced user, you have probably found the most
suitable method for creating programs for yourself and you can skip
this section.

Less experienced readers will find tips for designing, programming,
testing and starting up your STEP 5 program.

Implementation stages The implementation of the STEP 5 control program can be divided
into three stages:

Stage Activity

Determining the technological task

2 Designing the program

Creating, testing and starting the program

Recursive procedure In practice, you will recognize that certain steps must be repeated
(recursive procedure), e.g. when you realize that more signals are
required to improve the handling of the task.

Stage 1 Determining the technological task:
Stage Activity
1 Create a general block diagram outlining the control

tasks of your process.

2 Create a list of the input and output signals required
for the task.

3 Improve the block diagram by assigning the signals
and any particular time conditions and/or counter
statuses to the individual blocks.

CPU 948 Programming Guide
C79000-G8576-C848-04 1-15

How to Tackle Programming

Stage 2 Designing the program
Stage Activity
1 Based on the improved block diagram, decide on the

types of processing required of your program (cyclic
processing, time-controlled processing etc.) and select
the OBs required for this.

2 Divide the types of processing into technological
and/or functional units.

3 Check whether the units can be assigned to a program
or function block and select the blocks you require
(PB x, FBy etc.)

4 Find out which timers, counters and data or results
memaory you require.

5 Specify the tasks for each of the proposed logic blacks
and the data for flags and data blocks which may be
required. Create flow diagrams for the logic blocks,

Notes on the scope of When deciding on the types of processing, keep the following
cyclic processing conditions in mind:

e The cycle must run through quickly enough. The process statuses
must not change more quickly than the CPU can react. Otherwise
the process can get out of control.

« The maximum reaction time should be taken as twice the cycle
time.
The cycle time is determined by the cyclic processing of the
system program and the type and scope of the user program. Itis
often not constant, since the cyclic user program may be
interrupted when time and interrupt-driven program sections are
called.

CPU 948 Programming Guide
1-16 C79000-G8576-C848-04

How to Tackle Programming

Stage 3

Note on test strategies

CPU 948 Programming Guide
C79000-G8576-C848-04

Creating, testing and starting up the program:

Stage Activity

1 Decide on the type of representation for the logic
blocks (LAD, CSF or STL, refer to Chapter 2).

Remember that function blocks can only be created
the STL method of representation.

n

2 Program all logic and data blocks (please refer to your
STEP 5 manual).

3 Start up the blocks one after the other (you may have
to program a different OB for each individual step, to
call the logic blocks):
la: load the block(s)
1b: test the block(s)

(For more detailed information please refer to your
STEP 5 manual and Chapter 11).

4 When you are certain that all the logic blocks run
correctly and all the data can be correctly calculated
and stored, you can start up your whole program.

When you actually start up your program for the first time in genuine
process operation, i.e. with real input and more importantly output
signals, is a decision that must be left up to yourself or to a team of
experts.

The more complex the process, the greater the risk and therefore the
greater the care required when starting up.

Programming Tools

1.7 Programming Tools

Suitable PGs

Suitable software

The following programmers are available for creating your user
program, PG 685, PG 710, PG 730, PG 750 and PG 770. You can
check on the performance and characteristics of these devices in the
catalog ST 59 /9/.

Note

If you wish to use thé&ll range of performance of the CPU 948
in your automation software, (particularly the DX O screen, the
"Output ISTACK" screen, the display with the "memory
configuration” function and the PG functions via the backplane
bus) you require the PG system softW&S€EP 5/ST" from
version 6.3 upwards or "STEP 5/MT" from version 6.0 upwards
plus the "Delta diskette CPU 948" and a PG 7xx.

You can createser programs for SIMATIC S5 programmable
controllers as follows:

e In theSTEP 5programming language,

Here you require the STEP 5 programming package along with the
system software STEP 5/ST or STEP 5/MT (description, refer to
/3/ in Further Reading),

or
* In a higher programming language:

If you are familiar with programming in higher programming
languages, you can also formulate your STEP 5 program for the
CPU 948 as follows:

- SCL (refer to /12/ in Further Reading, the SCL compiler is
contained in the PG software "S5-DOS/MT" from version 6
upwards.)
or

- Cwith S5 C compiler(refer to /13/ in Further Reading).

You can also creatgrograms for sequence control systemis a
graphic representation using tBRAPH 5 programming package
(description, refer to /4/ in Further Reading).

Depending on the task, you can also incorporate "off-the-peg"
standard function blocks in your user program. The performance and
characteristics of these blocks are described in the catalog ST 57 /11/.

CPU 948 Programming Guide
C79000-G8576-C848-04

Converting User Programs of the CPU 928B for the CPU 948

1.8 Converting User Programs of the CPU 928B for the CPU 948

The following section informs you about the points you should
remember when you convert user programs written for the CPU 928B
for use on the CPU 948.

Operations In the following operations, note the differences in the execution and
handling (among other things the different memory utilization).
Operations CPU 928B CPU 948

IA/RA (disable/enable| All process interrupts are disabled or Only the process interrupts via input

interrupts) enabled byte IB 0 are disabled or enabled.
Instead of these operations, use the
special function OBs OB 122 or
OB 142.

LIR/TIR 16 bit long addresses are used. 20 bit long addresses are used.

Adaptation is necessary.

Block transfer opera-
tion TNB

16 bit long addresses are used. The operation does not exist.
Use TNW for block transfer from the
8-bit to the 8-bit area.

Block transfer opera-
tion TNW

16 bit long addresses are used. 20 bit long addresses are used.
Adaptation is necessary.

- Block transfers from the 8-bit to the only block transfers from the

8-bit area and vice versa are 8-bit to the 8-bit area and from the
possible. 16-bit to the 16-bit areas possible
with TNW.

- for the block transfer from
the 8-bit to the 16-bit area use
the operatioTXB,

- for the block transfer from
the 16-bit to the 8-bit area use
the operatiom XW.

(TXB and TXW do not exist on

a CPU 928B)

All operations with the

BR register

The BR register is 20 bits wide. The BR register is 32 bits wide.
Adaptation is necessary.

CPU 948 Programming Guide

C79000-G8576-C848-04

Converting User Programs of the CPU 928B for the CPU 948

Timer processing

FB 0 as cycle block

Default priorities

Data block DB 0
(block address list)

CPU 928B

CPU 948

The timers are updated during
start-up.

The timers are only updated in
the RUN mode

(Reason: compatibility with
CPU 946/947)

CPU 928B

CPU 948

If no cycle block OB 1 exists, th
system program calls FB 0
cyclically, provided it is loaded.

cOnly OB 1 can be used for cycli
processing. If you have
programmed FB 0, create an
OB 1 in which FB 0 is called.

CPU 928B

CPU 948

Process interrupts have higher
priority than timed interrupts.

Timed interrupts have priority
over process interrupts via IB 0
or system interrupts. You can
change the priority with the
parameters in DX O.

CPU 928B

CPU 948

The block address list contains
thedirect start addressesof the
blocks.

The block address list contains
the segment addresses of the
blocks. To obtain the start
address of a block, its segment
address must be shifted 4 bits t
the left.

CPU 948 Programming Guide
C79000-G8576-C848-04

Converting User Programs of the CPU 928B for the CPU 948

Data block DX 0

Using the RT area

Organization blocks

Error OBs

Special function OBs

CPU 948 Programming Guide

C79000-G8576-C848-04

You must create a new DX 0 data block (see Chapter 7), since the
DX 0 for the CPU 928B has a different structure and settings.

With the CPU 928B, the RT area is not used by the system program,
with the CPU 948 it is used to some extent by the handling blocks.
You can only use the RT area for your user program when you do not
use any standard FBs and any PG functions via SINEC H1 and the S5
bus.

The number and function of the error and special function OBs are not

the same on the CPU 928B and CPU 948:

The following error OBs of the CPU 948 respond differently from
their namesakes on the CPU 928B:

OB Function Error IDs
OB 19 Same as on Different from
OB 26 CPU 928 CPU 928B
OB 27
OB 28 Function different
OB 29 from that on -
OB 30 CPU 928B
OB 31
OB Note
OB 110
OB 152
OB 160 to 163
OB 170

OB 190 to 193
OB 216 to 218| These OBs do not exist on the CPU 948
OB 220 and 221
OB 224
OB 226 to 228
OB 240 to 242
OB 250 and 251

On the CPU 948, the OB is replaced by :

OB 111 OB 131
OB 112 OB 132
OB 113 OB 133
OB 120 OB 122
OB 121 OB 141
OB 122 OB 142
OB 123 OB 143

Converting User Programs of the CPU 928B for the CPU 948

R64 controller software

Standard FBs

OB Note

OB 122 Parameter assignment is different from that of the
CPU 928B OB 122
(reason: compatibility with CPU 946/947).

OB 180 In contrast to the CPU 928B, the access window of
the CPU 948 can only be shifted by a multiple of
16.

OB 200 In contrast to the CPU 928B, these CPU 948 OBs
OB 202 to 205| change the content 8iCCU 4.
(multiprocessot
communication

The R64 controller software cannot be run on the CPU 948.

Generally, the standard function blocks used on the CPU 928B (e.g.
for IPs) must be replaced by those for the CPU 948. The HDBs are an
exception these can be taken from the CPU 928B (see Section 1.8.1).

CPU 948 Programming Guide
C79000-G8576-C848-04

User Program 2

Contents of Chapter 2

21

211
212
2.13
214
2.15

2.2

221
222

2.3

231
2.3.2
2.3.3
234

24

24.1
242
243

STEP 5 Programming Languaget 2-4
The LAD, CSF, STL Methods of Representation. 2-4
Structured Programming.ottt e 2:5/..
STEP 5 Operationsottt e e 2:6 .
Number Representationt 2.-8 ..
STEP 5 Blocks and Storing them in Memory. i L 2-12
Program, Organization and Sequence Blocks 1. 2-16
Organization Blocks as User Interfaces. 2-18
Organization Blocks for Special Functions 2-22
Function BIOCKS 2.-23.
Structure of Function Blocks 24. 2 -
Programming Function BIOCKS. 2-26
Calling Function Blocks and Assigning Parameterstothem 2-28
Special Function BIOCKS -33. 2
Data BIOCKS.o 2.-.35
Creating Data Blocks 2-.37.
OpeningDataBlocks238. 2
Special Data BIOCKS 2-41.

CPU 948 Programming Guide
C79000-G8576-C848-04 2-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

User Program 2

The following chapter explains the components that make up a
STEP 5 user program for the CPU 948 and how it can be structured.

CPU 948 Programming Guide
C79000-G8576-C848-04 2-3

STEP 5 Programming Language

2.1 STEP 5 Programming Language

Types of operation

2.11
The LAD, CSF, STL
Methods of Representation

Graphic representation or
list of statements

With the STEP 5 programming language, you convert automation
tasks into programs that run on SIMATIC S5 programmable
controllers. You can program simple binary functions, complex
digital functions and arithmetic operations including floating

point arithmetic using STEP 5.

Theoperations of the STEP 5 programming language are divided into
the following groups:

Basic operations

e you can use these operations in all logic blocks

* methods of representation: ladder diagram (LAD), control system
flowchart (CSF), statement list (STL).

Supplementary operations and system operations:
e can only be used in function blocks
e only statement list (STL) method of representation

e system operations: only experienced STEP 5 programmers should
use system operations

When programming in STEP 5, you can choose between the three
methods of representation ladder diagram (LAD), control system
flowchart (CSF) and statement list (STL) for each individual logic block.
You can choose the method of representation that best suits your
particular application.

The machine code MC5 that the programmers (PGs) generate is the
same for all three methods of representation.

If you follow certain rules when programming in STEP 5 (see /3/), the
programmer can translate your user program from one method of
representation into any other.

While the ladder diagram (LAD) and control system flowchart (CSF)
methods of representation represent your STEP 5 program
graphically, statement list (STL) represents STEP 5 operations
individually as mnemonic abbreviations.

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Programming Language

Ladder diagram

Statement list

Control system flowchart

Programming with
graphic symbols
like a circuit diagram

complies with

Programming with
mnemonic abbreviations
of function designations

complies with

Programming with
graphic symbols

complies with

DIN 19239 DIN 19239 IEC 117-15
DIN 40700
DIN 40719
DIN 19239
LAD STL CSF
A | _ le
4 H/H FCO- AN |
A R
EE— ON |
3/ o | —
= Q
3

Fig. 2-1

Graphic representation of
sequential controls

212
Structured Programming

CPU 948 Programming Guide
C79000-G8576-C848-04

GRAPH 5 /4/ is a programming language for graphic representation of

Methods of representation in the STEP 5 programming language

sequential controls. It is at a higher level than the LAD, CSF, STL
methods of representation. A program written in GRAPH 5 as a
graphic representation is automatically converted to a STEP 5

program by the PG.

Using STEP 5, you can structure your program by dividing it into
self-contained program sections (blocks). This division of your

program clarifies the essential program structures making it easy to
recognize the system parts that are related within the software.

STEP 5 Programming Language

What is a block?

2.1.3
STEP 5 Operations

Example

Structured programming offers you the following advantages:
e simple and clear creation of programs, even large ones

e standardization of program parts

e simple program organization

e easy program changes

« simple, section by section program test

e simple system start-up

A block is a part of the user program that is distinguished by its
function, structure or application. You can differentiate between
blocks that contaistatements(code) i.e. organization blocks,

program blocks, function blocks or sequence blocks, and blocks that
containdata (data blocks).

A STEP 5 operation is the smallest independent unit of the user program.
It is the work specification for the CPU. A STEP 5 operation consists of
an operation and an operand as shown in the following example:

Operation code Parameter

~_ L

F 541

i

Operation Operand

(what is to be done?) (with what is the
operation to be done?)

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Programming Language

Absolute and symbolic
operands

Application of STEP 5
operations

Result of logic operation RLO

CPU 948 Programming Guide
C79000-G8576-C848-04

You can enter the operaatisolutely or symbolically (using an
assignment list) as shown in the following example:
Absolute representation: A 114
Symbolic representation: ‘A -Motorl
For more information on absolute and symbolic programming, refer to
your STEP 5 manual.
The STEP 5 operation set enables you to do the following:
» set or reset and combine binary values logically
* load and transfer values
e compare values and process them arithmetically
« specify timer and counter values
e convert number representations
« call blocks and execute jumps within a block
and
* influence program execution
The central bit for controlling the program is the result of logic
operation RLO. This is obtained as a result of binary logic operations
and is influenced by some operations.
Section 3.5 describes the whole STEP 5 operation set and explains how

the RLO is obtained. This section also includes programming examples
for individual STEP 5 operations.

STEP 5 Programming Language

2.1.4
Number Representation

Numerical input on the PG

Permitted operations

To allow the CPU to logically combine, modify or compare numerical
values, these values must be located in the accumulators (working
registers of the CPU) as binary numbers.

Depending on the operations to be carried out, the following number
representations are permitted in STEP 5:

Binary numbers: 16-bit fixed point numbers

32-hit fixed point numbers

32-hit floating point numbers (with a 24-bit
mantissa)

Decimal numbers: BCD-coded numbers (sign and 3 digits)

When you use a programmer to input or display number values, you
set the data format on the programmer (e.g. KF or fixed point) in
which you intend to enter or display the values. The programmer
converts the internal representation into the form you have requested.

You can carry ouall arithmetic operations with the 16-bit fixed
point numbers and floating point numbers, including comparison,
addition, subtraction, multiplication and division.

Note
Do not use BCD-coded numbers for arithmetical operations, sinc
this leads to incorrect results.

Use 32-bit fixed point numbers to execute comparison operations.
These are also necessary as an intermediate level when converting
numbers in BCD code to floating point numbers. With the operations
+D and -D they can also be used for addition and subtraction.

The STEP 5 programming language alsodeasersion operationghat
enable you to convert numbers directly to the most important of the other
numerical representations.

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Programming Language

16-bit and 32-bit fixed Fixed point numbers are whole binary numbers with a sign.

point numbers

Coding of fixed point numbers Fixed point numbers are 16 bit (= 1 word) or 32 bit (= 2 words) in
binary representation. Bit 15 or bit 31 contains the sign.
e 'O’ = positive number

e '1’ = negative number
The two’s complement representation is used for negative numbers.

PG input Input of 16-bit fixed point number data format at the PG:KF

Input of 32-bit fixed point number data format at the PG:DH

Permitted numerical range 16-bit fixed point number
-32768 to +32767 (16 bits)

32-bit fixed point number
-2147483648 to +2147483647 (32 hits)
(8000 0000H to 7FFF FFFFH)

Using fixed point numbers Use fixed point numbers for simple calculations and for comparing
number values. Since fixed point numbers are always whole numbers,
remember that the result of dividing two fixed point numbers is also a
fixed point number without decimal places.

Floating point numbers Floating point numbers are positive and negative fractions. They
always occupy a double word (32 bits). A floating point number is
represented as an exponential number. The mantissa is 24 bits long
and the exponent is 8 bits long.

In the CPU 948, the default mantissa is 24 bits long (bits 0 to 23) for
adding, subtracting, multiplying and dividing.

The exponent indicates the order of magnitude of the floating point
number. The sign of the exponent tells you whether the value of the
floating point number is greater or less than 0.1.

CPU 948 Programming Guide
C79000-G8576-C848-04 2-9

STEP 5 Programming Language

Using floating point numbers

Accuracy

Coding floating point numbers

Permissible numerical range

Input/output on PG

Use floating point numbers for solving extensive calculations,
especially for multiplication and division or when you are working
with very large or very small numbers!

The mantissa indicates the accuracy of the floating point number as
follows:
e Accuracy with a 24-bit mantissa:

224 = 0.000000059604corresponds to 7 decimal places)
If the sign of the mantissa is "0" the number is positive; if the sign is
"1" it is a negative humber in its two's complement representation.
Thefloating point value 'O’ is represented as the binary value
80000000H(32 hits, see below).

Coding a floating point number:

31 30 24 23 22 0

v |25 L8 v 2t LB

Exponent Mantissa

Specification of the data format for floating point numbers at the
PG: KG

+0.1469368 x 102 to+ 0.1701412 x 1¥°

a) in a logic block:

You want to load the number N = 12.34567 as a floating point
number.

Input:

'LKG1234567+2

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Programming Language

Numbers in BCD code

Permissible numerical range

CPU 948 Programming Guide
C79000-G8576-C848-04

b) in a data block:

PG display after you enter the line:
|
L KG * 1234567 +02

|
Mantissa with sign éxponent (base 10)
with sign

Value of the number input: +0.1234567 Xie 12.34567

You want to define the number N = - 0.005 as a floating point
constant.

Input:

6: KG =-5-2

PG display after you enter the line:

6: KG = 5000009 - O?

'

Mantissa with sign Exponent (base 10)
with sign
Value of the number input : - 0.5 xf@: 0.005

Decimal numbers are represented as numbers in BCD code. With their
sign and three digits, they occupy 16 bits (1 word) in an accumulator
as shown in the following example:

15 1211 87 43 0

VVVYV hundreds tens ones

The individual digits are positive 4-bit binary numbers between 0000 and

1001 (0 and 9 decimal).

The left bits are reserved for the sign as follows:
Sign for a positive number: 0000
Sign for a negative number: 1111
-999 to +999

STEP 5 Programming Language

2.15
STEP 5 Blocks and Storing
them in Memory

Identification

Block types

Organization blocks (OB)

Program blocks (PB)

Sequence blocks (SB)

A block is identified as follows:
« the block type (OB, PB, SB, FB, FX, DB, DX)

and

* the block number (number between 0 and 255).

The STEP 5 programming language differentiates between the
following block types:

Organization blocks are the interface between the system program and
the user program. They can be divided into two groups as follows:

With OB 1 to OB 39, you can control program execution, the restart
procedure of the CPU and the reaction in the event of an error. You
program these blocks yourself according to your automation task.
These OBs are called by the system program.

OBs 40 to 100 are blocks belonging to the operating system. You
must not call these blocks.

OBs 121 to 255 contain special functions of the system program. You
can call these blocks, if required, in your user program.

You require program blocks to structure your program. They contain
program parts divided according to technological and functional
criteria. Program blocks represent the heart of the user program.

Sequence blocks were originally special program blocks for step by
step processing of sequencers. In the meantime, however, sequencers
can be programmed with GRAPH 5/4/. Sequence blocks have
therefore lost their original significance in STEP 5.

Sequence blocks now represent an extension of the program blocks
and are used as program blocks.

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Programming Language

Function blocks (FB/FX)

Data blocks (DB/DX)

Formal structure
of the blocks

Block header

Block body

CPU 948 Programming Guide
C79000-G8576-C848-04

You use function blocks to program frequently recurring and/or
complex functions (e.g. digital functions, sequence control systems,
closed loop controls and signalling functions).
A function block can be called several times by higher order blocks
and supplied with new operands (assigned parameters) at each call.
Using block type FX doubles the maximum number of possible function
blocks.
Data blocks contain the (fixed or variable) data with which the user
program works. This type of block contains no STEP 5 statements and
has a distinctly different function from the other blocks. Using block
type DX doubles the number of possible data blocks.
All blocks consist of the following two parts:
* ablock header

and
e ablock body
Theblock headeris always 5 words long and contains information for

block management in the PG and data for the system program.

Depending on the block type, thivck body contains the following:
e STEP-5 operations (in OB, PB, SB, FB, FX),

« variable or constant data (in DB, DX)
and

« aformal operand list (in FB, FX).

STEP 5 Programming Language

Block preheader

Maximum length

Available blocks

The programmer also generatdsi@ck preheader(DV, DXV, FV,

FXV) for block types DB, DX, FB and FX. These block preheaders
contain information about the data format (for DB and DX) or the
jump labels (for FB and FX). Only the PG can evaluate this
information. Consequently the block preheaders are not transferred to
the CPU memory. You cannot influence the contents of the block
header directly.

A STEP-5 block can occupy a maximum of 32 767 words in the
program memory of the CPU (1 word corresponds to 16 bits).

You can program the following block types:

OB 1to 39
FB 0 to 255
total 512
FX 0 to 255
PB 0 to 255
SB 0 to 255
DB 2 to255 |
— total 508
DX 3 to 255

Data blocks DB 0, DB 1, DB 2, DX 0, DX 1 and DX 2 contain

parameters. These are reserved for specific functions and you cannot use
them as normal data blocks.

Data block DX 2 is reserved for the 2nd serial interface and you should
not use it.

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Programming Language

Block storage The programmer stores all programmed blocks in the program
memory in the order in which they are transferred (Fig. 2-2). With the
PG function "transfer data blocks A" the logic blocks are transferred
first followed by the data blocks.

The start addresses of all stored blocks are placed in an address list in
data block DB 0.

Address 0

PB1 Location of blocks
in the user memory

FB1

PB2

DB1

SB10

OB1

Fig. 2-2 Example of block storage in the user memory

Correcting and When youcorrect blocks, the old block is declared invalid in the
deleting blocks memory and a new block is entered.
Similarly, when blocks ardeleted they are not really deleted, instead
they are declared invalid. The space they occupy is, however, not
released and is not available for blocks loaded later.

Note

You can use the COMPRESS MEMORY online function to make
space for new blocks. This function optimizes the utilization of
the memory by deleting blocks marked as invalid and shifting
valid blocks together.

CPU 948 Programming Guide
C79000-G8576-C848-04 2-15

Program, Organization and Sequence Blocks

2.2 Program, Organization and Sequence Blocks

Programming

Block calls

Program blocks (PBs), organization blocks (OBs) and sequence
blocks (SBs) are the same with respect to programming and calling.
You can program all three types in the LAD, CSF and STL methods
of representation.

When programming organization, program and sequence blocks,
proceed as follows:

Step Action

1 First indicate the type of block and then the number of the
block that you want to program.

The following humbers are available for the type of

block listed:
- program blocks 0to 255
- sequence blocks 0 to 255
- organization blocks 1to 39

2 Enter your program in the STEP 5 programming langujage.

When programming PBs, OBs and SBs, you can on
use the STEP basic operations!

y

A STEP 5 block should always be a self-contained
program section.

Logic operations must always be completed

within a block.

3 Complete your program input with the block end
operation "BE".

With the exception of OB 1 to OB 39 you must call the blocks to
process them. Use the special STEP 5 block call operations to call the
blocks.

You can program block calls inside an organization, program,

function or sequence block. They can be compared with jumps to a
subroutine. Each jump causes a block change. The return address
within the calling block is buffered by the system.

CPU 948 Programming Guide
C79000-G8576-C848-04

Program, Organization and Sequence Blocks

Unconditional call

Conditional call

PB 1
JU PB 5
0 | 5.3 v_|
A | 1.5
JC PB 6
A [3.2 v |
BE

Fig. 2-3

CPU 948 Programming Guide

C79000-G8576-C848-04

Block calls can be unconditional or conditional as follows:

The "JU" statement belongs to the unconditional operations. It has no
effect on the RLO. The RLO is carried along with the jump to the new
block. Within the new block, it can be evaluated but no longer
combined logically.

The addressed block is processeghrdlessof the previous result of
logic operation (RLO - see Section 3.4).

Example:JU PB 100

The JC statement belongs to the conditional operations. The addressed
block is processed only if the previoR&O = 1. If the RLO = 0, the
jump is not executed.

Example:JC PB 100
Note
After the conditional jump operation is executed, the RLO is se

to "1" regardless of whether or not the jump to the block is
executed.

PB 5 PB 10

JC PB 10
0 F 1.5 v

BE BE

BE

Block calls that enable processing of a program block

Program, Organization and Sequence Blocks

Effect of the BE statement

221
Organization Blocks as
User Interfaces

After the "BE" statement (block end), the CPU continues the user
program in the block in which the block call was programmed.
Program execution continues at the STEP 5 statement following the
block call.

The "BE" statement is executed regardless of the RLO. After "BE",
the RLO can no longer be combined logically. However, the RLO or
arithmetic result occurring directly before execution of the BE
operation is transferred to the block where the call originated and can
be evaluated there. When program execution returns from the block
that has been called, the contents of ACCU 1, ACCU 2, ACCU 3 and
ACCU 4, the condition codes CC 0 and CC 1 and the RLO are not
changed. (Refer to Section 3.5 for more detailed information about the
ACCUs, CCO0/CC1 and RLO).

Organization blocks form the interfaces between the system program
and the user program. Organization blocks OB 1 to OB 39 belong to
your user program just as program blocks. By programming these
OBs, you can influence the behavior of the CPU during start-up,
program execution and in the event of an error. The organization
blocks are effective as soon as they are loaded in the PLC memory.
This is also possible while the PLC is in the run mode.

Once the system program has called a specific organization block, the
user program it contains is executed.

Note

You can program blocks OB 1 to OB 39 as user interfaces and
they are called automatically by the system program as a reactjon
to certain events.

Fortest purposesyou can also call these organization blocks
from the user program (JC/JU OB xxx). It is, however, not
possible to trigger a COLD RESTART, e.g. by calling OB 20.

The following table provides you with an overview of the user
interfaces (OBS).

CPU 948 Programming Guide
C79000-G8576-C848-04

Program, Organization and Sequence Blocks

Table 2-1 Overview of the organization blocks of the CPU 948 for program execution

Organization blocks for controlling program execution

Block Function and call criterion
OB 1 Organization of cyclic program execution; first call after a start-up, then cyclic
With DX-0 setting "Process interrupt servicing via input byte
IB 0 =on"
(interruptability at block boundaries, can be set in DX 0)
Call with signal state change in input byte IB 0 in bit:
OB 2 10.0
OB 3 10.1
OB 4 10.2
OB5 10.3
OB 6 10.4
OB 7 10.5
OB 8 10.6
OB 9 10.7
With DX-0 setting "Process interrupt servicing via input byte
IB 0 = off":
(interruptability at operation or block boundaries, can be setin DX 0)
Call via interrupt lines of the S5 bus:
System interrupt INT X (INT A, B, C or D, depends on slot)
OB 2 System interrupt INT E
OB3 System interrupt INT F
OB 4 System interrupt INT G
OB5
Delayed interrupt
OB 6 Clock-controlled interrupt
OB 9
Organization of time-controlled program execution (timed interrupt) with
selectable basic clock rate (default T =100 ms) and
clock distributor (default corresponds to 150U) in data block DX O;
Calls as follows:
Default setting 150U clock distributor | "2lock distributor
OB 10 0.1ls T * 1 T * 1
OB 11 0.2s T * 2 T * 2
OB 12 05s T * 5 T * 4
OB 13 10s T * 10 T * 8
OB 14 20s T * 20 T * 16
OB 15 50s T * 50 T * 32
OB 16 100s T * 100 T * 64
OB 17 20.0's T * 200 T * 128
OB 18 50.0 s T * 500 T * 256

CPU 948 Programming Guide

C79000-G8576-C848-04

> call.

Program, Organization and Sequence Blocks

Table 2-2 Overview of the organization blocks of the CPU 948 for start-up

Organization blocks to control the start-up procedure

Block Function and call criterion

OB 20 Call on request for COLD RESTART (manual and automatic)

OB 21 Call on request for MANUAL WARM RESTART/COLD RESTART WITH
MEMORY

OB 22 Call on request for AUTOMATIC WARM RESTART/COLD RESTART

WITH MEMORY

Table 2-3 Organization blocks of the CPU 948 for a SSFDP

Organization blocks to control the start-up procedure

Block Function and call criterion

OB 38 Organization of the start-up procedure for communication in the
"soft stop” mode.

OB 39 Organization of the cyclic program for communication in the

"soft stop” mode.

Table 2-4 Overview of the organization blocks of the CPU 948 for error handling

Organization blocks for reaction to device or program errors®

Block Function and call criterion

OB 19 Runtime error (LZF): called block not loaded (PB, SB, FB, FX)
or attempt to open a data block that is not loaded (DB, DX)

OB 23 Timeout (QVZ) in user program (during direct access to /O modules)

OB 24 Timeout (QVZ) when updating the process image and transferring
interprocessor communication flags.

OB 25 Addressing error (ADF)

OB 26 Cycle time exceeded (ZYK)

Table 2-4 continued:

OB 27

Substitution error (SUF)

CPU 948 Programming Guide
C79000-G8576-C848-04

Program, Organization and Sequence Blocks

Organization blocks for reaction to device or program errors®

Block Function and call criterion
OB 28 Timeout input byte IB 0
(process interrupts)
OB 29 Timeout distributed 1/Os, extended address volume
OB 30 Timeout and parity error (PARE) accessing the user memory
(OB 31) (set cycle monitoring timé}
OB 32 Load and transfer error accessing data blocks (TRAF)
OB 33 Collision of timed interrupts (WEFES/WEFEH)
OB 34 Error setting up a data block (G DB/GX DX)
OB 36 Error in self test

D If the OB is not programmed, the CPU changes to the stop mode in the event of an error. EXCEPTION: if OB 19
(logic block not loaded), OB 23 or OB 24, OB 29 (timeout) or OB 33 (collision of timed interrupts) do not exist,
there is no reaction!

2 oB31 only exists in the CPU 948 for the sake of compatibility.

To set the cycle monitoring time, you should use data block DXO (refer to Chapter 7)

OB 31 is called once during the start-up, if loaded. You can also use it to set the cycle monitoring time by programming

the following STEP 5 operations in it:

L KF +nnn
‘BE

nnn is a decimal number. The cycle monitoring time is obtained from-"h@rms".

Operating system organization blocks of the CPU 948

Block Function

OoBO Internal block belonging to operating system

CPU 948 Programming Guide
C79000-G8576-C848-04 2-21

Program, Organization and Sequence Blocks

222

Organization Blocks for The following organization blocks contain special functions of the

Special Functions

system program. Yocannot program these blocks, but simply call
them (this applies to all OBs with numbers between 121 and 255!).
They do not contain a STEP 5 program. Special function OBs can be
called in all logic blocks.

Table 2-5 Overview of the organization blocks of the CPU 948 for special functions

Integrated organization blocks with special functions

Block: Block function:

OB 121 Set/read time of day (compatible with CPU 946/947)

OB 122 "Disable interrupts" on/off

OB 124 Delete STEP 5 blocks

OB 125 Generate STEP 5 blocks

OB 126 Define/transfer process images

OB 129 Battery state

OB 131 Delete ACCU 1 to ACCU 4

OB 132 Roll up ACCU

OB 133 Roll down ACCU

OB 141 Enable/disable "disable individual timed interrupts"

OB 142 Enable/disable "delay all interrupts”

OB 143 Enable/disable "delay single timed interrupts”

OB 150 Set/read system time (compatible with CPU 928B)

OB 151 Set/read clock-controlled interrupt time

OB 153 Set/read time for delayed interrupt

OB 180 Variable data block access

0OB181 Test data blocks (DB/DX)

OB 182 Copy data area

OB 200, 202 to 205 | Functions for multiprocessor communication

OB 222 Restart cycle monitoring time

OB 223 Compare start-up types of CPUs in multiprocessor mode

OB 254, 255 Copy/duplicate DB and DX data blocks from memory card to user memory

These special functions are described in detail in Chapter 6.
CPU 948 Programming Guide

2-22 C79000-G8576-C848-04

Function Blocks

2.3 Function Blocks

Function blocks (FB/FX) are also parts of the user program just like
program blocks. FX function blocks have the same structure as FB
function blocks and are programmed in the same way.

You use function blocks to implement frequently recurring or very
complex functions. In the user program, each function block represents a
complex complete function. You can obtain function blocks as follows:

e as a software product from SIEMENS (standard function blocks
on diskette - see /11/); with these function blocks you can generate
user programs for fast and simple open loop control, signalling,
closed loop control and logging;
or

e you can program function blocks yourself.

Compared with organization, program and sequence blocks, function
blocks have the following four essentifififerences

OB, PB, SB FB/FX
1. Range of operations
only basic operations - basic operations,

- supplementary operations
- system operations

2. Method of representation

programming and call programming only in AWL
in STL, LAD, CSF

3. Name
name environment not in addition to the number
possible a hame with max. 8 chars. can
(only number) be assigned
4. Operands
none formal operands (block
parameters).

When the block is called
formal operands are assigned
actual operands

CPU 948 Programming Guide
C79000-G8576-C848-04 2-23

Function Blocks

2.3.1
Structure of Function Blocks

Absolute or symbolic
operands

Skip formal
operand

Theblock header (five words) of a function block has the same
structure as the headers of the other STEP 5 block types.

Theblock body on the other hand, has a different structure from the
bodies of the other block types. The block body contains the function

to be executed in the form of a statement list in the STEP 5

programming language. Between the block header and the STEP 5
statements, the function block needs additional memory space for its

name and for a list of formal operands. Since this list contains no

statements for the CPU, it is skipped with an unconditional jump that
the programmer generates automatically. This jump statement is not

displayed when the function block is displayed on the PG!

When a function block is called, only the block body is processed.

You can enter operands in a function block in absolute form
(e.g. F 2.5) or symbolically (e.g. MOTOR1). You must store the
assignment of the symbolic operands iraasignment listbefore you
enter the operands in a function block (see /3/).

Fig. 2-4 shows the structure of a function block in the memory of a

programmable controller.

list >

Name of the FB/FX

Formal operand 1

Formal operand 2

Formal operand n

STEP 5
user
program

Fig. 2-4

Block
5 words header
Y
JU —1 word
} 4 words [
List of
} 3 words formal
operands
}3 words
Block
body
}3 words

1st STEP 5 user operation <

BE

Structure of a function block (FB/FX)

CPU 948 Programming Guide
C79000-G8576-C848-04

Function Blocks

Distinction: "programming”
— "calling and assigning
parameters”

How to program

CPU 948 Programming Guide
C79000-G8576-C848-04

The memory contains all the information that the programmer needs
to represent the function block graphically when it is called and to
check the operands during parameter assignment and programming of
the function block. The programmer rejects incorrect input.

When handling function blocks, distinguish between the following
procedures:

e programming FB/FX
and

e calling FB/FX and therassigning actual valueso the parameters.

Whenprogramming, you specify the function of the block. You must
decide which input operands the function requires and which output
results it should transfer to the calling program. You define the input
operands and output results as formal operands. These function as
tokens.

When a block isalled by a higher order block (OB, PB, SB, FB, FX),
the formal operands (block parameters) are replaced by actual operands;
i.e. parametersare assigned to the function block.

IF... THEN...

You want to program a function|Program it as you would a
block "directly”, i.e. without program or sequence block.
formal operands.

You want to use formal operand®roceed as explained on the
in a function block. following pages.

Make sure you keep to the
required order:

First program the FB/FX with the
formal operands and keep it on
the PG (offline) or in the CPU
memory (online)

Then program the block(s) to be

D

called with the actual operands.

Function Blocks

232
Programming
Function Blocks

You can program a function block only in tietatement list"
method of representation. When entering a function block at a
programmer, perform the following steps:

Step

Action

1

Enter theblock type (FB/FX) and theaumber of the
function block.

Number your function blocks in descending order
starting with FB 255, so that they do not collide with
the standard function blocks. The standard function
blocks are numbered from FB 1 to FB 199.

Enter thename of the function block.

The name can have a maximum of eight characters
and must start with a letter.

If the function block is to process formal operands:
Enter the formal operands you require in the block as
block parameters.

Enter the following information for each formal
operand:

- the name of the block parameter (maximum
4 characters),

- the type of block parameter and the data type of
the block parameter (if applicable)

You can define a maximum of 40 formal operands.

Enter your STEP 5 program in the form aftatement
list (STL). The formal operands are preceded by an
equality sign (e.g. A = X1). They can also be reference

more than once at various positions in the function block.

Terminate your program input with the block end
operation "BE".

CPU 948 Programming Guide
C79000-G8576-C848-04

d

Function Blocks

Formal operands

CPU 948 Programming Guide
C79000-G8576-C848-04

Note

If you change therder or thenumber of formal operands in the
formal operand list, you must also update all STEP 5 statemen
in the function block that referencéaxmal operand and also

the block parameter list in the calling block!

Program or change function blocks only on diskette or hard disk

and then transfer them to your CPU!

The following parameter and data types are permitted as the formal
operands of a function block (also knowrbsck parameters:

Table 2-5 Permitted formal operands for function blocks
Parameter type Data type
| = input parameter BI/BY/W/D
Q = output parameter
D =data KM/KH/KY/KS/KF/
KT/KC/IKG

B = block operation
T =timer
C = counter

none
(no type can be specified)

I, D, B, T or C are parameters that are indicated tdeffteof the

function symbol in graphic representation.
Parameters labelled witQ are indicated on théght of the function

symbol.

The data type indicates whether you are working with bits, bytes,

words or double words for | and Q parameters and which data format

applies to D parameters (e.g. bit pattern or hexadecimal pattern).

Function Blocks

233
Calling Function Blocks
and Assigning Parameters

You can call every function block as often as you want anywhere in
your STEP 5 program. You can call function blocks in a statement list

to them or in one of the graphic methods of representation (CSF or LAD).
To call a function block and assign parameters to it, perform the
following steps:
Step Action Reaction on PG

(online).

1 Make sure that the called function block exists eitheone
in the PG memory (offline) or in the CPU memory

block where the call is to originate.

in another function block.

2 Enter the call statement for the function block in théfter you enter the call statement

You can program a function block call in an
organization, program or sequence block or

(e.g. JU FB200), the name of the
relevant function block and the formal
operand list appear automatically.

the function block.

block call.

3 Assign theactual operand relevant to this call to egacione
of the formal operands, i.e. you assprametersto

These actual operands can be different for
separate calls (e.g. inputs and outputs for the
first call of FB 200, flags for the second call).
Using the formal operand list, you assign the
required actual operands for each function

Unconditional/conditional call

Unconditional call

Conditional call

"JU FBn" for FB function blocks or

"DOU FXn" for FX extended function blocks:
the referenced function block is processed
regardless of the previous result of logic
operation (RLO).

"JC FBn" for FB function blocks or

"DOC FXn" for FX extended function blocks:
the referenced function block is only
processed when the result of logic operation
RLO = 1. If RLO = 0 the block call is not
executed. Regardless of whether the block call
is executed or not, the RLO is alsways set to "1".

After the unconditional or conditional call, the RLO can no longer be combined logically. Howeve
carried over to the called function block with the jump and can be evaluated there.

CPU 948 Programming Guide
C79000-G8576-C848-04

r,itis

Function Blocks

Permitted actual operands Which operands can be assigne@detsial operands is shown in the
following table.

Table 2-6 Permitted actual operands for function blocks

Parameter | Data type Actual operands permitted
type
I, Q Bl for an operand I n.m input
with bit address Q n.m output
F nm flag
BY for an operand B n input byte
with byte address QB n output byte
FY n flag byte
DL n data byte left
DR n data byte right
PY n peripheral byte
OY n byte from extended periphery
W for an operand
with word address W n input word
QW n output word
FW n flag word
DW n data word
PW n peripheral word
D for an operand OW n word from extended periphery
with double word address
ID n input double word
QD n output double word
FD n flag double word
DD n data double word
D KM for a binary pattern (16 bitsConstants

KY for two absolute numbers,
one byte each, each in the
range from O to 255

D

KH for a hexadecimal pattern
with a maximum of four
digits

KS for two alphanumeric
characters

KT fortimer value (BCD-
coded) units .0 to .3 and
values 0 to 999

KC for a counter value
0 to 999

CPU 948 Programming Guide
C79000-G8576-C848-04 2-29

Function Blocks

Parameter | Data type Actual operands permitted
type
Table 2-6 continued:
D KF for a fixed point number | Constants
(Cont.) -32768 to +32767
KG for a floating point
numbe
B Data type designation not possible DB n Data block; the operation
C DB nis executed
FB n Function block (permitted
only without parameters)
called unconditionally (JU . .n)
OB n Organization block called
unconditionally (JU . .n)
PB n Program blocks - called
unconditionally (JU . .n)
SB n Sequence blocks - called
unconditionally (JU . .n)
T Data type designation not possible T 0to 255 Timer
Data type designation not possible Z 0to 255 Counter

D 10.1469368 x 16° t0£0.1701412 x 1¥

Note

S flags aranot permitted as actual operands for function blocks.

After the jump to a function block, the actual operands from the block
then called are used in the function block program instead of the
formal operands.
This feature of programmable function blocks allow them to be used
for a wide variety of purposes in your user program.

When the program returns from the called function block, the list of
actual operands in the calling block is skipped by a jump operation

activated implicitly by STEP 5 in MC-5 code.

CPU 948 Programming Guide

C79000-G8576-C848-04

Function Blocks

Examples

Example 1: the following (complete) example is intended to further clarify
the programming and calling of a function block and the assign-
ment of parameters to it. You yourself can easily try
out the example.

Programming the function block FB 202:

FB 202
SEGMENT 1
NAME EXAMPLE
DECL : INP1 I/Q/D/BITIC: | BUBYWID: BI Formal
DECL : INP2 1/Q/D/B/T/C: | BIBYMWID: BI operand
DECL : OUT1 I/Q/D/B/TIC: Q BIBY/W/D: Bl list
A= INP1
‘A= INP2 STEP 5
== T1
state-
BE ments
Formal Parameter Data
operands type type

Function block FB 202 is called and has parameters assigned
to it in program block PB 25:

STL method of representation CSF/LAD method of representation
PB 25
SEGMENT 1
JU FB 202 FB 202
NAME : EXAMPLE EXAMPLE
INP1 : 113.5 1135 INPT—OUT1 Q23.0 EE—
INP2 @ F17.7 Fi17.7 INP2— ‘BE
OUT1l : Q230
. BE
Formal Actual
operands operands

The following operations are executed after the jump to FB 202

CPU 948 Programming Guide
C79000-G8576-C848-04 2-31

Function Blocks

Example 2:

CSF/LAD met

PB 25
SEGMENT 1

DW1
| 3.5
F 25
T 2

STL method of representation

PB 25
SEGMENT 1

C DB5S

JU FB201
NAME : REQUEST
DATA DW 1
RST I 35
SET F 2.5
MTIM : T 2
TIME : KT 010.1
TRAN : DW 2
BEC Q 2.3
LOOP : Q 6.0

. BE

Formal Actual
operands operands

KT 010.1 —

calling a function block and assigning parameters to it with
the STL and CSF/LAD methods of representation in a program block.

hod of representation

FB 201
REQUEST

DATA TRAN —— DW 2

RST BEC — Q 23

SET LooP —— Q 6.0

MTIM ‘BE

TIME

2-32

CPU 948 Programming Guide
C79000-G8576-C848-04

Function Blocks

2.34

Special Function Blocks Apart from the function blocks that you program yourself, you can
orderstandard function blocks as a finished software product. These
contain standard functions for general use (e.g. signalling functions
and sequence control).
Standard function blocks are assigned numbers FB 1 to FB 199.

If you order standard function blocks, remember the special
instructions in the accompanying description (i.e. areas assigned and
conventions etc.).

The standard function blocks for the S5-155U are listed in catalog
ST 57 /11/.

Example

Floating point root extractor RAD:GP FB 6

The function block RAD:GP extracts the root of a floating point number
(8-bit exponent and 24-bit mantissa). It forms the square root. The
result is also a floating point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded up or
down.

If applicable, for the rest of the processing, the function block sets the
"radicand negative" identifier.

Numerical range:

Radicand - 0.1469368 Exp. -38 to +0.1701412 Exp. +39
Root +0.3833434 Exp. -19 to +0.1304384 Exp. +20
Function: Y = VA

Y =SOQRT; A=RADI

Calling the function block FB 6:

In the example, the root is extracted from a floating point number that is

located in DD5 of DB 17 with an 8-bit exponent and a 24-bit mantissa. The
result, another 32-bit floating point number, is written to DD 10. Prior to

this, the appropriate data block must be opened. The parameter VZ (parameter
type: Q, data type: Bl) indicates the sign of the radicand: VZ =1 for a

negative radicand.

CPU 948 Programming Guide
C79000-G8576-C848-04 2-33

Function Blocks

"Floating point root extractor"” continued:

STL method of representation LAD method of representation
Seg- [:CDB17
ment : SEGMENT 2
1 :***

:JUFB6 FB 6

Seg- NAME :RAD: GP RAD
ment [RADI :DD5 DD 5 RADI —VZ F 15.0
2 Z :F15.0 SQRT

*) SQRT :DD 10

DD-= data double word

*) Must be located in separate segments, since the operation "C DB 17" in
segment 1 cannot be converted to LAD/CSF.

DD 10
:BE

CPU 948 Programming Guide

2-34

C79000-G8576-C848-04

Data Blocks

2.4 Data Blocks

Data blocks (DB) or extended data blocks (DX) are used to store the
fixed or variable data with which the user program waksSTEP 5
operations are processed in data blocks.

The data of a data block includes the following:
e various bit patterns (e.g. for status of a controlled process)

« numbers (hexadecimal, binary, decimal) for timer values or arith-
metic results

e alphanumeric characters, e.g. for message texts.

Structure of a data block A data block (DB/DX) consists of the following parts:
* block preheader (DV, DXV),
* block header

e block body.

Block preheader Theblock preheaderis created automatically on the hard or floppy
disk of the PG and not transferred to the CPU. It contains the data
formats of the data words entered in the block body. You have no
influence over the creation of the block preheader.

Note
When you transfer a data block from the PLC to diskette or hard
disk, the corresponding block preheader can be deleted. For this
reason, you must never modify a data block with different data
formats in the PLC and then transfer it back to diskette, otherwise
all the data words in the DB are automatically assigned the data
format you selected in the presets screen form.

CPU 948 Programming Guide
C79000-G8576-C848-04 2-35

Data Blocks

Block header

Block body

Maximum length

Theblock headeroccupies five words in the memory and contains
the following:

 the block identifier

« the programmer identifier

« the block type and the block number
e the library number

« the block length (including the length of the block header).

Theblock body contains the data words with which the user program
works. These data words are in ascending order in the block body,
starting with data word DW 0. Each data word occupies one word
(16 bits) in the memory.

A data block can occupy a total of maximum 32 767 words (including
header) in the CPU memory. When you use your programmer to enter
and transfer data blocks, remember the size of your CPU memory!

CPU 948 Programming Guide
C79000-G8576-C848-04

Data Blocks

2.4.1
Creating Data Blocks

CPU 948 Programming Guide
C79000-G8576-C848-04

To create a data block, perform the following steps:

Step Action
1 Enter the block type (DB/DX) and data blowkmber (2
or 3 to 255).
2 Enter individuabata wordsin the data format you
require.
(Do not complete your input of the data words with a
BE statement!)
Note

Data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved fo
specific functions and you cannot use them freely for other
functions (see Section 2.4.3)!

Table 2-7 Data formats permitted in a data block
Type Data format Examples
KM Bit pattern 00100110 00111111
KH Hexadecimal 263F
KY 2 Bytes 038,063
KF Fixed point number +09791
KG Floating point number +1356123+12
KS Character ?IABCD123-+.,%
KT Timer value 055.2
KC Counter value 234

2-37

Data Blocks

2.4.2
Opening Data Blocks

Validity of a data block

Access

You can only open a data block (DB/Ddi)conditionally. This is
possible within an organization, program, sequence or function block.
You can open a specific data block more than once in a program.

To open a data block, perform the following steps:

IF... THEN...
You want to open BB data block Type in the STEP 5 operation
"C DB.."
You want to open BX data Type in the STEP 5 operation
block "CX DX."

After you open a data block, all statements that follow with the
operand ared’ refer to the opened data block.

The opened data block also remains valid when the program is
continued in a different block following a block call.

If a second data block is opened in this new block, the second data
block isonly valid in the newly called block from the point at which it
is called. After program execution returns to the calling block, the old
data block is once again valid.

You canaccesghe data stored in the opened data block during
program execution usiriginary logic operations, set/reset
operations, load or transfer operationgrefer to Chapter 3 for more
detailed information).

With abinary operation, the addressed data word bit is used to form
the RLO. The content of the data word is not changed.

With a set/reset operation, the addressed data word bit is assigned the
value of the RLO. The content of the data word may be changed.

A load operation transfers the contents of the referenced data word
into ACCU 1. The contents of a data word are not changed.

A transfer operation transfers data from ACCU 1 to the referenced
data word. The old contents of the data word are overwritten.

CPU 948 Programming Guide
C79000-G8576-C848-04

Data Blocks

Note
Before accessing a data word, you must open the data block you
require in your program. This is the only way that the CPU can
find the correct data word.

The referenced data word must be contained in the opened black,
otherwise the system program detects a load or transfer error.

With load and transfer operations, you can only access data word
numbers up to 255!

An opened data block remains valid until one of the following
events occur:

a) a second data block is opened
or
b) the block, in which the data block was

opened, is completed with 'BE’, 'BEC’
or 'BEU'.

Examples

Example 1: transferring data words

You want to transfer the contents of data word
DW 1 from data block DB 10 to data word DW 1 of
data block DB 20.

Enter the following statements:

:C DB 10 (open DB 10)

'L Dw 1 (load the contents of DW 1 into
ACCU 1)

DB 20 (open DB 20)

Dw 1 (transfer the contents of ACCU 1 to
DW 1)

CPU 948 Programming Guide
C79000-G8576-C848-04 2-39

Data Blocks

Example 2: range of validity of data blocks
(Fig. 2-5)

Data block DB 10 is opened in program block PB 7 (C DB 10). During the
subsequent program execution, the data of this data block are processed.

After the call (JU PB 20) program block PB 20 is processed. Data block

DB 10, however, remains valid. The data area only changes when data block
DB 11 (C DB 11) is opened.

Data block DB 11 now remains valid until the end of program block PB 20
(BE).

After the jump back to program block PB 7, data block DB 10 is once again
valid.

PB 7 PB 20

C DB 10

JU PB 20 C DB 11
BE BE

:| Range of validity of DB 10
m Range of validity of DB 11

Fig. 2-5 Range of validity of an opened data block

CPU 948 Programming Guide
C79000-G8576-C848-04

Data Blocks

2.4.3
Special Data Blocks

DB O

DB 1

DX 0

DX 1

DX 2

CPU 948 Programming Guide
C79000-G8576-C848-04

On the CPU 948 data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are
reserved for special functions. They are managed by the system
program and you cannot use them freely for other functions.

» Data block DB 0(see Section 8.3.2)

Data block DB 0 contains the address list with the start addresses
of all blocks that are located in the data block RAM of the CPU.
The system program generates this address list during initialization
(following each POWER UP or OVERALL RESET) and it is up-
dated automatically when you use a programmer to change data
blocks or generate a new data block.

» Data block DB 1(see Section 10.1.6)
Data block DB 1 contains the list of digital inputs/outputs (P periphe-
ral with relative byte addresses from 0 to 127) and the interprocessor
communication (IPC) flag inputs and outputs that are assigned to the
CPU. If applicable, the block may also contain a timer field length.
DB 1 canhave parameters assigned and be loaded as follows:
to reduce the cycle time in single processor operation, since
only the inputs, outputs or timers entered in DB1 are updated.
DB 1 mustbe assigned parameters and loaded as follows:
a) for multiprocessing
b) when IPC flags exist with CPs
e Data block DX 0(see Chapter 7)
If you assign parameters to data block DX 0 and load it, you can chan-
ge the defaults of certain system program functions (e.g. the start-up
procedure) and adapt the performance of the system program to your
particular application.
e Data block DX 1
Reserved.

e Data block DX 2

Reserved for the second serial interface.

Data Blocks

CPU 948 Programming Guide
2-42 C79000-G8576-C848-04

Program Execution 3

Contents of Chapter 3

3.1

3.2

3.3

3.4
341

3.5

351
3.5.2
3.5.3
354
3.55

Principle of Program Execution. it Al 3-
Program Organization.ttt s 3.-5..
Storing Program and Data BIOCKS i ek 3-10
Processing the User Programt 1..3-1
Definition of Terms used in Program Execution. 3-12
STEP 5 Operations with Examples e 3-15
BasiC Operations.o e e e, 3.-19
Programming Examples in the STL, LAD and CSF Methods of Representatian|. 3-34
Supplementary Operationsot e -49.. 3
Executive Operationst 3.- 59.
Semaphore Operationst 3:75..

CPU 948 Programming Guide
C79000-G8576-C848-04 3-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Program Execution 3

CPU 948 Programming Guide
C79000-G8576-C848-04

This chapter is intended for readers who do not yet have any great
experience in using the programming language. The chapter therefore
deals with the basics of STEP 5 programming and explains in detalil
(with examples) the STEP 5 operations for the CPU 948.

Experienced readers who require more information about a specific
STEP 5 operation listed in the Pocket Guide can refer to the reference
section in 3.5.

Principle of Program Execution

3.1 Principle of Program Execution
You can process your STEP 5 user program in various ways.

Cyclic program execution is most common with programmable
controllers (PLCs). The system program runs through a program loop
(the cycle, refer to Section 3.4) and calls organization block OB 1
cyclically in each loop (refer to Fig. 3-1).

System program | User program

from start-up

J, OB 1

—P Trigger cycle time

Update inter-
processor comm.

flag inputs PB 20
Update process
image inputs /
(PID | call PB 20
call oB1 BE

Update process
image outputs

(P1IQ)

Update inter-
processor comm.
flag outputs

}

BE

Fig. 3-1 Principle of cyclic program execution

CPU 948 Programming Guide
3-4 C79000-G8576-C848-04

Program Organization

3.2 Program Organization

CPU 948 Programming Guide
C79000-G8576-C848-04

Program organization allows you to specify which conditions affect the
processing of your blocks and the order in which they are processed.
Organize your program by programming organization blocks with
conditional or unconditional calls for the blocks you require.

You can call additional program, function and sequence blocks in any
combination in the program of individual organization, program,
function and sequence blocks. You can call these one after another or
nested in one another.

For maximum efficiency, you should organize your program to
emphasise the most important program structures and in such a way
that you can clearly recognize parts of the controlled system which are
related in the software.

Figs. 3-2 and 3-3 are examples of a program structure.

Program Organization

OB 1 PB 'A’ FB
Operating mode Stop to the system
program EMERGENCY
OFF
JU PB A’
FB
/ Go to initial
state
PB ‘B‘ FB SB
Sequence Control of Sequence
control sequence /step
cascade
L)
JU PB ‘B' °
L)
SB
/Sequence
step
PB ‘C’ FB DB
Individual Group _ Interface flags
control level initialization ~ of the individual
control
EX elements
" individual
JU PB ‘C initialization <
)
FX .
/lndividual
initialization <>
PB ‘D* FB
Message output Message output
via standard
peripherals
JU PB ‘D FB DX
Message output Message
. texts
via standard
peripherals <>
BE
Fig. 3-2 Example of the organization of the user program according to the program structure

CPU 948 Programming Guide
C79000-G8576-C848-04

Program Organization

oB 1 PB ‘X* FB
Controlled Individual control
system part ‘X'
FB
JU PB ‘X /Closed loop control
FX
Signalling
PB ‘Y* FB
Controlled Sequence control
system part ‘Y’
JU PB ‘Y EX
Signalling
FB ‘Z* FB
Controlled Closed loop control
system part ‘Z*
JU PB ‘Z° FB
/Arithmetic
FB
/Data logging output
BE
Fig. 3-3 Example of the organization of the user program according to the structure of the controlled syI;tem

CPU 948 Programming Guide
C79000-G8576-C848-04 3-7

Program Organization

Nesting blocks

OB 1

U PB5,
A F 2005

BE

%)

Fig. 3-4 Nested logic block calls

Block addresses

Fig. 3-4 shows the principle of nested block calls.

PB 5 PB 20
st STEP 5 op. st STEP 5 op.
C DB 20
C DB 30 s
U PB 20 -
0 F157 JU FB 30
NAME: KURV
A 1550)
BE BE

Operation to which the program returns

A block start address specifies the location of a block in the user
memory. For logic blocks, this is the address of the memory location
containing the first STEP 5 operation (with FB and FX, the JU
operation via the formal operand list); with data blocks, it is the
address of the first data word.

To enable the CPU to locate the called block in the memory, the start
addresses of all valid blocks are entered in the block address list in
data block DB 0. DB 0 is managed by the system program, you cannot
call it yourself.

The CPU storesm@turn addressevery time a new block is called. After

the new block has been processed, this return address enables the program
to find the block from which the call originated. The return address is the
address of the memory location containing the next STEP 5 statement

after the block call. The CPU also storesdfiast address and length of

the data blockvalid at this location.

CPU 948 Programming Guide
C79000-G8576-C848-04

Program Organization

Nesting depth You can only nest 40 blocks within one another. If more than 40
blocks are called, the CPU signals an error and goes to the stop mode.

Example of nesting depth

A Program
processing
level

L 0B 25

I 0B2 —» FB 21

i 0B 13 —» PB 131 FB 131

™ 0OB1 —» Pl —» FB1

Nesting depth

»
| | | | | | | | T
1 2 3 4 5 6 7 8 9

Fig. 3-5 Example of block nesting depth

You can determine the nesting depth of your program as follows:

- Add all the organization blocks you have programmed
(in the example: 4 OBs).

- Add the nesting depth of the individual organization blocks
(in the example: 2 +2 +1 + 0 =5).

- Add the two amounts together to obtain the program nesting depth
(in the example: 4 + 5 = nesting depth 9). It must not exceed a value
of 40.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-9

Storing Program and Data Blocks

3.3 Storing Program and Data Blocks

On the CPU 948, the user program runs solely in the internal RAM.
The user program including data blocks must, therefore, be loaded in
the CPU 948 user memory.

How do I load programs and You can use the following methods:
data blocks in the internal
RAM?

* You can load the individual logic and data blocks in the RAM
using your PG.

* You can program a memory card (flash EPROM!) with your
complete program including data blocks on the PG and then insert
the card in the receptacle on the CPU.

If you do an overall reset on the CPU (refer to Chapter 4) the
complete contents of the memory card are loaded "1:1" in the
internal RAM.

* You loaded your program in the internal RAM with the PG or
from the memory card with an OVERALL RESET. You can then
load additional blocks with the PG or replace existing blocks.

Note

You can only program the memory card on the PG. Use the PG
software from version 6 upwards. When programming, the PG must
be in the mode "WORD FIELD" (refer to the STEP 5 manual /3/).

Caution

If you have changed or added blocks using the PG after loadin
A your program from the memory card, these changes are reversed

by the nexOVERALL RESET , since the memory is

overwritten again with the contents of the memory card.

CPU 948 Programming Guide
3-10 C79000-G8576-C848-04

Processing the User Program

3.4 Processing the User Program

START-UP

CYCLE

CPU 948 Programming Guide
C79000-G8576-C848-04

The complete software on the CPU (consisting of the system program
and the STEP 5 user program) has the following tasks:

» CPU START-UP

« Controlling an automation process by continuously repeating
operations (CYCLE).

e Controlling an automation process by reacting to events occurring
sporadically or at certain times (interrupts) and reacting to errors.

For all three tasks, you can select special parts of your program to run
on the CPU by programming user interfaces (organization blocks
OB 1 to OB 35 - refer to Section 2.2.3).

Before the CPU can start cyclic program execution, an initialization
must be performed to establish a defined initial status for cyclic
program execution and, for example, to specify a time base for the
execution of certain functions. The way in which this initialization is
performed depends on the event that led to a START-UP and on
settings that you can make on your CPU. For more detailed
information, refer to Chapter 4.

You can influence the START-UP procedure of your CPU by
programming organization blocks OB 20, OB 21 and OB 22 or by
assigning parameters in DX O (refer to Chapter 7).

Following the START-UP, the system program goes over to cyclic
processing. It is responsible for background functions required for the
automation tasks (refer to Fig. 3-1 at the beginning of this section).
After the system functions have been executed at the beginning of a
CYCLE, the system program calls organization block OB 1 or
function block FB 0 as the cyclic user program. You program the
STEP 5 operations for cyclic processing in this block.

Processing the User Program

Reactions to interrupts
and errors

3.4.1
Definition of Terms used in
Program Execution

Cycle time

To allow you to specify the reactions to interrupts or errors, special
organization blocks (OB 2 to OB 18 for interrupt servicing, OB 19
and OB 23 to OB 34 for reactions to errors) are available on the

CPU 948. You can store an appropriate STEP 5 program in these blocks.

When interrupts or errors are to be processed, the system program
activates the corresponding organization block during cyclic
processing. This means that the cyclic processing is interrupted to
service an interrupt or to react to an error. The nesting of the
organization blocks has a fixed priority (for further information, refer
to Chapters 4 and 5).

In addition to the organization blocks, you can also influence the
reaction of the CPU to interrupt servicing by assigning parameters in
data block DX O.

Organization blocks OB 1 to OB 39 can be called by the system
program as soon as they are loaded in the program meatawy (

during operation).

If the OBs are not loaded, there is either no reaction from the CPU or
(in the event of errors) it goes to the stop mode (refer also to Section
5.4).

You can also load data block DX 0 into the program memory during
operation like the organization bloclksis, however, only effective
after the next COLD RESTART. If DX 0 is not loaded, the standard
settings apply (refer to Chapter 7).

The cycle begins when the cycle monitoring time is triggered and ends
with the next trigger. The time that the CPU requires to execute the
program between two triggers is called the cycle time. The cycle time
consists of the runtime of the system program and the runtime of the
user program.

The cycle time therefore includes the following:

« the time required to process the cyclic program (system and user
program),

« the time required to process interrupts (e.g. time-controlled
interrupt),

« the time required to process interruptions (errors).

CPU 948 Programming Guide
C79000-G8576-C848-04

Processing the User Program

Cycle time monitoring The CPU monitors the cycle time in case it exceeds a maximum value.
The standard setting for this maximum value is 200 ms. You can set the
cycle time monitoring yourself or restart it during user program execution
(refer to DX 0/Chapter 7 and special function OB OB 222/Section 6.16).

Process input and output The process image of the inputs and outputs is a memory area in the

image (PIl and PIQ) internal RAM.
Before cyclic execution of the user program begins, the system
program reads the signal states of the input peripheral modules and
transfers them to the process input image. The user program evaluates
the signal states in the process input image and then sets the
appropriate signal states for the outputs in the process output image.
After the user program has been processed, the system program
transfers the signal states of the process output image to the output
peripheral modules.

Buffering the I/O signals in the process image of the inputs and
outputs avoids a change in a bit within a program cycle from causing
the corresponding output to "flutter".

The process image is therefore a memory area whose contents are
output to the peripherals and read in from the periphenais per
cycle

Note

The process image only exists for input and output bytes of the "P
peripherals with byte addresses from 0 to 127!

Apart from the process image integrated in the system, you can use
OB 126 to define and transfer further process images (refer to
Section 6.6)

Interprocessor communication |PC flags exchange data between individual CPUs (multiprocessing) or
(IPC) flags between the CPU and some communication processors.

The system program reads the input IPC flags of the CPU before cyclic
execution of the user program begins. After the STEP 5 program is
processed, the system program transfers the output IPC flags to the
coordinator or to the communications processors.

You define the input and output IPC flags when you create data block
DB 1 (refer to Section 10.1.6).

CPU 948 Programming Guide
C79000-G8576-C848-04 3-13

Processing the User Program

Interrupt events

Cyclic program execution can be interrupted by the following:

« time-controlled program execution (delayed interrupt, cyclic timed
interrupts, clock-controlled interrupts),

e interrupt-driven program execution (process interrupt, system
interrupt).

The cyclic program can be interrupted or even aborted completely by
the following:

e adevice hardware fault or program error

e operator intervention (using the PC stop function, or setting the
mode selector to "stop”, multiprocessor stop MP-STP),

e astop operation

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Operations with Examples

3.5 STEP 5 Operations with Examples

A STEP 5 operation consists of the operation and an operand. The
operation specifiewhat the CPU is to do (operation). The operand
specifieswith what an operation is to be executed.

STEP 5 operations can be divided into the following groups:

« basic operations(can be used iall logic blocks),

e supplementary operations,

* executive operationgcan only be used in FB/FX function blocks),

e semaphore operations (can only be used in FB/FX function blocks).

Accumulators as working The CPU 948 has four accumulators, ACCU 1 to ACCU 4. Most
registers STEP 5 operations use two 32-bit registers (ACCU 1 and ACCU 2) as
the source of operands and the destination for results.

~——————— High word Low word ————
AClc)ZU 1 High byte Low byte High byte Low byte
31 24 23 16 15 8,7 0
ACCU-1-HH ‘ ACCU-1-HL ACCU-1-LH ACCU-1-LL
ACCU-1-H ACCU-1-L

The STEP 5 operation to be carried out affects the accumulators, e.g.:
e« ACCU 1 is always the destination in load operations. A load

operation shifts the old contents of ACCU 1 to ACCU 2 (stack
lift). Accumulators 3 and 4 are not changed by any load operations.

D analogougor ACCU 2 to ACCU 4

CPU 948 Programming Guide
C79000-G8576-C848-04 3-15

STEP 5 Operations with Examples

Condition codes

Bit condition codes

« Arithmetic operations combine the contents of ACCU 1 with those
of ACCU 2, write the result to ACCU 1 and transfer the contents
of ACCU 3 to ACCU 2 and the contents of ACCU 4 to ACCU 3
(stack drop). In 16-bit fixed point arithmetic, only the low word or
ACCU 3 is transferred to the low word of ACCU 2 and the low
word of ACCU 4 to the low word of ACCU 3.

 When a constant is added (ADD BF/KF/DH) to the contents of
ACCU 1, the accumulators 2, 3 and 4 are not changed.

STEP 5 operations either set or evaluate condition codes. The condition
codes are written to a condition code byte. Two groups of condition codes
can be distinguished: condition codes of digital operations (word
condition codes - bits 4 to 7 in the condition code byte) and condition
codes from binary and executive operations (bit condition codes - bits 0 to
3 in the condition code byte). You can see how the various condition
codes are influenced or evaluated by STEP 5 operations be referring to
the operation list /1/.

You can display the condition code byte on a programmer using the
"STATUS" online function (refer to Section 11.2.3). The byte has the
following structure:

Word condition codes Bit condition codes

cci| cco| ov| os| OR| STA| RLO ERAB
Bt7 6 5 4 3 2 1 o0

e ERAB First bit scan

A logic operation sequence containing binary operations always
beginswith thefirst bit scan, following which anew RLO is

formed. The bit condition codeRAB = 1 is then set. While the
remaining logic operations in the sequence are being performed,
ERAB remains set to 1 and the RLO cannot be changed by these
logic operations.

The active sequence of logic operationgiminated by a binary
set/reset operation (e.g. S Q 5.0). The set/reset operation sets
ERAB to 0; the RLO can be evaluated (e.g. by RLO-dependent
operations) but can no longer be combined logically. The next
binary logic operation following a binary set/reset operation is
once again a first bit scan.

CPU 948 Programming Guide
C79000-G8576-C848-04

STEP 5 Operations with Examples

Example of ERAB

A1 10 ERABIs set to '1’,
: the new RLO is formed by
: an AND operation
:0 I 6.3 The RLO is influenced by

: an OR operation

AN | 21 The RLO is influenced by

: an AND NOT operation.

S Q 24 ERABIs set to '0’,

: the sequence is now complete

:JC FB 150 The function block is called
: dependent on the RLO.

Other bit condition codes RLO Result of logic operation

This is the result of bit logic operations. It is the truth statement for
comparison operations (refer to operations list, binary logic
operations or comparison operations).

« STA Status
For bit operations, this indicates the logical status of the bit just
scanned or set. The status is updated in binary logic operations -
except for A(, O(,), O and for set/reset operations.

e OR Or

Internal CPU bit for handling "AND before OR" logic operations.

Word condition codes *« OV Overflow

This indicates whether the permissible number range was exceeded
during the arithmetic operation just completed.

e OS Stored overflow
The overflow bit is stored. It can be used in several arithmetic

operations to indicate whether an overflow occurred at any point
during the operations.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-17

STEP 5 Operations with Examples

« CClandCCO

These are the result condition codes that you can interpret from the
following table:

Note

To evaluate the condition codes directly, comparison and jump
operations are available (refer to Sections 3.5.1 and 3.5.3).

Table 3-1 Result condition codes of STEP 5 operations
Word Arith- Digital Com- Shift For Jump
condition codes| metical logic parison operations SED, operations
operations | operations | operations SEE executed
CC1l | CCco
0 0 Result Result ACCU 2 Shifted Semaphore
=0 =0 = bit is Jz
ACCU 1 =0 set
0 1 Result ACCU 2 M
<0 - < - - JN
ACCU 1
1 0 Result Result ACCU 2 Shifted | Semaphore JP
>0 #0 > bit is JN
ACCU 1 =1 set
or
enabled
1 1 Division
by 0 - - - - -
Note

When a change of level takes place, e.g. servicing a timed interrupt,
all accumulators and the bit and word condition codes (RLO etc.) are
saved and loaded again when the interrupted level is resumed.

CPU 948 Programming Guide
C79000-G8576-C848-04

Basic Operations

351
Basic Operations You can use the basic operationglinogic blocks and all methods of

representation (STL, LAD, CSF).

Binary logic operations

Table 3-2 Binary logic operations
Operation Operand Function
A AND logic operation after scanning for signal state "1"
0] OR logic operation after scanning for signal state "1"

| 0.0to127.7 of an input in the PII

Q 0.0to127.7 of an output in the PIQ

F 0.0to 255.7 of a flag bit

S 0.0to04095.7 of an S flag bit

D 0.0to 255.15 of a data word bit

T 0to 255 of a timer

C 0to 255 of a counter
AN AND logic operation after scanning for signal state "0"
ON OR logic operation after scanning for signal state "0"

| 0.0to127.7 of an input in the PII

Q 0.0to127.7 of an output in the PIQ

F 0.0to 255.7 of a flag bit

S 0.0to04095.7 of an S flag bit

D 0.0to 255.15 of a data word bit

T 0to 255 of a timer

C 0to 255 of a counter
o - Combine AND operations through logic OR
o - ANDing of expressions in parentheses
U(ORing of expressions in parentheses
o(Close parenthesis (to complete the bracketed expression)
)

Maximum of 8 levels are permitted, i.e. 7 opened brackets

RLO formation The binary logic operations generate the result of logic operation
(RLO).

At the beginning of a logic sequence, the RLO only depends on the
signal state scanned (first scan) and not on the type of logic operation

(O =OR, A =AND).

CPU 948 Programming Guide
C79000-G8576-C848-04

Basic Operations

Within a sequence of logic operations, the RLO is formed from the type
of operation, previous RLO and the scanned signal state. A sequence of
logic operations is completed by an operation (e.g. set/reset operations)
which retains the RLCHRAB = 0). Following this, the RLO can be
evaluated but cannot be further combined.

Example
Program Status RLO ERAB
= Q 00 |0 0 0 «— RLO retained
A I 10 |1 ——=1 1 «— first bit scan
A 111 11 1
A 1 12 0=——50 |1
= Q 01 |0 0 0 «— RLO retained, end of
the logic operations
sequence
Set/reset operations
Table 3-3 Set/reset operations
Operation Operand Function
S SetifRLO=1
R Resetif RLO=1
| 0.0to127.7 an input in the PII
Q 0.0to127.7 an output in the PIQ
F 0.0to 255.7 aflag
S 0.0to 4095.7 an S flag
D 0.0to 255.15 a bit in the data word
= The RLO is assigned to
| 0.0to127.7 an input in the PII
Q 0.0to127.7 an output in the PIQ
F 0.0to 255.7 aflag
S 0.0to 4095.7 an S flag
D 0.0to 255.15 a bit in the data word

CPU 948 Programming Guide
C79000-G8576-C848-04

Basic Operations

Load and transfer
operations
Table 3-4 Load and transfer operations/part 1
Operation Operand Function
L Load
T Transfer
B 0to 127 an input byte from/to the PII
IW Oto 126 an input word from/to the PlI
ID O0tol124 an input double word from/to the PII
QB O0to127 an output byte from/to the PIQ
QW O0to126 an output word from/to the PIQ
QD O0to124 an output double word from/to the PIQ
FB 0to 255 a flag byte
FW 0to 254 a flag word
FD 0Oto 252 a flag double word
SY 0to 4095 an S flag byte
SW 0to 4094 an S flag word
SD 0to 4092 an S flag double word
DR 0to 255 the right byte of a data word from/to DB,DX
DL O0Oto 255 the left byte of a data word from/to DB,DX
DW 0to 255 a data word from/to DB, DX
DD O0to 254 a data double word from/to DB, DX
PY 0Oto 127 a peripheral byte of the digital inputs/outputs (P area)
PY 128to 255 a peripheral byte of the analog or digital inputs/outputs
(P area)
PW 0to126 a peripheral word of the digital inputs/outputs (P area)
PW 128to 254 a peripheral word of the analog or digital inputs/outputs
(P area)
OY O0to255 a byte of the extended 1/O area (O area)
OW 0to 254 a word of the extended 1/O area (O area)

CPU 948 Programming Guide

C79000-G8576-C848-04

Basic Operations

Table 3-5 Load and transfer operations/part 2
Operation Operand Function
L Load
KB 0to 255 a constant, 1 byte
KS 2 ASCIl a constant, 2 ASCII characters
characters
KF -32768to a constant as fixed point number
+32767
K Y a constant as floating point number
KH Oto FFFF a constant as hexadecimal number
DH Oto a double word constant as a hexadecimal number
FFFF FFFF
KM 16-bit pattern a constant as bit pattern
KY 0to 255 for a constant, 2 bytes
each byte
KT 0.0t0999.3 a constant timer value (in BCD)
KC 010999 a constant counter value
T 0to 255 a timer, binary coded
C 0 to 255 a counter, binary coded
LC Load
T 0to 255 atimer
C 0to 255 a counter
in BCD

1 +0,1469368 x 15°t0+0,1701412 x 1

Load operations

Transfer operations

Load operations write the addressed value into ACCU 1. The
former contents of ACCU 1 are saved in ACCU 2 (stack lift).

Transfer operations write the contents of ACCU 1 to the addressed
memory location.

CPU 948 Programming Guide
C79000-G8576-C848-04

Basic Operations

Examples of load and
transfer operations

Example 1:

Fig. 3-6 illustrates loading/transferring a byte, word or double word
from/to a memory area organized in bytes (PII, PIQ, flags, I/O).

LIBi load byte i of the PIl into ACCU-1-LL
LIWj load bytes j and j+1 of the PIl into ACCU-1-L
‘LFDk load flag bytes k to k+3 in ACCU 1

7 0 31 23 15 7 0
) 01 e i ACCU 1
L IB |
T T IB |
ﬁddresses l 31 23 15 7 0
ascending 0 0Y i j+1 ACCU 1
order y y
j LW
1 T IW |
31 23 15 7 0
k k+1 k+2 k#3 | ACCU 1
A A
k L FD k
k+1 T FD k
K+ 2
k+3 «
1) only with load operations

Fig. 3-6 Load and transfer operations in a byte-oriented memory area

CPU 948 Programming Guide
C79000-G8576-C848-04 3-23

Basic Operations

Example 2:
Fig. 3-7 illustrates the loading/transfer of a byte, word or double word
from/into a memory area organized in words .
‘L DR load the right byte of data word i into ACCU-1-LL
:L DL j load the left byte of data word j into ACCU-1-LL
:L DW k load data word k into ACCU-1-L
:L DD | load data words | and I+1 into ACCU 1
15 0 31 23 15 7 0
09 01 01 i ACCU 1
A
L DRI
right byte < T DRI
Data word i
Addresses l 31 23 15 7 0
in .
ascending 0l 0l 0l j | Accut
order 3 DL |
left byte T DLj
Data word | 31 15 0
0l k | AccU 1
Py
L DW k
K T DW k
31 15 0
| I+1 | AcCU 1
\
L DD I
! T DD I
[+1
Ulonly with load operations
Fig. 3-7 Load and transfer operations in a word-oriented memory area

Note
Load operationsdo not affect theondition codes
Transfer operations clear theOS bit.

When gbyte orword is loaded theextra bits arecleared
in ACCU 1.

CPU 948 Programming Guide

C79000-G8576-C848-04

Basic Operations

Addressing I/Os

A

CPU 948 Programming Guide

C79000-G8576-C848-04

You can use load and transfer operations to address the 1/O peripherals
as follows:

directly using the following operations:

L./T.. ..PY,..PW, .OY, ..OW

or

using the process image with the following operations:
L./T.. ..IB, ..IW, ..ID, .QB, ..QW, ..QD

and with logic and set/reset operations

Note

If you use the transfer operations T PY 0 to 127 and T PW 0 to
126, the process output image is updated at the same time.
Exception: command output is disabled by the STEP 5 operation
BAS (refer to Section 3.5.4).

Note the following points about I/O peripherals:

A process input/output image exists for 128 input and 128 output
bytes of the P peripherals with byte addresses from 0 to 127.

No process image exists for the entire area of the O peripherals and
the P peripherals with relative byte addresses from 128 to 256.

(For more information on address space allocation see

Section 8.2.2).

I/O modules with addresses of the O peripherals can only be plug-
ged into expansion units (not in the central controller).

In one expansion unit, you can use either only P peripherals or
only O peripherals.

Caution

If you use relative addresses of the O peripherals in an expansjon
unit, you can no longer use these addresses for I/O modules in|the
central controller (this would result in double addressing).

Basic Operations

Timer and Counter To load a timer using a start operation or a counter using a set
operations operation, you must first load the value in ACCU 1.

The following load operations are preferable:
For timers: L KT, LIW,LQW, LFW,LDW,L SW.
For counters: L KC, L IW, L QW, L FW, L DW, L SW.

Starting dimer with the selected timer value requires an RLO signal
change.

A counter is set or started with the selected counter value when a
positive-going RLO signal edge is detected.

The following table indicates the signal edge change with
corresponding arrows.

Table 3-6 Timer and counter operations

Operation |Operand RLO |Function
1)

SP T 0 to 255 t |Start atimer as a pulse
SE T 0 to 255 + | Start atimer as extended pulse
SD T 0 to 255 + |Start atimer as ON delay
SS T 0 to 255 1 Start a timer as stored ON delay
SF T 0 to 255 | |Start atimer as OFF delay
R T 0 to 255 1 |Reset atimer
S C 0to 255 1 |Set a counter (BCD number from O to 999)
R C 0to 255 1 |Reset a counter
Cu C 0to 255 1 Count up
CD C 0to 255 + |Count down
D positive-going edge 1): signal change from '0’ to '1’

negative-going edge 1(): signal change from "1’ to '0’

When executing the timer or counter operations SP T, SET,SD T, SS T,
SF T and S C the value in ACCU 1 is transferred to the timer or
counter (as with the transfer operation) and the appropriate operation
is started.

CPU 948 Programming Guide
3-26 C79000-G8576-C848-04

Basic Operations

Timer value With the operation L KT, you can loadimer value directly into
ACCU 1 orindirectly from a flag or data word. The value must have
the following structure (with L KT, you specify the time base after the
period in the operand as shown below):

Bit no.
‘15‘14‘13‘12‘11‘10‘9‘8‘7 ‘6‘5 ‘4 ‘3 ‘2 ‘1 ‘O‘
N2 AL v AL v /
102 10t 100
N v J
Timer value 0 ... 999 in BCD
Time base specified in BCD: 0: 0.01 sec
1: 0.1 sec
2: 1 sec
3: 10 sec

These bits are irrelevant
(i.e. they are ignored when
the timer is started)

Example

You want to set a time of 127 sec.:

Bit assignment:

x|x|1]ofololol1]olof1l0]0]1]1]1
NN D S S
2 1 2 7

N
Timer value 127

Time base 1 sec

Irrelevant

Note

The start of each timer is liable to an inaccuracy of 1 time base
When using timers, you should therefore select the smallest
possible time base (time base < timer value):

Example:
time value 4s not: 1sx4 inaccuracy: 1 s
but: 0.01sx400 inaccuracy: 0.01s

CPU 948 Programming Guide
C79000-G8576-C848-04 3-27

Basic Operations

Counter value

Example

With the operation L KC, you can loadeunter valuedirectly in
ACCU 1 or indirectly from a flag or a data word. The value must have the
following structure:

Bit no.
15/14]13]12|11]10 9|8 |7 |6 |5 4 |3]2 |1 0]
Z N PN N p,
N Ve Ve
102 10t 109
N L y

Counter value 0 ... 999
specified in BCD

These bits are irrelevant,
(i.e. they are ignored when
the counter is sét

You want to specify a counter value of 127:

Bit assignment:

Counter value 127

Irrelevant

In the timer or counter itself, the value is in binary code. If you want to
scan the timer or counter, you can load the actual timer or counter
value into ACCU MHirectly orin BCD code

CPU 948 Programming Guide
C79000-G8576-C848-04

Basic Operations

Further examples of timer
and counter values

Loading timer values directly:

Timer value

77 - /- ~
"""""""""""" o g ol Accu 1

"L T 10" Loads the binary timer value of timer T 10
directly into ACCU 1

The time base is not loaded.

Loading counter values directly:

Counter value
PN

777 - ~
9 0 Counter C 10
""""""""""" o e ol Accu 1

"L C10™ Loads the binary counter value of counter C 10
directly into ACCU 1

CPU 948 Programming Guide
C79000-G8576-C848-04 3-29

Basic Operations

Loading timer values in BCD code:
Time base Timer value

‘9 0‘ Timer T 10

‘Binary » BCD‘

""" ’”6""7”777‘13 12‘ 11 ‘ v 4 ‘3 ° ‘ Accl 4

102 101t 10°

Time base Timer value

"LC T 10": Loads the timer value and time base of
timer T 10 into ACCU 1 in BCD

The time base is also loaded.

Loading counter values in BCD code:

Counter value

‘9 0‘ Counter C 10
P BCD‘
‘7 4|3 o‘ ACCU 1
DN N
102 101 10°

Counter value in BCD

"LC C 10" Loads the counter value of counter C 10
into ACCU 1in BCD

If you load values in BCD, status bits 14 and 15 of the timer or 12 to
15 of the counter are not loaded. They have the value 0 in ACCU 1.

The value in the ACCU can now be processed further.

CPU 948 Programming Guide
3-30 C79000-G8576-C848-04

Basic Operations

Arithmetic operations

Table 3-7 Arithmetic operations

Operation Operand

Function

+

X

M T T

OO0

Add two fixed point numbers (16 bits)

Subtract one fixed point number from another (16 bits)

Multiply two fixed point numbers (16 bits)

Divide one fixed point number by another (16 bits):
guotient in ACCU-1-L, remainder in ACCU-1-H

Add two floating point numbers (32 bits)

Subtract one floating point number from another (32 bits)
Multiply two floating point numbers (32 bits)

Divide one floating point number by another (32 bits)

CPU 948 Programming Guide
C79000-G8576-C848-04

Arithmetic operations logically combine the contents of ACCU 1 and
ACCU 2 (e.g. ACCU 2 - ACCU 1). The result is then contained in
ACCU 1. An arithmetic operation changes the arithmetic registers as
follows (in fixed point operations only the low word):

ACCU1 ACCU2 ACCU3 ACCU 4

before: <ACCU 1> <ACCU 2> <ACCU3> <ACCU 4>
after: <result> <ACCU 3> <ACCU 4> <ACCU 4>
Note

Within thesupplementary operations there are operations for
subtraction andaddition of double word fixed point numbers

Basic Operations

Comparison operations

Table 3-8 Comparison operations
Operation Operand Function
= - Compare for equal to
> [F Compare for not equal to
> D Compare for greater than
>=\-G Compare for greater than or equal to
< Compare for less than
<= Compare for less than or equal to
..F: compare two fixed point numbers (16 bits)
...D: compare two fixed point numbers (32 bits)
..G: compare two floating point numbers (32 bits)
Block operations
Table 3-9 Block operations
Operation Operand Function
Ju Jump unconditionally
JC Jump conditionally (only when RLO = 1)
OB 1to39 7Y to an organization block
OB 121to 255 to a system program special function
PB 0to 255 to a program block
FB 0to 255 to an FB function block
SB 0to 255 to a sequence block
DOU Jump unconditionally
DOC Jump conditionally (only when RLO = 1)
FX 0to 255 to an FX function block
BE - Block end
BEC Block end, conditional (only when RLO = 1)
BEU Block end, unconditional
C DB 2to 255 Call a DB data block
CcX DX 3to 255 Call a DX data block
G DB 2to 255 Generate data block DB
GX DX 3to 255 Generate data block DX
(ACCU 1 must contain the number of data words
— maximum 4091 — that the new block is to have)

D only for test purposes!

CPU 948 Programming Guide
C79000-G8576-C848-04

Basic Operations

G DB/GX DX

NOP/display/stop operations

Generating a data block

The operation G DBx generates a DB data block with the number x

(2 < x <£255) in the user memory of the CPU. The content of the data
block isnot assigned the value 0, i.e. the data words can have any
contents.

Before programming this statement, you must store the number of data
words that the new DB is to have in ACCU-1-L. The operation

"G DB" or "GX DX" creates the block header. A data block generated
in this way ithout block header) can occupy a maximum of 4091
words. You can generate longer data blocks using OB 125 (refer to
Section 6.5).

If the data block already exists, the length of the DB is not permitted
or there is not enough space in the DB-RAM, the system program
callsOB 34 If this is not loaded, the CPU goes to the stop mode.

The GX DXx operation generates a DX data block in the DB-RAM
and is otherwise the same as G DBx.

Table 3-10 NOP/display/stop operations
Operation Operand Function
NOPO - No operation
NOP1 No operation
BLD 0 to 255 Display generation operation for the PG:
the CPU handles the operation like a no operation

130 Create blank line with carriage return

131/131/133 Switch over between STL, CSF, LAD

255
STP - At end of cycle or at end of OB 1, CPU changes to soft STOP.

CPU 948 Programming Guide
C79000-G8576-C848-04

Note

Since the operation STP is only effective at the end of the cycle
there is no ISTACK entry. The cause of the stoppage is then
difficult to find afterwards.

To make diagnosis easier, you should set an identifier before
calling the STP operation, e.g. a special bit pattern in a diagnostic
DB or use the STEP 5 operation STS (refer to Section 3.5.4).

Programming Examples in the STL, LAD and CSF Methods of Representation

3.5.2

Programming Examples in
the STL, LAD and CSF
Methods of Representation

Logic operations

AND operation

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
111 1317 \ 11 111 113 117 Q35 [
' 111 A - () 113
‘ ‘ ‘ \ A 113 11.7 — Q35
11.3
& A 117
11.7
‘ = Q35
Q35
Q35

statements are optional

The number of scans and the sequence of the logic

Output Q 3.5 is "1" when all inputs are "1" simultaneously

Output Q 3.5 is "0" if any of the inputs has signal state "0"

CPU 948 Programming Guide
C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Logic operations
(continued)

‘ OR operation

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
11.2 Q32 112 —
11.2 1.7 1.
R S BN e S [r =
11.2 11.7 115 o 117 15— — Q32
11.7
=1
= O 115
Q32 %
‘ = Q32
115
Q32 %

state "0" simultaneously

Output Q 3.2 is "1" when at least one of the inputs is "1"

Output Q 3.2 is "0" when all inputs have the signal state

The number of scans and sequence of programming is optional

AND-before-OR operation

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
115116 114113 A 115 115 116 Q3.1 11
-ty ' :
L] . H |1
\Il.s \|1.4 A 116 -1
8 & 114 113 (11 =
116 \113 o H :
11.7 Q31
A 114
Q31 A 113
= Q31
Q31

Q 3.1is "0" when no AND condition is satisfied

Q 3.1is "1" when at least one AND condition is satisfied

CPU 948 Programming Guide
C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Logic operations
(continued)

‘ OR-before-AND operation

/1st example

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
16.0
16.0 16.1 16.2 16.3 160 162 16.3 16.0 Q21 16.0
| \ | o -)
A 161
(16.2 16.1 16.1
A
16.1 %
O 162 16.3
16.3
O 163 % 162
Q21)
= Q21

and the AND condition is not satisfied

Output Q 2.1 is "1" when input | 6.0 or input | 6.1 and one
of the inputs | 6.2 or | 6.3 has signal state "1"

Output Q 2.1 is "0" when input | 6.0 has signal state "0"

OR-before-AND operation

/2nd example

. o STEP 5 representation
Logical/cireuit diagram Statement Ladder diagram Control system
list flowchart
Al
114115 120121 114 12.0 Q3.0
L1 —r—r—| °"™ | gLatl
11.4 115 O 115 115
=1 =1 115121 120
) R Tt
12.0 \121 A(12.1 I Q3.0
o 121
Q3.0
= Q3.0

Output Q 3.0 is "1" when both OR conditions are satisifed

Output Q 3.0 is "0" when at least one OR condition is not satisfied

CPU 948 Programming Guide
C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Logic operations
(continued)

‘ Scan for signal state "0"

STEP 5 representation

Logical/circuit diagram

Statement Ladder Control system
list diagram flowchart
115 116 i A i1s 115 11.6 Q3.0 115
' ' 115 : M
‘ 8) AN 11.6 /) 11.6) Q30
11.6
& = Q30
Q3.0

Output Q 3.0 is "1" only when input | 1.5 has signal state "1"
(normally open contact activated) and input | 1.6 has signal
state "0" (normally closed contact activated)

Set/reset operations

RS flip-flop for a latching signal output

STEP 5 representation
Logicalfcircuit diagram Statement Ladder Control system
list diagram flowchart
114 127 A 127 12.7 Q35 Q3.5
| 11.4 127 S Q35 s 127 s
R 's A 114 114 R o
L 035 R Q35 11.4
i ol — ¢
Q‘3.5

Signal state "1" at input | 2.7 sets the flip-flop

(signal state "1" at output Q 3.5).

If the signal state at input | 2.7 changes to "0", the

state of output Q 3.5 is retained (i.e. the signal is latched).

Signal state "1" at input | 1.4 resets the flip-flop
(signal state "0" at output Q 3.5).

If the signal state at input | 1.4 changes to "0", the
state of Q 3.5 is retained.

When the set signal (input | 2.7) and the reset signal
(input | 1.4) are applied at the same time, the scan
operation programmed last (in this case Al 1.4)

remains in effect for the rest of the program (reset priority).

CPU 948 Programming Guide
C79000-G8576-C848-04 3-37

Programming Examples in the STL, LAD and CSF Methods of Representation

Set/reset operations
(continued)

‘ RS flip-flop with flags

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
113 126 A 126 126 F17 FLl7
11.3 12.6 S F17 S 126 —S
R 's A 113 113 —R QR
1: 1 F17 ROFL7 e
o R o— — «

Signal state "1" at input | 2.6 sets the flip-flop.

If the signal state at input | 2.6 changes to "0", the
signal state of the flag is retained, i.e. the signal is latched.

Signal state "1" at input | 1.3 resets the flip-flop.

If the signal state at input | 1.3 changes to "0", the
signal state of the flag is retained.

When the set signal (input | 2.6) and the reset signal
(input | 1.3) are applied at the same time, the scan
operation last programmed (in this case Al 1.3) remains
in effect for the rest of the program (reset priority).

CPU 948 Programming Guide
C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Set/reset operations
(continued)

‘ Simulation of a momentary contact relay (one shot)

. o STEP 5 representation
Logicalicircuit diagram Statement Ladder Control system
list diagram flowchart
A 117
'1‘7 11.7 AN Fao 117 F4.0 F2.0 1.7 —{ ¢
F4.0 -~ = F20 1 BT
JL \ F2.0 A F20 F40_g | F20
I S F4.0
F2.0 AN 11+ F20 F40 F4.0
R Fao 1 E7s F20 s
1.7 (11T rIr 1.7
F 4.0 [11T I] %R Q— 1.7 4R Q| —
F20 \ | \ ||

On each leading edge of the signal at input | 1.7,
the AND condition (Al 1.7 and AN F 4.0) is satisfied;
the RLO is "1". This sets flags F 4.0 (edge flag) and
F 2.0 (pulse flag).

In the next processing cycle, the AND condition
Al 1.7 and AN F 4.0 is not satisfied, since flag F 4.0
has already been set.

Flag F 2.0 is reset.

Flag F 2.0 therefore only remains "1" for one program
run.

Binary scaler (binary divider)

. o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
A 1 1.0
1o AN E1o 11.0 F1.0 Flili 1.0 &

- F11 F1L0-9 |—FL1

[V M1 A F11 F1.1 F1.0 —

mg s F10 H Hs F10
AN 110 1.0 FL1—S
R F1.0 R Q 11.0 OR Q—

E F20 A Fl1 —

Q3.0 A Q3.0 F1.1 Q3.0 F2.0 F11—- &
= F20 -)— Q0 [-F20
A F1l1 -
0 AN 03.0 F1.1 Q3.0 F2.0 Q3.0 F1.1

PURRL R IR N 5 O EY oy Qs.oj& 20
S Q3.0 F2.0 F2.0 IS

Q30 A 030 HE——r o F20 R Q

The binary scaler (output Q 3.2) changes its state

each time input | 1.0 changes its signal state from O

to 1 (leading edge). Therefore, only half the input

frequency appears at the output of the memory cell.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-39

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations

Pulse timer

STEP 5 representation
Logical/circuit diagram
ogicalfcircuit diagra Statement Ladder Control system
list diagram flowchart
130 A I 30 13.0 T T1
13.0 L KT 102 | ' 4 [0 13.0 — 1.1
R w1 a0 | @ T
1105 1 R - 10.2 — v Bl — QWO 10.2—1y BI — Qwo
Sk 3\ T1 L T o1
T QW 0 DE — QW2 DE — Qw2
Q4.0 LC T 1
° T QW 2
Q4.0 13.0 Q4.0
A T 1 Q4.0
= Q 40 Mi R Q < - —R Q—1=]

The timer is started during the first scan if the RLO is "1".
Subsequent scans with an RLO of "1" do not affect the
timer.

If the RLO is "0", the timer is reset (cleared).

The scan AT or OT produces the signal "1" as long
as the timer is running.

KT 10.2:
The timer is loaded with the specified value (10). sof L [
The number to the right of the decimal point indicates @or— [L

the time base: Tl

0=0.1sec 2 =1sec

1=0.1sec 3=10sec

Bl and DE are digital outputs of the timer. The time at
output Bl is in binary code. The time at DE is in BCD code
with time base.

CPU 948 Programming Guide
3-40 C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations (continued)

Extended pulse timer

STEP 5 representation
Logical/circuit diagram
9 9 Statement Ladder Control system
list diagram flowchart
—
13.1 A 131 13.1 T2 T2
L IW 15 ——1rLv 14
13.1 SE T 2 el 131 v
A T 2
R s| 125 = Q 41 W15 —Tw Bl - w15 TW Bl
171 |12 DE [~ DE
>—\T2 al Q4.1
% R Q % - —R Q=]
Qa1 Q4.1

The timer is started during the first scan if the RLO is
"1,

An RLO of "0" does not affect the timer. | (B15 (B16)
‘ 3 4‘3 0‘7 4‘3 0‘
. 102 101 100
The scan AT or OT produces a signal "1" as long as _ .
. . . Time Timer value
the timer is running. base
IW 15:
Set the timer with the value of the operand I, Q, F or 131
D in BCD code (in this example, input word 15). Q41
T T

CPU 948 Programming Guide
C79000-G8576-C848-04 3-41

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations (continued)

ON-delay timer

STEP 5 representation
Logicalcircuit diagram Statement Ladder Control system
list diagram flowchart
13.5 A | 35 135 T3 T3
L KT92 | 4 4 1——o0 135 4 T—— 0
L 135 SD T3
R S AN I 35 | L -
R T 3 KT9.2 4TW Bl KT9.2-{TV Bl
9s 0 A T3
s = Q 42 DE - el
>\ T3 135 Q4.2 Q4.2
% Q4.2 R o—(R Q=]
Q4.2 ’

The timer is started during the first scan if the RLO
is"1". An RLO of "1" during subsequent scans does
not affect the timer.

When the RLO is "0", the timer is reset (cleared).

The scan AT or OT produces the signal "1" when the
timer has elapsed and the RLO is still applied to the
input.

KT 9.2:

The timer is loaded with the specified value (9). The 135
number to the right of the decimal point indicates Q4-i -
the time base:

0=0.1sec 2 =10 sec
1=0.1sec 3=10sec

CPU 948 Programming Guide
3-42 C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations (continued)

Stored ON-delay timer

STEP 5 representation
i ircuit diagram
Logical/circuit diagra Statement Ladder Control system
list diagram flowchart
T4 T4
132 133 A | 33 13.3
‘ ‘ % PT>—<S |3'3*T>—<S
R S L KT 20.2
| Bl | 1 Bl |—
208 0 sS T 4 20.2— TV 202 TV
T A1 32 DE— DE—
‘43 4 13.2 Q43 Q4.3
. R T
© —Hr o 324k o]
A T 4
= Q 43

The timer is started during the first scan if the RLO is "1".

An RLO of "0" does not affect the timer. 133 Eg—‘L
The scan AT or OT produces the signal "1" when the Q43 .
timer has elapsed. The signal state does not change
to "0" until the R T operation resets the timer.

OFF-delay timer

STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
T T5
13.4 A | 34 13.4 2
134 | T
= S‘ L KT 104 % E O — T O —
10.1 —TV Bl | — 10.1 —{ TV Bl [
0 1 T5 13.4 SF T 5
— |T5 AT 5 DE| DE |
Q44 = Q 43 2 Qa4
DIk IR o[- O R Q7]
Q4.4

When the RLO at the start input changes from "1" to

"0", the timer is started. It runs for the length of time 134 M M
programmed. Q4.4
When the RLO is "1", the timer is reset (cleared). T Tl T ’:

The scan AT or OT produces signal state "1" if
the timer is running or_ the RLO at the inputis "1".

CPU 948 Programming Guide
C79000-G8576-C848-04 3-43

Programming Examples in the STL, LAD and CSF Methods of Representation

Counter operations

Set counter

STEP 5 representation
Logical/circuit operation
9 P Statement Ladder Control system
list diagram flowchart
A | 4.0 14.0 ¢l &=
14.1 KC 150 cCU Cc 1 cu 140 —lCU
| || A 1 41 — :
R S ClI L KC 150 141 CcD —1CD
I It S ¢ 1 S Bl 141 1S Bl |—
ULl | binary KC150_ | cy DE KC 150 —| CV DE|
CQ | 16 bits
1R Q [Q|—

When the result of logic operation changes at the start input
(14.1) from "0" to "1", the counter is loaded with the specified
value (150).

The flag necessary for edge evaluation of the set input
is incorporated in the counter word.

Bl and DE are digital outputs of the counter cell. The
value at Bl is in binary code and the value at DE is in
BCD.

Reset counter

STEP 5 representation
Logical/circuit diagram
9 9 Statement Ladder Control system
list diagram flowchart
A | 4.0 14.0 €2 c2
14.2 cCh C 2 CcD 14,0 — CD
il A M
R S CI R C 2 —Cu _{cu
It A c 2 —1S Bl | — 1S Bl | —
— = Q 24
(‘:‘T‘?‘ binary a5V DE Q24 —_cv DE Q24
o . : .
%0 6 bits % %R Q;(} P Q—E
Q24

An RLO of "1" (I 4.2) resets the counter to zero.

An RLO of "0" does not affect the counter.

CPU 948 Programming Guide
3-44 C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Counter operations
(continued)
Count up
STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
A | 4.1 41 = e
% P cu 141 _|cu
|| | we 1
RS CI cb —cP
14.1 7+ﬂ S DU | — 1S Bl |—
LU binary cv DE | — —_lcv DE |
CQ | 16 bits o o o o

The value of the addressed counter is incremented
by "1" to a maximum value of 999. The function CU
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before CU. The

flags necessary for edge evaluation of the counter

inputs are incorporated in the counter word.

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an
up/down counter.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-45

Programming Examples in the STL, LAD and CSF Methods of Representation

Counter operations
(continued)

Count down

STEP 5 representation

Logical/circuit diagram
9 9 Statement Ladder Control system
list diagram flowchart
Cl Cl
A | 4.0 14.0
% % cD 140 | cD
||| we 1
RS Cl — v — v
IL
140 | —Is BI s Bl | —
L binary —lcv DE —lcv DE |
CQ | 16 bits . o . o

up/down counter.

The value of the addressed counter is decremented
by 1 to a maximum counter value of 0. The function
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before the CD.
The flags necessary for edge evaluation of the

counter inputs are incorporated in the counter word.

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an

CPU 948 Programming Guide
C79000-G8576-C848-04

Programming Examples in the STL, LAD and CSF Methods of Representation

Comparison operations

Compare for equal to

STEP 5 representation
Logicalicircuit diagram Statement Ladder Control system
list diagram flowchart
L 1 B19
1B19 1B20
‘ L 1820 1B19 _|v1 F 1B19 _|cC1 F
V1 V2 I=F 1= Q30 1=
1B20 —| V2 IB20 — C2 Q3.0
= = Q30 0 Q { Q Q
Q3.0

The first operand is compared with the second operand

by the comparison operation. The RLO of the comparison

is binary.

RLO ="1": comparison is satisfied if ACCU-1-L = ACCU-2-L
RLO ="0": comparison is not satisfied, when ACCU-1-L is
not equal to ACCU-2-L.

The condition codes CC1 and CCO are set as described

in the list of operations.

ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

In a 32-bit fixed point comparison (! = D) and floating point
comparison (! = G) the entire contents of ACCU 1 and
ACCU 2 (32 bits) are compared with each other.

During the comparison, the numerical representation of the
operands is taken into account, i.e. the contents of ACCU-1-L
and ACCU-2-L are interpreted here as a fixed point number.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-47

Programming Examples in the STL, LAD and CSF Methods of Representation

Comparison operations
(continued)

‘ Compare for not equal to

STEP 5 representation

Logical/circuit diagram
ogic 9 Statement Ladder Control system
list diagram flowchart
L 1 B21
1B21 DW3

L Dws 1B21 __|v1 F 1B21 __|v1

V1 V2 S<F >< Q31 ><

DW3 | V2 DW3 V2 Q3.1

= Q31 3 Q (3 Q

The first operand is compared with the second operand
by the comparison operation.

The RLO of the comparison is binary.

RLO ="1": comparison is satisfied if ACCU-1-L is not
equal to ACCU-2-L.

RLO = "0": comparison is not satisfied if ACCU-1-L

equals ACCU-2-L.

The condition codes CC1 and CCO are set as described
at the beginning of Section 3.5.

ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

ACCU-2-H and ACCU-1-H are involved in a 32-bit fixed
point comparison and floating point comparison.

This information also applies to comparison operations for
"greater than", "greater than or equal to", "less than" and
"less than or equal to" (see the operations list). During the
comparison, the numerical representation of the operands
is taken into account, i.e. the contents of ACCU-1-L and
ACCU-2-L are interpreted here as a fixed point number.

CPU 948 Programming Guide
C79000-G8576-C848-04

Supplementary Operations

3.5.3
Supplementary Operations

A

System operations

CPU 948 Programming Guide
C79000-G8576-C848-04

You can use the supplementary operations set on the programmer only
in function blocks (FB and FX). This means that the total operations
set for function blocks consists of the basic operations and the
supplementary operations.

The system operations also belong to the supplementary functions.
You can use the system operations, for example to overwrite the
memory at optional locations or to change the contents of the working
registers of the CPU. System operations can only be programmed if
they have been enabled in the presets menu of the programmer (no
longer necessary from S5-DOS Version 2.0 upwards).

If you intend to use system operations, you should be familiar with
Chapter 9 "Memory access".

Caution

Only experienced system programmers should use the system
operations and then only with extreme caution.

You can only write operations in function blocks in STL. You cannot
program function blocks in graphic form (LAD and CSF methods of
representation).

This section describes the supplementary operations and covers possible
combinations of substitution operations with actual operands.

System operationare marked in the first column of the
tables with g

Supplementary Operations

Binary logic operations

Table 3-11 Binary logic operations with formal operands
Operation Operand Function
A = AND operation, scan a formal operand for signal state '1’
AN = AND operation, scan a formal operand for signal state '0’
0] = OR operation, scan a formal operand for signal state '1’
ON = OR operation, scan a formal operand for signal state '0’
‘— Insert formal operand
Inputs, outputs, data and flags addressed in binary (parametet
types: I, Q; data type BI) and timers and counters (parameter
type: T, C) are permitted as actual operands.

Digital logic operations

Table 3-12 Digital logic operations
Operation Operand Function
AW AND operation on the contents of ACCU-1-L and ACCU-2-L
ow OR operation on the contents of ACCU-1-L and ACCU-2-L
XOW Exklusive OR operation on the contents of ACCU-1-L and
ACCU-2-L

ACCUs 2, 3 and 4 are not affected, however, the condition codes
CC 1 and CC 0 are affected (see word condition codes).

CPU 948 Programming Guide
C79000-G8576-C848-04

Supplementary Operations

Bit test operations
Table 3-13 Bit test operations
Operation Operand Function
B Scan for signal state "1"
I 0.0to127.7 of an input (PII)
Q 0.0to127.7 of an output (PIQ)
F 0.0to 255.7 of a flag
D 0.0to 255.15 of a data word bit
T 0.0to 255.15 of a timer word bit
Z 0.0to 255.15 of a counter word bit
Rl 0.0to 255.15 of a bit in Rl area
RJ 0.0to 255.15 of a bit in RJ area
RS 0.0to 255.15 of a bit in RS area
RT 0.0 to 255.15 of a bit in RT area
TBN Scan for signal state "0"

D 0.0to 255.15
T 0.0t0255.15
C 0.0to 255.15
Rl 0.0to 255.15
RJ 0.0to 255.15
RS 0.0 to 255.15
RT 0.0 to 255.15

| 0.0to127.7 of an input (PII)
Q 0.0to127.7 of an output (PIQ)
F 0.0to 255.7 of a flag

of a data word bit

of a timer word bit
of a counter word bit
of a bit in Rl area

of a bit in RJ area

of a bit in RS area
of a bit in RT area

The bit test operations scan the state of the bit and indicate it via the
RLO.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-51

Supplementary Operations

Set/reset operations
Table 3-14 Set/reset operations with formal operands
Operation Operand Function
S = Set a formal operand (binary)
RB = Reset a formal operand (binary)
RD= Reset a formal operand (digital)
for timers and counters
= = Assign the value of the RLO to a
formal operand
Insert formal operand
Inputs, outputs and F flags addressed in binary
(parameter type: I, Q; data type BI) are permitted
as actual operands.
Table 3-15 Set and reset operations
Operation Operand Function
SuU Unconditional setting
I 0.0to 127.7 of an input (PII)
Q 0.0to 127.7 of an output (P1Q)
F 0.0 to 255.7 of a flag
D 0.0 to 255.15 of a data word bit
T 0.0 to 255.15 of a timer word bit
C 0.0to 255.15 of a counter word bit
RI 0.0 to 255.15 of a bit in Rl area
RJ 0.0 to 255.15 of a bit in RJ area
RS 60.0 to 63.15 of a bit in RS area
RT 0.0to 255.15 of a bit in RT area
RU Unconditional resetting
I 0.0to 127.7 of an input (PII)
Q 0.0to 127.7 of an output (PIQ)
F 0.0 to 255.7 of a flag
D 0.0 to 255.15 of a data word bit
T 0.0 to 255.15 of a timer word bit
C 0.0to 255.15 of a counter word bit
RI 0.0to 255.15 of a bitin Rl area
RJ 0.0to 255.15 of a bitin RJ area
RS 60.0 t0 63.15 of a bit in RS area
RT 0.0to 255.15 of a bit in RT area
CPU 948 Programming Guide
3-52 C79000-G8576-C848-04

Supplementary Operations

Timer and counter

operations

Table 3-16

Timer and counter operations with formal operands

Operation

Operand

Function

sP =

SD =

SEC =

SSU =

SFD =

FR =

L

Start timer specified by the formal operand as a pulse with th
value stored in ACCU-1-L (parameter type T).

[¢)

Start timer specified by the formal operand as ON delay with th
value stored in ACCU-1-L (parameter type T).

11

Start timer specified by the formal operand as extended pulse
with the value stored in ACCU-1-L or set counter specified

as formal operand with the counter value stored in ACCU-1-L
(parameter type: T, C).

Start timer specified by the formal operand as stored
ON delay with the value stored in ACCU-1-L or
increment a counter specified as formal operand
(parameter type: T, C).

Start timer specified by the formal operand as stored
OFF delay with the value stored in ACCU-1-L or
decrement a counter specified as formal operand
(parameter type: D, C).

Enable formal operand (timer/counter) for cold
restart (see FR T or FR R); (parameter type: T, C).

Insert formal operand

FR

T 0to 255

C 0to 255

Enable timer for cold restart:

The operation isnly executed on the leading edge
of the RLO (change from O to 1). The timer is
restarted if the RLO is 1 at the time of the start
operation. (See timing diagram below the table).

Enable a counter for setting or resetting:

The operation is executedly on the leading edge

of the RLO (change from O to 1). The counter is only
started if the RLO =1 at the time of the start operation.

CPU 948 Programming Guide
C79000-G8576-C848-04

RLO
for SP T

[[TL

RLO
for FR' T

Y
Y

Scan
with A T

Supplementary Operations

Examples
Function block call Program in the Program executed
function block
a)
Ju FB 203
NAME :EXAMPLE1l
ANNA : 110.3 ‘A =ANNA A1 103
BERT : T17 L KT 010.2 L KT 010.2
JOHN : Q184 :SSU =BERT SS T 17
‘U =BERT U T 17
= =JOHN = Q 184
b)
Ju FB 204
NAME :EXAMPLE2
MAXI : 110.5 A =MAXI A1 105
IRMA : 110.6 :SSU =DORA :CU C 15
EVA 110.7 ‘A =IRMA A1 106
DORA : Cc15 :SFD =DORA :CD C 15
EMMA : F 58.3 ‘A =EVA A1 107
L KC100 L KC 100
:SEC =DORA S C 15
‘AN =DORA ‘AN C 15
= =EMMA = F 58.3
c)
Ju FB 205
NAME :EXAMPLE3
BILL : 110.4 A =BILL A1 104
JACK : T18 L =EGON L Iw20
EGON : Iw 20 :SEC =JACK SE T 18
YOGI : F 100.7 ‘A =JACK AT 18
= =YOGI = F 100.7

CPU 948 Programming Guide

C79000-G8576-C848-04

Supplementary Operations

Load and transfer
operations

Table 3-17 Load and transfer operations with formal operands

Operation |Operand Function

L = Load a formal operand:

The value of the operand specified as a formal
operand is loaded into the ACCU (parameter
type: I, T, C, Q; data type: BY, W, D).

LCD = Load a formal operand in BCD code:
The value of the timer or counter specified as a formal operand is
loaded into the ACCU in BCD code (parameter type: T, C).
LW = Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU
(parameter type: D; data type: KF, KH, KM, KY, KS, KT, KC).
LWD = Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU
(parameter type: D; data type: KG).
T = Transfer to a formal operand:

The contents of the accumulator are transferred to
the operand specified as a formal operand (parameter
type: I, Q; data type: BY, W, D).

Insert formal operand

Actual operands permitted include those of the corresponding basic
operationgxcept for S flags For the "LW=" operation, permissible
data types include a binary pattern (KM) or a hexadecimal pattern
(KH), two absolute numbers of 1 byte each (KY), a character (KS), a
fixed point number (KF), a timer value (KT) and a counter value
(KC). For "LWD=" permissible data is a floating point number.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-55

Supplementary Operations

Table 3-18 Load and transfer operations with special operands

Operation Operand Function

L RI 0 to 255 Load a word from the interface data area
into ACCU 1 (Rl area)

RJ 0to 255 Load a word from the extended interface area
into ACCU 1 (RJ area)
L RS 0Oto 255 Load a word from the system data area

into ACCU 1 (RS area)

RT 0to 255 Load a word from the extended system data
area into ACCU 1 (RT area)
T RI 0 to 255 Transfer the contents of ACCU 1to a

word in the interface data area (Rl area)

RJ 0to 255 Transfer the contents of ACCU 1 to a word
in the extended interface data area (RJ area)
T RS 60to63 Transfer the contents of ACCU 1to a

word in the system data area (RS area)

RT 0to 255 Transfer the contents of ACCU 1 to a word
in the extended system data area (RT area)

In contrast to the RI, RJ and RT areas, you can only use words RS 60 to
RS 63 of the RS area. Refer to Section 8.3.4 "RS/RT Area".

You can use the RT area in its complete length (RT 0 to RT 255)
providing you do not use any standard function blocks.

CPU 948 Programming Guide
3-56 C79000-G8576-C848-04

Supplementary Operations

Arithmetic operations

Table 3-19 Arithmetic operation ENT
Operation Operand Function
ENT This causes a stack lift into ACCUs 3 and 4:
<ACCU 4> :=<ACCU 3>
<ACCU 3> :=<ACCU 2>
<ACCU 2> :=<ACCU 2>
<ACCU 1> :=<ACCU 1>
ACCUs 1 and 2 are not changed. The old contents
of ACCU 4 are lost.
Example

The following fraction must be calculated: (30 +3*4) /6 =7

ACCU 1 ACCU 2 ACCU 3 ACCU 4

Contents of the ACCUs
before the sequence of a b c d
arithmetic operations

N
L KF +30 30 a C d
L KF +3 3 \‘30 c d
ENT 3 30 *30 \Ac

A
L KF +4 4 3 30 c
x F 12 30 & | c A c
+F 42 c A | c A c
L KF +6 6 g, c c

F 7 ¢ A c A c

CPU 948 Programming Guide
C79000-G8576-C848-04

Supplementary Operations

Table 3-20 Supplementary arithmetic operations
Operation Operand Function
S |ADD BN -128to Add a byte constant (fixed point) to ACCU-1-L (includes
+127 sign change)/the condition code in CC 0, CC 1, OV and
OS are not affected! — ACCU-1-H and ACCUs 2to 4
remain unchanged.
S |ADD KF -32768to Add a fixed point constant (word) to ACCU-1-L/ the
+32 767 condition codes in CC 0, CC 1, OV and OS are not
affected! — ACCU-1-H and ACCUs 2 to 4 remain unchanged,
s|ADD Y DH 0000 0000 Add a double word fixed point constant to ACCU 1/the
to condition codes in CC 0, CC 1, OV and OS are not affected!
FFFF FFFF |ACCUs 2 to 4 remain unchanged.
s|+DY Add two double word fixed point constants
(ACCU 2 + ACCU 1)/the result can be evaluated
incc o/cc 1.2
s-pY Subtract two double word fixed point constants
(ACCU 2 - ACCU 1)/the result can be evaluated in CC oice 1.
S |TAK Swap the contents of ACCU 1 and ACCU 2

D Programming is dependent on the PG type and the release of the PG system software.

2 For changes in ACCU 2 and ACCU 3: see Section 3.5.1 "Basic Operations/Arithmetic Operations".

CPU 948 Programming Guide
C79000-G8576-C848-04

Executive Operations

3.54
Executive Operations The executive operations also include system operations.
Caution
System operations should only be used with great care and then
only by experienced programmers familiar with the system.
System operatiorare indicated in the table b S
Jump operations When you use the supplementary jump operations, you indicate the

jump destination for unconditional jumps symbolically. The symbolic
parameter of the jump operation is identical to the symbolic address of
the destination statement. When programming, remember that the
absolute jump distance should not exced@7 words and a STEP 5
statement can consist of more than one word. You can only execute
these jumps within a block; jumps over segment boundaries are not
permitted ("segment” = structural element in PBs, SBs, FBs, FXs and
OBs; see PG description).

Note
The jump statement and jump destination (symbolic address) must
be in the same segment. A symbolic address can only be used
onceper segment.

Exception: this does not apply to the JUR jump for which you
specify an absolute jump distance as the parameter.

Table 3-21 Jump operations

Operation Operand Function

JUu = addr Jump unconditionally:

The jump is executed regardless of conditions
(‘addr =symbolic
address with

JC = maximum Jump conditionally:
4 characters) the conditional jump is executed only if the RLO is 1.
If the RLO is 0, the statement is not executed and the RLO
is set to 1.
Jz = Jump if resultis "0’ :

the jump is executed only if CC 1is0 and CC 0 is 0.
The RLO is not changed.

CPU 948 Programming Guide
C79000-G8576-C848-04 3-59

Executive Operations

Operation

Operand

Function

Table 3-21 continued:

JN =

JM=

JO =

JOS

addr

(addr = symbolic
address with
maximum

4 characters)

Jump if resultis not O :

the jump is executed only if CC1
is not equal to CCO.

The RLO is not changed.

Jump if result >’0" :
the jump is only executed if CC1 =1
and CC 0 = O. The RLO is not changed.

Jump if result <’0’:
the jump is only executed f CC 1 =0and CC 0 = 1.
The RLO is not changed.

Jump on overflow:
the jump is executed when the OV condition code is 1. If

there is no overflow (OV is 0), the jump is not executed. The

RLO is not changed.

An overflow occurs when an arithmetic operation exceeds the

permissible range for a given numerical representation.

Jump when the OS (stored overflow) condition code is se
the jump is executed when the condition code OS is 1. If

t:

there is no overflow (OS is 0), the jump is not executed. The

RLO is not changed.

An overflow occurs when an arithmetic operation exceeds the

permissible range for a given numerical representation.

S |JUR

-32 768 to
+32 767

Relative jump within the user memory or within a function
block (e.g. to arrive in a different segment). The operation
always executed regardless of conditions.

is

The operand is the number of words difference between the

address of the jump destination - the current destination.
jump is executed either to a higher (positive operand) or
lower (negative operand) address than the current operat

Caution

If you useJUR incorrectly, undefined statuses can occur in the
system. It should only be used by extremely experienced
programmers with detailed knowledge of the system.

CPU 948 Programming Guide
C79000-G8576-C848-04

The

ion.

Executive Operations

Shift operations
Table 3-22 Shift operations
Operation Operand Function (operation with ACCU 1)
SLW 0 to 15 Shift a word to the left (vacant positions
to the right are padded with zeros)
SRW 0to 15 Shift a word to the right (vacant position
to the left are padded with zeros)
SLD 0to 32 Shift a double word to the left (vacant positions
to the right are padded with zeros)
SSW 0to 15 Shift a word with sign to the right (vacant positions
to the left are padded with the sign - bit 15)
SSD Oto 32 Shift a double word with sign to the right (vacant
positions to the left are padded with the sign - bit 31)
RLD 0to 32 Rotate to the left
RRD 0to 32 Rotate to the right

CPU 948 Programming Guide
C79000-G8576-C848-04

Only ACCU 1 is involved in the execution of shift operations. The

parameter part of these operations specifies the number of positions by

which the accumulator contents should be shifted or rotated. For the
SLW, SRW and SSW operations, only the low word of ACCU 1 is
involved in the shift operations. For SLD, SSD, RLD and RRD
operations, the entire contents of ACCU 1 (32 bits) are involved.

Shift operations are executed regardless of conditions.

You can use jump operations to scan the value of the last bits shifted
out using CC 1/CC 0.

Shift: last CC1 CCo Jump operation
bit shifted
0 0 0 JZ=
1 1 0 JN=
JP=

Executive Operations

Examples

1. You want to shift the contents of data word DW 52 four bits to the left
and write them to data word DW 53.

STEP 5 program: Contents of the data words:

L DW 52 KH = 14AF
SLW 4
T DW 53 KH = 4AFO0

2. You want to read the input double word ID 0, and shift the contents of
ACCU 1 so that the bit positions of the input double word shown in bold
face are retained and the remaining bit positions are set to defined
values (OH or OFH).

STEP 5 program: Contents of ACCU 1 (hexadecimal)

ACCU-1-H: ACCU-1-L:
L IDO 2 348 ABCD
SLW 4 2348 BCDO
SRW 4 2348 0BCD
SLD 4 3480 BCDO
SSW 4 3480 FBCD
'SSD 4 0348 OFBC
‘RLD 4 3480 FBCO
‘RRD 4 0 348 OFBC

3. Application: Multiplication by the 3rd power, e.g. new value = old
value x 8

L FW10

SLW 3

T FwW10 Caution: do not exceed the
positive area limit!

4. Application: Division by the 2nd power, e.g. new value = old value : 4

:C DB 5
L DWO
SRW 2

T DWO

CPU 948 Programming Guide
3-62 C79000-G8576-C848-04

Executive Operations

Conversion operations

Table 3-23 Conversion operations
Operation Function
CFW Form the 1's complement of ACCU-1-L (16 bits)
CSwW Form the 2's complement of ACCU-1-L (16 bits)
CSsD Form the 2's complement of ACCU 1 (32 bits)
DEF Convert a fixed point number (16 bits) from BCD to binary
DUF Convert a fixed point number (16 bits) from binary to BCD
DED Convert a double word (32 bits) from BCD to binary
DUD Convert a double word (32 bits) from binary to BCD
FDG Convert a fixed point number (32 bits) to a floating point number (32 bits)
GFD Convert a floating point number to a fixed point number (32 bits)
DEF The value in ACCU-1-L (bits O to 15) is interpreted as a BCD number.
After the conversion, ACCU-1-L contains a 16-bit fixed point
number.
DUF The value in ACCU-1-L (bits 0 to 15) is interpreted as a 16-bit fixed point

number. After the conversion, ACCU-1-L contains a BCD number.

15 14 0
‘ si2¥ .. 5
DUF DEF
15 UF | 1 0
‘ SSSS 16 10! 10°
S (sign): 0 = positive
1 = negative

CPU 948 Programming Guide
C79000-G8576-C848-04 3-63

Executive Operations

DED The value in ACCU 1 (bits 0 to 31) is interpreted as a BCD number. After
the conversion, ACCU 1 contains a 32-bit fixed point number.

DUD The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed
point number. After the conversion, ACCU 1 contains a BCD number.

31 30 0

si2®.... v
DUD | DED 1

31 0

| ssss| 18 | 10° 10 10° 102 10! 10°

S (sign): 0 = positive

1 = negative

FDG The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed
point number. After the conversion, ACCU 1 contains a floating point
number (exponent and mantissa).

GFD The value in ACCU 1 (bits O to 31) is interpreted as a floating point
number. After the conversion, ACCU 1 contains a 32-bit fixed point
number.

31 30 0

s v
FDG | GFD 1
31 30 24 23 0
Si2% Ssiot ... 23
Exponent Mantissa
The conversion is made by multiplying the (binary) mantissa by the value
of the (binary) exponent by shifting the mantissa value to more significant
bits past an imaginary decimal point by the value of the exponent (base
2). After the multiplication, remnants of the original mantissa remain to
the right of the imaginary decimal point. These bit places are cut off from
the whole result.
CPU 948 Programming Guide
3-64 C79000-G8576-C848-04

Executive Operations

This conversion algorithm produces the following result classes:

¢ Floating point numbers 0 or < -1 result in thenext lower
number.

¢ Floating point numbers 0 and > -1result in thevalue '0’.

Conversion examples

Floating point number 32-bit fixed point number
GFD
+5,7 - 5
-2,3 - -3
-0,6 - 0
+0,9 - 0

Examples of CFW, CSW

1. You want the contents of data word DW 64
inverted bit for bit (reversed) and stored in
data word DW 78.

STEP 5 program: Assignment of the data words:

'L DW 64 KM =0011111001011011
:CFW
‘T DW 78 KM =1100000110100100

2. The contents of data word DW 207 are
interpreted as a fixed point number and stored
in data word 51 with a reversed sign.

STEP 5 program: Assignment of the data words:

L DW 207 KF = +51
CSW
‘T DW 51 KF =-51

CPU 948 Programming Guide
C79000-G8576-C848-04 3-65

Executive Operations

Decrement/
increment

Table 3-24 Decrement/increment operation

Operation Operand Function

D 1to 255 Decrement the low byte (bits 0 to 7) of ACCU-1-L
by the value of the opera

I 1to 255 Increment the low byte (bits O to 7) of ACCU-1-L
by the value of the opera

D' The contents of the low byte of ACCU-1-L are decremented or incremented by the number specified as the
operand without a carry. The operation is executed regardless of conditions.

Example
STEP 5 program: Assignment of the data words:

L DW7 KH = 1010
116
‘T DW 8 KH = 1020
:D 33
‘T DW9 KH = 10FF

Processing operations

Table 3-25 Processing operations

Operation Operand Function

DO DW 0 to 255 Process data word:

the following operation is combined with
the parameter specified in the address data
word and executed.

FW 0 to 254 Process flag word:

the following operation is combined with
the parameter specified in the addressed
F flag and executed.

DO = Process formal operand (parameter type B):
Only C DB, JU PB, JU OB, JU FB, JU SB
can be substituted.

Insert formal operand

CPU 948 Programming Guide
3-66 C79000-G8576-C848-04

Executive Operations

Operation

Operand

Function

Table 3-25 continued:

S

Bl D Indirect processing of a formal operand:
execute an operation whose operation code is
stored in a formal operand. The number of the
formal operand must be stored in ACCU 1.

B RS 60to63 Execute an operation whose operation code

is stored in the system data area (RS = free
system data: RS 60 to 63). In 2-word operations
the 2nd word must be loaded in RS n + 1.

Y The value in the formal operand or system data is interpreted as the operation code of a STEP 5
operation and is then executed.

CPU 948 Programming Guide
C79000-G8576-C848-04

Note
Only the following operations can be combined viith DW, or
DO FW, DI orDO RS

- A.,AN..,0..,ON..,S..,R.., =..
with areas |, Q, F, S,

- FRT,RT,SFT,SDT,SPT,SST,SET,

- FRC,RC,SC,CDC,CUC,

- L., T.withareasP, O,1,Q,F, S, D, RIl,RJ, RS, RT,
- LT, LC,

- LCT,LCC,

- JU=,JC=, JZ=, IN=, JP=, JM=, JO=,

- SLW, SRW,

- D, |, SED, SEE,

- CDB,JU..,JC.,, G DB, GXDX, CX DX, DOC FX, DOU FX

The PG does not check the legality of the combinations!

Executive Operations

Examples of DO operations

DO DW/DO FW Operand substitution

Using the statements "DO DW" and "DO FW" you can access data with a
substitution, e.g. in a program loop. The substituted access consists of the
statement DO DW/DO FW followed immediately by one of the STEP 5

operations listed above.

"Substituted" means that the operand for the operation is not programmed

as a static value but is fixed during the course of the STEP 5 program.

Select the operartgipe from the range permitted for the operation when

you write your program, e.&B for the operation

"JU PB nn":

You must first load the operandlue (nn in the example) in a data word
or F flag word (parameter word) before the substituted access with

DO DW/DO FW.
1. Principle of substitution:
L KF +120
T FW 14 load FW with the value "KF +120"
:DO FwW 14
L IBO

before the operation "L IB" is executed, the
operand value 0’ is replaced by the value '120’;

Operation executed: L IB 120

2. Data word as index register:

The contents of data words DW 20 to DW 100 are set to signal state '0’. The
index register for the parameter of the data words is DW 1.

KF +20 supply the index register
DW 1

KF +0 reset

DW 1

DW 0

DW 1 increment the index register
KF +1

M001

oA
O

DW 1
KF +100

SAFAYEEY
n
L

[
(el

=MO001 jump if the index is within the range
remaining STEP 5 program

Continued on next page

CPU 948 Programming Guide

C79000-G8576-C848-04

Executive Operations

Examples of operand substitution continued:

3. Jump distributor for subroutine techniques:

4. Jump distributor for block calls:

:DO FW 5
—Ju =M001 Contents of flag word FW 5:
+ JU =M002
Jump Ju =M003 jump distance
distance =M004 (maximum +127)
=MO005
MO001
‘BEU
M002 : Advantage:
. all program sections are
‘BEU contained in one block.
MO003 :
‘BEU

:-DO FW10 Contents of flag word FW 10:
JU PB0O —RBO
— PB1 Block no. x
___PB2
I PB3
_ PBXx
Operand substitution with binary operations
For operand substitutions with binary operations you can use the
following operand types: inputs, outputs, F flags, S flags, timers and
counters.
In this substitution, the structure of the F flag word or data word
(parameter word) depends on the operation you are using.
Parameter word for inputs and outputs
Bitno. | 15 11 10 8 7 6 0
no significance Bit addressO | Byte address from 0 to 127
fromQOto 7

CPU 948 Programming Guide
C79000-G8576-C848-04

Executive Operations

Bit no.

Bit no.

Bit no.

Principle of the substitution
with a binary operation

Parameter word for F flags

15

11 10 8 7

0

no significance Bit address Byte address from 0 to 255

fromOto 7

Parameter word for S flags

15| 14 12 11 0
0 | Bit address Byte address from 0 to 4095
fromOto 7
Parameter word for timers and counters
15 8| 7 0
no significance Number of timer or
counter cell from 0 to 255
15\ L \1110\ \87 L
4 0 30 DW 27

DO DW 27

A1 00

T

A 30 .
Y

statement executed

CPU 948 Programming Guide
C79000-G8576-C848-04

Executive Operations

Example of DI operation

FB 1
NAME
DECL

DECL
DECL

FB 2

AUFR

NAME

Fw 10
Fw 12

FW 14

FW10 :
FW12 :
FW14 :

‘TEST

:FW10
‘FW12
‘FW14

DI
T FW 16
:BE

‘TEST

In function block FB 1, STEP 5 operations are executed whose operation
codes were transferred
by a calling block as formal operands FW 10, FW 12 and FW 14.

Which of the operation codes is executed is written by the calling block
as a consecutive number in flag word
The result of the executed operation is then entered in ACCU 1 and is
transferred to flag word FW 18.

FW 16.

I/Q/D/BIT/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH
1/Q/D/BIT/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH
I/Q/D/BIT/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH

L FW 16

L KF +1
T FW 16
JU =AUFR

JU FB1

KH 4A5A
KH xxxx
KH yyyy
T FW 18
:BE

List of actual operands in FB 2

cons. number of formal operand
with required operation code
transferred operation code is executed

result from ACCU 1

cons. no. of formal operand with operation code

call FB TEST

op. code "L 1B 90",
other operation code,
other operation code,

ACCU1 - FW18

formal operand 1
formal operand 2
formal operand 3

Principle of sequence in FB 1

L FW 16

¢® 4ASAH
xooH FW 16 | 0001H |
yyyyH l
ACCU 1 | 0001H |
(cons. no. of actual operand)
Y
:L 1B 90 <

Operation executed with "DI"

CPU 948 Programming Guide
C79000-G8576-C848-04

Executive Operations

I/O operations

ul

S

Table 3-26 1/O operations
Operation Operand Function
IA Disable process interrupt servicing (via 1B 0) (not for system
interrupts!)
RA Enable process interrupt servicing (via IB 0) (not for system
interrupts!)
IAE Disable addressing error
RAE Enable addressing error
BAS Disable command output: PIQ is no longer influenced by the
operations
SQ,RQ,=Q, TPY and T PW.
BAF Enable command output
"Enable/disable process interrupts” can, for example, be used when
process interrupt driven processing is to be suppressed during
time-controlled processing. In the program section between the IA and
RA statements, no process interrupt driven processing is possible.
Note the special function OB 122 "disable interrupts”, Section 6.3.
Other operations
Table 3-27 Other operations
Operation Operand Function
S|STS Stop command leading directly to a soft STOP.
STW Stop command leading directly to a hard STOP.
(state can only be exited with POWER DOWN/UP).
SIM Set interrupt mask (UAMW) (32 bits): before calling the
operation, the bit pattern for the mask must be loaded in ACC
(32 bits)
LIM Read interrupt mask: bit pattern of the interrupt mask (32 bits
loaded in ACCU 1
CPU 948 Programming Guide
3-72 C79000-G8576-C848-04

Executive Operations

SIM/LIM — set/read interrupt

condition code mask (UAMW)

The interrupt mask "masks" interrupts in the interrupt condition code
word until the end of the cycle, i.e. all interrupts remain pending, but
the program is not interrupted by them.

Bit in the interrupt condition code mask = O: interrupt disabled
Bit in the interrupt condition code mask = 1: interrupt enabled

Meaning of the bits in UAMW-H or ACCU-1-H:

15 87 0

INTX | INTE | INTF |INTG |WEFE| WA | PA |BULE| PEU | HALT| ES | AV |INTAS| TAU |DARY| KZU
Meaning of the bits in UAMW-L or ACCU-1-L:

15 87 0

- KB | KDB | STS | TLAF| SUF STUE%STUEF NAU ZA| QVZ| ADF PAR% ZYK| STO% HOL%

CPU 948 Programming Guide

C79000-G8576-C848-04

Table 3-28 Meaning of the abbreviations in UAMW

Abbrev. Meaning
High word
INTX S5 bus/system interrupt A, B, C or D (slot-
dependent)
INTE S5 bus/system interrupt E
INTF S5 bus/system interrupt F
INTG S5 bus/system interrupt G
WEFE Collision of timed interrupts
WA Timed interrupt
PA Process interrupt
BULE Bus lock error
PEU I/Os not ready
HALT Stop instruction from coordinator COR
ES Single step mode
AV Address comparison active
INTAS Interrupt from SPU processor
TAU Clock failure of SPU processor
DARY Continuous ready (access to faulty memory)
KzU Bracket counter overflow

Executive Operations

Abbrev.

Meaning

Table 3-28 continued:

Low word

KB
KDB
STS
TLAF
SUF
STUEB
STUEU
NAU
ZA

QVz
ADF
PARE
ZYK
STOP
HOLD

No block

No data block

Soft stop

Transfer/load error

Substitution error

BSTACK overflow

ISTACK overflow

Power failure

Timed interrupt (delayed interrupt, clock-controlled
interrupt

Timeout

Addressing error

Parity error

Cycle time error

Mode selector switched to STOP
DMA request from SPU processor

CPU 948 Programming Guide
C79000-G8576-C848-04

Semaphore Operations

355
Semaphore Operations

SED/SEE disable/enable
semaphore

If two or more CPUs in one programmable controller (see Chapter 10)
require access to the same global memory area (peripherals, CPs, IPs),
there is a danger that one CPU will overwrite the data of another CPU
or that one CPU could read invalid intermediate data statuses of
another CPU and misinterpret them. You must therefore coordinate
CPU accesses to the common memory areas.

You can coordinate the individual CPUs using the SED and SEE
operations.

You can, for example, program the following coordination between two
CPUs: a CPU involved in multiprocessing can only access the common
memory area after it has successfully set a declared semaphore (SES). A
semaphore xx can only be set by a single CPU. If a CPU fails to set (i.e.
disable) the semaphore, it cannot access the memory area. In the same
way, a CPU can no longer access the memory once it has released the
semaphore again (SEE).

(non-system operations)

Table 3-29 Disable/enable semaphore

Operation Operand

Function

SED 0 to 31

SEE 0 to 31

Disable (set) a semaphore
Enable (release) a semaphore

evaluation of the result of the operation via
cco/cct

CPU 948 Programming Guide
C79000-G8576-C848-04

Note

The SED xx and SEE xx operations must be progranmaiti
CPUsthat require synchronized access tmmmonglobal
memory area.

Standard FBs, handling blocks and blocks for multiprocessor
communication manage the coordination internally. If you use
these blocks, you do not need to program the operations SEE xx
and SED xx.

Semaphore Operations

Effect of SED/SEE

Use of SED/SEE

The CPU that executes the operation SED xx (disable semaphore)
accesses a specific byte in the coordingioyided that no other

CPU has access to that byte already). Once a CPU has reserved access,
the other CPUs can no longer access the memory area protected by the
semaphore (numbers 0 to 31). The area is therefore disabled for all

other CPUs.

Make sure that the coordination functions correctlyC&Us

requiring access to the same area of global memory must use the same
semaphore.

The SEE xx (enable semaphore) operation resets the byte on the
coordinator. The protected memory area is then once again accessible
to the other CPUs. A semaphore can only be enabled by the CPU that
disabled it.

Fig. 3-8 illustrates the basic sequence of coordinated access using a
semaphore.

<T>

Disable semaphore
SED

Operation
successful?

Yes

Access to sema-
phore protected
global memory

Enable semaphore:
SEE

Fig. 3-8 Coordination of access to the global memory

CPU 948 Programming Guide
C79000-G8576-C848-04

Semaphore Operations

CPU 948 Programming Guide
C79000-G8576-C848-04

Before disabling or enabling a particular semaphore, the SED and SEE
operations scan the status of the semaphore. The condition codes CC 0
and CC 1 are affected as follows:

CC1l | CCO | Evaluation Significance
0 0 Jz Semaphore was disabled by
another CPU and cannot be
disabled/enabled.
1 0 JN, JP Semaphore was disabled/
enabled.
Note

The scanning of a particular semaphore (= read procedure) an
the disabling or enabling of the semaphore (=write procedure) are
one unit No other CPU can access the semaphore during thes
procedures!

When using semaphores, remember the following points:

« A semaphore is a global variable, i.e. the semaphore with number
16 exists onlyoncein the entire system, even if your controller is
using three CPUs.

e All CPUs that require coordinated access to a common memory area
must use the SED and SEE operations.

e All participating CPUs must execute th@mestart-up type. Du-
ring a COLD RESTART, all the semaphores are cleared. During a
manual or automatic warm restart, the semaphores are retained.

e Start-up in multiprocessor operation must be synchronized. For
this reasonno test operation is allowed.

Semaphore Operations

Application example for
semaphores

Tasks:

Four CPUs are plugged into an S5-155U. They output status messages to a
status signalling device via a common memory area of the O peripherals

(OW 6). A CPU must output each status message for 10 seconds. Only after a
10 second output can a new message be output from the same CPU or a
different CPU overwrite the first message. The use of peripheral word OW 6
(extended 1/O area, no process image) is controlled by a semaphore. Only the
CPU that was able to reserve this area for itself by disabling the assigned
semaphore can write this message to OW 6. The semaphore remains disabled for
10 seconds at a time (TIMER T 10). The CPU re-enables the semaphore only
after this timer has elapsed. After the semaphore has been re-enabled, the

other CPUs can access the reserved area. The new message can then be written
to OW 6.

Implementation:

The following program can run in all four CPUs, each with a different
message. The blocks shown below are loaded.

FB 100:
DISABLE SEMAPHORE

FB 1: FB 10: FB 110:
MAIN PROGRAM REPORT OUTPUT REPORT
FB 101:

ENABLE SEMAPHORE

5 flags are used as follows:
F 10.0=1: a message was requested or is being processed
F10.1=1: the semaphore was disabled successfully
F 10.2=1: the timer was started
F 10.3=1: the message was transmitted

F 10.4=1: the semaphore was re-enabled

Continued on next page

CPU 948 Programming Guide
3-78 C79000-G8576-C848-04

Semaphore Operations

Semaphore application example continued:

FB1
‘A F100
JC =MO001 If no message is active,
AN 1 0.0
‘BEC
L KH 2222 generate message and
T FW 12
‘AN F10.0
'S F 10.0 set "MESSAGE" flag.

M001 :JU FB10
NAME :REPORT

Call "REPORT" FB

‘BE

FB 10

NAME :REPORT

‘AN F10.1 If no semaphore is disabled,

:JC FB100 call "disable semaphore" FB.
NAME :SEMADIS

A F10.1 If the semaphore is disabled

‘AN F 10.2 and the timer has not started,

'S F 10.2

L KT010.2 start the timer.

SE T10

A F 10.2 If the timer has started

‘AN F 10.3 and no message is being transmitted,

:JJC FB110 call "output message" FB.
NAME :MSGOUT

A F 10.2 If the timer has started

‘AN F104 and the semaphore is not enabled

‘AN T 10 and the timer has elapsed,

JC FB101 call "enable semaphore" FB.
NAME :SEMAENAB

‘AN F 104 If the semaphore is enabled,

‘BEC

L KHO0000

T FY10 reset all flags.

‘BE

Continued on next page

CPU 948 Programming Guide

C79000-G8576-C848-04

Semaphore Operations

FB 100

NAME :SEMADIS

'SED 10
JZ =M001
‘AN F10.1
'S F10.1
MO001 :BE
FB 110

NAME: MSGOUT

L FW12
T OW 6
;AN F10.3
'S F 10.3
‘BE

FB 101

NAME :SEMAENAB

‘SEE 10

JZ =M001

‘AN F 104

'S F 10.4
MO001 :BE

Semaphore application example continued:

Disable semaphore no. 10

If the semaphore is disabled successfully,
set "SEMAPHORE-DISABLED" flag.

Transmit a message
to the peripherals

Set "TRANSFER MESSAGE"
flag

Enable semaphore no. 10

Set "SEMAPHORE ENABLED"
flag

CPU 948 Programming Guide
C79000-G8576-C848-04

Operating Statuses and Program 4
Execution Levels

Contents of Chapter 4

4.1

4.2

42.1
422
423

4.3

43.1
43.2
4.3.3
43.4
4.3.5
4.3.6
4.3.7
4.3.8

4.4

44.1
442
443
444

Program Execution Levels. e -4,..4
STOP MOGE. . . . ottt e e e e 4-8

SOFT STOP . .o e A2 9

HARD STOP . . . e e 4-13
OVERALL RESET. . .t e e -14. 4
START-UP MOdE . ..o e e e e e -.16|. 4
MANUAL and AUTOMATIC COLD RESTARTt ot e 4-17
MANUAL and AUTOMATIC WARM RESTARTo 4/- 18
Comparison between COLD RESTART and WARM RESTART.|..... 4-21
RETENTIVE COLD RESTARTot e e et 4-22
Comparison of COLD RESTART and RETENTIVE COLD RESTART. 4-23
User Interfaces for Start-Up.ot 4.-24..
Extended AUTOMATIC WARM RESTART with the CPU 948 (HOT RESTART). .. 4|- 27
Interruptions during START-UP e e 4-28
RUN MOGE e e e e 4.-.29

Cyclic Program EXeCULIONottt e e e -30.. 4
Specifying Time and Interrupt-Driven Program Execution[..... 4-32
Time-Controlled Program Execution. el 4-33
Interrupt-Driven Program EXecutiont o 4-41

CPU 948 Programming Guide
C79000-G8576-C848-04 4-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Operating Statuses and Program 4

Execution Levels

CPU 948 Programming Guide
C79000-G8576-C848-04

This chapter provides an overview of the operating statuses and
program execution levels of the CPU 948. It informs you in detail
about various types of start-up and the organization blocks associated
with them, in which you can program your own sequences for various
situations when restarting.

You will also learn the characteristics of the program execution modes
"cyclic processing”, "time-controlled processing" and
"interrupt-driven processing” and will see which blocks are available

for your user program.

Program Execution Levels

4.1 Program Execution Levels

Fig. 4-2 provides you with an overview of the program processing
levels in the various modes. The explanations of the abbreviations are
on the following page.

Status Program execution levels Error levels

ey /&
Yrziizzizzzzz

COMMUNICATION START-UP

SOFT
STOP
Vo) o/ A2 2 X 7
o commrmrizie?
COMMUNICATION
START-UP CLULD LSS
LA LS
START-UP
e-cot e
W22 7 Z o 2 2/
TIMED INTERRUPTS
WEFESWEFE
K
RUN

LI -7
D7) N7

PROCESS INTERRUPTS/INTERRUPTS

o ey
etei?

CYCLE

Fig. 4-1 Program execution levels

CPU 948 Programming Guide
4-4 C79000-G8576-C848-04

Program Execution Levels

Table 4-1 Program execution levels
Level Meaning Priority
Error levels

WEFES/WEFEH Collision of timed interrupts Each error handling
ZYK Cycle error routine has the highes
SUF Substitution error priority. If an error
TRAF Transfer/load error occurs, the
ADF Addressing error corresponding error
QVvz Timeout level is nested in
PARE Parity error immediately.
KB Called code block does not exist
KDB Called data block does not exist
FEDBX Error generating a data block, DB or DX

Program execution levels in SOFT STOP
COMMUNICATION START-UP |Preparation (start-up) for communication -
COMMUNICATION Cyclic processing of communication

Program processing levels in START-UP
COLD RESTART Defined start of the user program -
WARM RESTART Continuation of the user program at the

point of interruption
Program execution levels in RUN

TIMED INTERRUPTS Time-controlled program execution Ascending D
PROCESS INTERRUPTS Interrupt-driven program execution priority
CYCLE Cyclic program execution (default)

Y The default can be changed by selecting parameters for DXe@t@eChapter 7).

Processing via the system
program

Interrupt stack (ISTACK)

CPU 948 Programming Guide
C79000-G8576-C848-04

If an interrupt occurs, the system program sets up an information field
in the ISTACK for each level, to allow it to continue in the interrupted

level after servicing the interrupt.

A specific system program is responsible for each level.

—

Program Execution Levels

Nesting other levels

When an event occurs, which requires higher priority processing, the
current level is interrupted by the system program and the higher
priority level is activated.

This occurs in the following situations:
e aterror levels: always at operation boundaries,

« all other levels: at block or operation boundaries
(depending on the setting in DX 0
refer to Chapter 7)

Note

A maximum of 5 error organization blocks can be nested. If 5
error levels are activated simultaneously, this causes an ISTAGK
overflow and the CPU changes to th&aRD STOP.

A specificprogram execution levelis assigned to one or a group of
organization blocks which are called by the system program after an
event. If, for example, OB 9 is called to process a time-controlled
interrupt, the program execution level TIMED INTERRUPTS is
activated.

After the system program calls an organization block, the CPU
executes the STEP 5 statements is contains. The current register
record is saved in the ISTACK anahew register recordis set up
(register: ACCU 1 to 4, block stack pointer, block address register,
data block start address, data block length, step address counter, base
address register and the interrupt condition code words ICMK and
ICRW).

If "normal” program execution is interrupted by the occurrence of an
event, following the execution of the OB, the CPU continues the
program execution at the point of interruption (including all the blocks
nested there) as long as no stop is programmed in the OB.

CPU 948 Programming Guide
C79000-G8576-C848-04

Program Execution Levels

Sub-levels The TIMED INTERRUPTS level contains several sub-levels to which
a specific program (OB) is assigned. Within the TIMED
INTERRUPTS level, the sub-levels have their own priority (refer to
the following table).

TIMED INTERRUPTS level

Sub-level Priority
Delayed interrupt
cyclic timed interrupt, shortest period ascending
priority
(default)

cyclic timed interrupt, longest period
time-driven interrupt

Examples

Example of
"Execution by the system program":

At the CYCLE program execution level, the system program updates the
process image of the inputs and outputs, triggers the cycle monitoring time
and calls the PG interface management (system checkpoint).

CPU 948 Programming Guide
C79000-G8576-C848-04 4-7

Program Execution Levels

Example of
"Interrupt stack™:

Stop switch WARM RESTART

/ A0F ./ STOP /
Depth 1

/ S / ADF
Depth 2

T SUF ¢

)4

o
S

v

SLF

-/
/

crcze SART-LP
Depth 3
|
CYCLE +
crczts
Depth 4
ISTACK = Image of the

interrupted levels

Fig. 4-2 Principle of changing level and the ISTACK

Example of
"Interrupting a basic level with interruptability at block
boundaries":

A timed interrupt occurs while a process interrupt is being serviced.
Since the timed interrupt has a higher priority, the servicing of the
PROCESS INTERRUPT is interrupted at the next block boundary and the
TIMED INTERRUPT level nested in. If an addressing error now occurs
while servicing the timed interrrupt, the timed interrupt servicing is
interrupted immediately at the next operation boundary to nest in the
ADF level.

CPU 948 Programming Guide
4-8 C79000-G8576-C848-04

STOP Mode

4.2 STOP Mode

4.2.1
SOFT STOP

Initialization of
communication
(OB 38)

Start-up monitoring of
OB 38

Cyclic communication
(OB 39)

CPU 948 Programming Guide

C79000-G8576-C848-04

The CPU 948 has two different STOP modes, the "hard" STOP and
the "soft" STOP (= CPU capable of communication).

The SOFT STOP mode has the following features:

The CPU can communicate: the system program calls organization
block OB 38 once after POWER UP (COMMUNICATION
START-UP level in SOFT STOP) and then calls OB 39
(COMMUNICATION level in SOFT STOP).

To initialize communication, the system program cals 38 as the
user interface.

OB 38 is only called aftdePOWER UP . The call is not
dependent on the type of start-up (AUTOMATIC COLD
/AUTOMATIC WARM RESTART) set in data block DX 0.

The time required for the execution of OB 38 is not monitored by the
system program. You can, however, abort execution by changing the
mode selector to STOP.

If an error occurs in OB 38, its execution is aborted and OB 39 is
called if it exists.

If the cyclic program is interrupted causing a change to the SOFT
STOP modeDB 39is called as the user interface.

If the interruption of the cyclic program means that a handling block
(communication) is hot completely executed, it is possible and
permitted to re-call the same block or the same block type in OB 39
(e.g. SEND).

STOP Mode

Monitoring the execution
time of OB 39

Reaction to an
error in OB 39

Data are not reset

Real-time clock

BASP signal

ISTACK

Timer processing in OB 38/39

The execution time of OB 39 is monitored by the system program. If
execution takes longer than 2.55 seconds (fixed value), the system
program detects a cycle time error; it then calls the error OB, OB 26,
and then processes OB 39 again from the beginning. If a cycle time
error occurs again, an ISTACK depth > 5 causes an ISTACK overflow
(reaction: see following paragraph).

If an error occurs in OB 39 or in a handling block called in OB 39
(e.g. QV2Z), the system program calls the appropriate error
organization block. After this has been executed, the program
processing is continued in OB 39. If the error OB does not exist,
OB 39 is executed again from the beginning. (Exception: with QVZ,
KB and errors in the self test there is no reaction).

If further errors occur, an ISTACK depth > 5 causes an ISTACK
overflow:

the system program aborts program execution (OB 39 is no longer
called), the CPU however remains in the SOFT STOP mode.

If cyclic execution has already taken place in the RUN mode, the
values of counters, timers, flags and the process image are retained
during the transition to the stop mode.

The real-time clock continues to run. It is updated in the RS area at
10 ms intervals.

The BASP (disable output command) signal is active. This disables all
the digital outputs (exception: in the test in multiprocessor operation
and with the PG function "force outputs”, BASP is not active - refer to
Section 10.1.8).

If a user program was processed prior to the stop mode, information is
entered in the interrupt stack (ISTACK) providing information about
the cause of the interruption.

While OB 38/39 is being executed, the processing of timers and
counters is stopped. If necessary, timer information must be
processed from system data area RS 96 to RS 99 or with OB 121
or OB 150.

CPU 948 Programming Guide
C79000-G8576-C848-04

STOP Mode

OB 38/0OB 39 call Figures 4-3 and 4-4 illustrate the principle of the OB 38 and OB 39

calls.

Initial status: RUN Initial status: SOFT STOP

POWER DOWN/POWER UP POWER DOWN/POWER UP

v

v

OB 38 OB 38
Communication Communication
start-up start-up

OB 39
Communication

processed once

v
OB 22 OB 39

AUTOMATIC Cyclic processing
WARM RESTART of communication

v
RUN

Fig. 4-3 Program execution after POWER UP

OB 1

Interruption e.g.
by STS operation

g
OB 39

Cyclic processing
of communication

Fig. 4-4 Program execution after a cycle interruption

CPU 948 Programming Guide
C79000-G8576-C848-04 4-11

STOP Mode

LED displays The SOFT STOP status can be recognized by on thdront
panel of the CPU as follows:

LED Status
RUN off
STOP on (continuous or flashing light)

SYSFAULT off
BASP on (except in test mode with multiprocessor mode

or with PG function "force outputs")

The STOP LED signals the possible causes of the current stop status,
as follows:

STOP LED lit continuously The SOFT STOP mode was triggered by the following:

in single processor operation:

- by changing the mode selector
from RUN to STOP,

- by the PG function PLC STOP,

- by a device fault (PEU),

- following an OVERALL RESET.

in multiprocessor operation:

- by changing the mode selector on the COR to STOP,

- adifferent CPU has changed to the STOP mode due to a problem
(each CPUhot causing the error has a constantly lit LED) or by the
STOP switch,

- PG function PLC STOP

- PG function "program test end" on a different CPU

STOP LED flashes slowly The SOFT STOP was triggered by the following:
(approx. once every 2 sec)
- STP or STS statement in the user program,
- operator error (DB 1/DX O error, selection of an illegal start-up
mode etc.),
- BSTACK overflow (STUEB) or bracket counter overflow (KZU),
- programming errors or device faults; the following LEDs provide
further information:
- "ADF" LED
-"QVZ"LED
-"ZYK" LED
- by the PG function "program test end" on this CPU.

CPU 948 Programming Guide
4-12 C79000-G8576-C848-04

STOP Mode

Exiting the SOFT STOP status
The SOFT STOP status can be exited as follows:
a) by selecting a restart (refer to Section 4.4),

b) by an OVERALL RESET followed by a COLD RESTART.

4.2.2
HARD STOP If the system program can no longer be executed properly, the CPU
changes to the HARD STOP mode to ensure a safe mode in this
situation.
A HARD STOP can be caused by the following:
e stop operation (STW) for the system program
e |ISTACK overflow (STUEU),
e timeout (QVZ) or parity error (PARE) in the system
RAM/EPROM,
 error in system program
Note
The CPU is stopped. You can only exit the HARD STOP mode
by switching the power off and then on again!
LED displays The HARD STOP status can be recognized by the followi#igs on
the front panel of the CPU:
LED Status
RUN off
STOP off
SYSFAULT on
BASP on

CPU 948 Programming Guide
C79000-G8576-C848-04 4-13

STOP Mode

4.2.3
OVERALL RESET

Requesting an
OVERALL RESET

Request by the system
program

Operator request

With an OVERALL RESET the whole user memory and operand
areas (flags, process images etc.) are deleted.

Before an OVERALL RESET can be performed, it must be requested.
An OVERALL RESET is requested when the STOP LED flashes
quickly.

Each time you switch on the power, the CPU runs through an
initialization routine. If an error is detected during the initialization
(back-up voltage failure during POWER OFF), the system program
requires an OVERALL RESET.

The cause of the problem must be eliminated (e.g. replacing the
battery) following which an overall reset of the CPU is necessary.

An OVERALL RESET is also requested if a CPU or system error
occurs. You can recognize this error because the request occurs again
following the OVERALL RESET. In this case, contact your local
Siemens representative.

With the steps outlined in the table, you can also request an
OVERALL RESET (the operating elements are on the front panel of
the CPU - Fig. 4-1):

Step Action Result

1 Change the mode selector| The CPU is in the STOP
switch from RUN to STOP.mode. The STOP LED is lit
continuously.

2 Hold the reset switch in the |An OVERALL RESET is
OVERALL RESET position; requested. The STOP LED
at the same time, change thdlashes quickly.
mode selector from STOP to
RUN and then back to STOP.

Note

If you do not want to execute the OVERALL RESET you
requested, carry out a MANUAL COLD RESTART or
MANUAL WARM RESTART.

CPU 948 Programming Guide
C79000-G8576-C848-04

STOP Mode

Performing an
OVERALL RESET

OVERALL RESET using
control elements on the CPU

OVERALL RESET from the
PG

Loading the memory card
and calling OB 39

CPU 948 Programming Guide
C79000-G8576-C848-04

Regardless of whether you or the system program requested the

OVERALL RESET, you perform

the OVERALL RESET as follows

(initial status: STOP LED flashing quickly):

Action

Result

Hold the reset switch in the
OVERALL RESET position. At
the same time, change the mode
selector from STOP to RUN and
back to STOP again (refer to

Fig. 4-1).

An OVERALL RESET is
performed. The STOP LED is lit
continuously.

Action

Result

Activate the PG function "delete
blocks".

An OVERALL RESET is
performed. The STOP LED is lit
continuously.

Note

In contrast to the CPU 946/947, you can also initiate an

OVERALL RESET on the CPU

948 in the RUN mode. In this

case, the CPU automatically changes to the STOP mode and the

OVERALL RESET is then performed.

During the OVERALL RESET, all the LEDs are unlit apart from

the INIT and BASP LEDs.

Once the OVERALL RESET is

start-up mode is then a COLD RESTART.

completed, the only permitted

After performing the OVERALL RESET, the memory card is loaded
(provided it is plugged in) following which OB 39 is called.

START-UP Mode

4.3 START-UP Mode

Mode change

Start-up types

COLD RESTART

WARM RESTART

No time monitoring of the
start-up OBs

Counters, timers, flags,

process images

BASP

Interrupts

Start-up in the multiprocessor
mode

The START-UP mode has the following features:

START-UP is the transition from the STOP mode to the RUN mode.
The CPU 948 has the following start-up modes:

- COLD RESTART (manual or automatic)

- WARM RESTART (manual or automatic)

(You can select the type of start-up with operating elements and by
assigning parameters in DX 0)

The cyclic user program is processed from the beginning.

The system program calBB 20as the user interface.

The execution of the cyclic user program is continued from the point
at which it was interrupted.

The system program calls the following OBs as the user interface:

- OB 21for a MANUAL WARM RESTART,
- OB 22for an AUTOMATIC WARM RESTART.

The execution time of the start-up organization blockeis
monitored. You can call other blocks within these OBs. Make sure
you avoid endless loops!

The values of counters, timers, flags and process images are handled
differently in the various start-up types (refer to Section 4.4.3).

The BASP signal (disable output command) is active. This disables all
the digital outputs (exception: in the test mode in multiprocessor
operation, the BASP is not activated - refer to Section 10.1.8).

The interrupts (normal interrupts, process interrupts, timed interrupts)
are disabled.

Starting up in the multiprocessor mode is described in Section 10.1.7.

CPU 948 Programming Guide
C79000-G8576-C848-04

START-UP Mode

43.1

MANUAL and
AUTOMATIC
COLD RESTART

When is a COLD RESTART
permitted?

When is a COLD RESTART
necessary?

MANUAL COLD RESTART

AUTOMATIC COLD
RESTART

CPU 948 Programming Guide
C79000-G8576-C848-04

A COLD RESTART isalways permitted provided the system is not
requesting an OVERALL RESET.

A COLD RESTART isnecessanyafter the following:

- OVERALL RESET,

- loading the user memory with the user program while the CPU
is in the stop mode

- ISTACK/BSTACK overflow,

- COLD RESTART aborted (by POWER OFF or changing the
mode selector to "STOP"),

- stop after PG function "program test end"

You cantrigger a MANUAL COLD RESTART as follows:
e Using the operating elements of the CPU:

Hold the reset switch in the RESET position; at the same time change
the mode selector from STOP to RUN (refer to Fig. 4-1).

e From the PG:

Select the PG function PLC START/COLD RESTART.

An AUTOMATIC COLD RESTART istriggered as follows:
At POWER UP, when

- the default "AUTOMATIC WARM RESTART after POWER UP"
in DX 0 has been changed to "AUTOMATIC COLD RESTART
after POWER UP",
- the mode selector on all CPUs and on the coordinator must remain
setto RUN
and
the CPU was not in the STOP mode when the power was switched off.

Note
If the CPU was in the STOP mode when the power was switched
off (for example, following an addressing error), an
AUTOMATIC COLD RESTART isot permitted. The STOP
mode can only be exited in this case witi&ANUAL COLD
RESTART.

START-UP Mode

Aborting a cold restart You can abort an active COLD RESTART only by changing the mode
selector to STOP or by switching off the power. If you abort a COLD
RESTART you must repeat it.

4.3.2

MANUAL and
AUTOMATIC
WARM RESTART

When is a WARM RESTART A MANUAL WARM RESTART is only possibleafter stoppages
possible and permitted? caused by the following:

» the mode selector was changed from the RUN position to the
STOP position,

e astoppage in multiprocessor operation caused by the HALT signal
from the coordinator,

« POWER OFF, with the appropriate setting in data block DX 0,

PG function PLC STOP.

Note

If the stoppage was caused by an event other than those listed
above, themo warm restart is possible. The system program
will only permit a COLD RESTART.

A MANUAL or AUTOMATIC WARM RESTART isonly
permitted when

« the user program was not modified during the stop mode
and

« aCOLD RESTART is not necessary for other reasons (refer to
Section 4.4.1).

CPU 948 Programming Guide
4-18 C79000-G8576-C848-04

START-UP Mode

MANUAL WARM RESTART

AUTOMATIC WARM
RESTART

CPU 948 Programming Guide
C79000-G8576-C848-04

Youtrigger a MANUAL WARM RESTART as follows:
« using the control elements of the CPU:

initial state: the reset switch is in the mid setting

change the mode selector from STOP to RUN (refer to Fig. 4-1)
e from the PG:

select the PG function PLC START/WARM RESTART.

An AUTOMATIC WARM RESTART s triggered as follows:
With POWER UP, when

- the default "AUTOMATIC WARM RESTART after POWER UP"
is set in data block DX 0 or DX 0 does not exist,

- the mode selector on all CPUs and on the coordinator remain
unchanged and set to RUN
and
the CPU was not in the STOP mode when the power was switched
off,

- no further errors have occurred during the initialization nor before
the power was switched off,

- no COLD RESTART is required due to the reasons listed above.

Following power failure or switching the power off in the RUN mode
followed by the return of power/POWER UP, the CPU runs through
an initialization routine and then automatically performs a WARM
RESTART.

If there is a power failure on an expansion unit, (PEU signal), the CPU
changes to the STOP mode. It remains in this mode until the PEU
signal is switched inactive and then performs an AUTOMATIC
WARM RESTART or an AUTOMATIC COLD RESTART.

START-UP Mode

Aborting a
WARM RESTART

Note
With a WARM RESTART note the following special situation:

The CPU is currently processing an error OB (e.g. due to an
addressing error ADF) and then changes to the STOP mode

owing to POWER OFF, HALT, stop switch or PG-STP.
Following this, a MANUAL or AUTOMATIC WARM
RESTART is executed.

Reaction of the CPU:

Before OB 21/22 is called, the interrupted processing of the
OB is completed.

If the error OB does not lead to a stop operation, then follow
the processing of the remainder of the error OB/ARM
RESTART is executed.

If the error OB sets the CPU to the stop mode, then only a
COLD RESTART s possible.

You can only abort a WARM RESTART after it has started by
changing the mode selector to STOP or by POWER OFF. If you abort
the warm restart in this way, both a COLD RESTART or WARM
RESTART is then possible.

CPU 948 Programming Guide
C79000-G8576-C848-04

error

ing

START-UP Mode

4.3.3

Comparison between
COLD RESTART and

WARM RESTART

Table 4-2

Characteristics of COLD RESTART and WARM RESTART

The following table contains a comparison of the start-up types
COLD RESTART and WARM RESTART..

COLD RESTART

WARM RESTART

Manual Mode selector from position STOP to RUNMode selector from position STOP to
triggering: and reset switch set to RESET position |position RUN
or or
PG function PLC START (COLD PG function PLC START (WARM
RESTART) RESTART)
Automatic | Switching on the power supply, when |Switching on the power supply when the
triggering: "AUTOMATIC COLD RESTART after |default is entered in DX 0 or no DX 0 exi
POWER UP" is entered in DX 0
System Set up block address list in DB 0 Block address list retained in DB 0
program
activities: Delete process image of the inputs Process image of the inputs retained

Delete process image of the outputs

Process image of the outputs retained

Delete flags, timers and counters

Delete digital/analog I/Os
(each 2 x 128 bytes)

Delete IPC flags (256 bytes)

Delete delayed interrupts and timed jobs

Delete ISTACK/BSTACK

Delete semaphore

Flags, timers and counters retained

IPC flags retained

Delete delayed interrupts,
timed jobs retained

ISTACK/BSTACK retained

Semaphore retained

If DB 1 exists:
write the digital I/Os entered in it into
the Pl lists

If DB 1 does not exist:

enter the modules which actually exist

(only digital I/0O) into the Pl lists
IPC flags are ignored

No entries made from DB 1

Sts

CPU 948 Programming Guide
C79000-G8576-C848-04

START-UP Mode

COLD RESTART

WARM RESTART

Table 4-3 continued:

System
program
activities
(continued):

Set system parameters according to the
settings in DX 0

DX 0 not evaluated

Call user interfac®©B 20
(if it exists)

Call user interfac®B 21/22
(if they exist)

Synchronize start-up in multiprocessor
operation

Synchronize start-up in multiprocessor
operation

Transition to the cycle:

- switch BASP inactive,
-callOB 1

Transition to the cycle:
- BASP remains active
- delete process image of the outputs
- process remaining cycle
- switch BASP inactive
-calloB1

D Following POWER UP, the userterfaces are called in the following order during tH&RT-UP:
OB 38, OB 39, OB 20/0OB 22.

4.3.4

RETENTIVE COLD

RESTART

If the parameter for a "cold restart with memory" is stored in the
loaded DX 0 block, the system program goes through a RETENTIVE

COLD RESTART instead of a WARM RESTART. How this differs
from a "normal” COLD RESTART can be seen in the following

section.

CPU 948 Programming Guide
C79000-G8576-C848-04

START-UP Mode

4.35
Comparison of The following table shows the differences between a COLD
COLD RESTART and RESTART and RETENTIVE COLD RESTART.
RETENTIVE COLD
RESTART

Table 4-3 Differences between a cold restart and a RETENTIVE COLD RESTART

COLD RESTART RETENTIVE COLD RESTART

Manual Mode selector from position STOP to Mode selector from position STOP to
triggering: position RUN and reset switch set to position RUN

RESET or

or PG function PLC START (WARM

PG function PLC START (COLD RESTART)

RESTART)

Automatic |Switching on the power supply, when |Switching on the power supply when

triggering: |AUTOMATIC COLD RESTART after AUTOMATIC WARM RESTART after
POWER UP is entered in DX 0 POWER UP and COLD RESTART WITH
MEMORY is entered in DX 0

System Set up block address in DB 0 Block address list retained in DB 0
program
activities: Delete process image of the inputs Process image of the inputs retained

Delete process image of the outputs Process image of the outputs retained

Delete delayed interrupts and timed jobs|Delete delayed interrupts and timer jobs

Delete flags, timers and counters Flags, timers and counters retained
Delete digital/analog 1/0Os Delete digital 1/0 (128 bytes)

(each 2 x 128 bytes) Analog I/Os retained (128 bytes)
Delete IPC flags (256 bytes) IPC flags retained

Delete ISTACK/BSTACK Delete ISTACK/BSTACK

Delete semaphore Semaphore retained

If DB 1 exists: No entries from DB 1

enter the digital I/Os and IPC flags it
contains in the Pl lists

If DB 1 does not exist:
enter the existing modules (only digita
I/0Os) in the Pl lists
IPC flags are ignored

CPU 948 Programming Guide
C79000-G8576-C848-04 4-23

START-UP Mode

COLD RESTART RETENTIVE COLD RESTART
System Table 4-4 continued:
program - -
activities Set system parameters according to defaNio evaluation of DX 0
(continued) |In DX 0
Call user interfac©B 20 Call user interfac®B 21/22
(if it exists) (if it exists)
Synchronize start-up in multiprocessor | Synchronize start-up in multiprocessor
operation operation
Transition to the cycle: Transition to the cycle:
- switch BASP inactive - switch BASP inactive
-callOB 1 -caloB 1

1) After POWER ON, the user interfaces are called in theviiig order during SART-UP:

OB 38, OB 39, OB 20/0B 22.

4.3.6
User Interfaces for Start-Up

OB 20

The organization blocks OB 20, OB 21 and OB 22 serve as user
interfaces for the various types of start-up. You can store your STEP 5
program for the type of start-up in these blocks.

When the CPU executes a MANUAL or AUTOMATIC COLD
RESTART, the system program calls OBd&e In OB 20, you can
store a STEP 5 program which is responsible for preliminary steps for
acold restart of cyclic processing prior to the execution of the cyclic
program.

You can, for example:
« setflags

e starttimers (the start is executed by the system program when it en-
ters the RUN mode)

« set default values for data to be output to I/O modules

e synchronize CPs.

After processing OB 20, the cyclic program begins by calling OB 1.
If OB 20 is not loaded, the CPU begins the cyclic program

execution immediately after the COLD RESTART is completed
(following the system activities).

CPU 948 Programming Guide
C79000-G8576-C848-04

START-UP Mode

OB?21 If the CPU performs a MANUAL COLD RESTART or RETENTIVE
MANUAL COLD RESTART, the system program calls OB 21 once.
Here, you can store a STEP 5 program which executes preliminary
steps for avarm restart of the cyclic program.

MANUAL WARM RESTART With a MANUAL WARM RESTART, the cyclic program is
continued with the next statement following the point at which it was
interrupted after processing OB 21, the sequence is as follows:

« The BASP signal (disable command output) remains active during
the processing of the remaining cycle and is only switched inactive
at the beginning of the next (complete) cycle.

« The process image of the outputs is reset at the end of the
remaining cycle.

- |If OB 21 is not loaded, the CPU begins again at the point at which
the program was interrupted on completion of the MANUAL
WARM RESTART and the system activities.

MANUAL RETENTIVE COLD If the parameter "COLD RESTART WITH MEMORY" is entered in
RESTART the data block DX 0, after processing OB 21, the system program then
goes through €0LD RESTART (the CPU resumes program
execution with thdirst STEP 5 statement in OB J. The signal
states of the flags, IPC flags, semaphore and the block address list
(DB 0) are retained

CPU 948 Programming Guide
C79000-G8576-C848-04 4-25

START-UP Mode

OB 22

AUTOMATIC WARM
RESTART

AUTOMATIC RETENTIVE
COLD RESTART

When the CPU executes an AUTOMATIC WARM RESTART or
AUTOMATIC RETENTIVE COLD RESTART, the system program
calls OB 22 once. Here, you can store a STEP 5 program which
executes preliminary steps (generally following a power failure) for a
warm restart of cyclic program execution.

Following POWER UP, the CPU executes the system activities listed
in Section 4.4.4 for a warm restart and attempts to resume the program
at the point at which it was interrupted.

OB 22 is called first.

After executing OB 22, the interrupted program execution is resumed
with the next statement following the point at which the program was
interrupted.

Following a power failure and the return of power:

« The BASP signal (disable command output) remains active during
the remaining cycle and is only switched inactive at the beginning
of the first complete cycle.

e The process image of the outputs is reset at the end of the
remaining cycle.

e If OB 22 is not loaded, the CPU resumes program processing
immediately at the point of interruption at the end of the
AUTOMATIC WARM RESTART.

If the parameter "COLD RESTART WITH MEMORY" is entered in

the data block DX 0, after processing OB 22, the system program then
goes through &0LD RESTART (the CPU resumes program
execution with thdirst STEP 5 statement in OB J. The signal

states of the flags, IPC flags, semaphore and the block address list
(DB 0) are retained

CPU 948 Programming Guide
C79000-G8576-C848-04

START-UP Mode

4.3.7

Extended AUTOMATIC
WARM RESTART with the
CPU 948 (HOT RESTART)

The "HOT RESTART" mode specified in the IEC 1131 standard, part
1is also possible in the CPU 948. The "HOT RESTART" is a warm
restart controlled by a battery-backed clock (according to IEC 1131).
The clock monitors the time between switching off and switching on
the power supply for the CPU. Whether or not a warm restart is then
permitted depends on the time elapsed.

The automatic "HOT RESTART" of the CPU 948 is not supported
directly by the system program, which means that you must program
this yourself.

The basic functions available are the AUTOMATIC WARM
RESTART (OB 22) and the real time clock which although internal is
backed up by an external battery.

A "HOT RESTART" is programmed as shown below:

Mode

Activity/block

or

RUN Save time (time of day and date) regularly from the external clock in defined memory
cells (e.g. in data words):

- atthe end of the cyclein OB 1

- time-controlled by timed interrupts (e.g. OB 10), if higher accuracy is necessary

AUTO- OB 22
\I\/Avi-lgl\(il Calculate down time:
RESTART Tdown = first time value after return of power - last time value saved before power failure
IF.. THEN...
Down time > default maximum value Stop warm restart
(STP operation)
or
execute modified warm restart
Down time< default maximum value Continue warm restart

CPU 948 Programming Guide
C79000-G8576-C848-04

START-UP Mode

4.3.8
Interruptions during
START-UP

Basic rules for an interrupted

START-UP

Response of the CPU on the
return of power after power

failure or PEU signal

A start-up program can be interrupted by the following:

» power failure in the central controller (NAU) or in the expansion
unit (PEU),

e stop switch, stop command, HALT or PG-STPor

e program errors or device faults (refer to Section 5.5).

The following basic rules apply to the start-up response of the
CPU 948:

If the START-UP is interrupted, the subsequent START-UP is
always restartefiom the beginning.

The last selected type of start-up is selected. Example:
1. POWER DOWN (NAU) in the cycle
2. Switch set to STOP
3. POWER UP
4. Switch set to RUN
Reaction: the CPU executes a MANUAL WARM RESTAR

An interrupted COLD RESTART cannot be continued with a
WARM RESTART, but must be repeated.

Following an interrupted WARM RESTART, both a COLD
RESTART and a new WARM RESTART are possible.

T

If the start-up execution is interrupted by a power failure or the PEU
signal, the response of the CPU when power returns depends on the

setandinterrupted mode. The following table provides an overview.

WARM RESTART

Mode setin DX 0 Interrupted mode Interrupted Reaction of the CPU
start-up OB
AUTOMATIC MANUAL OB 20 Depending on the prior events, an
COLD RESTART |COLD RESTART AUTOMATIC COLD RESTART is
executed (OB 20 is called and
MANUAL OB 21 processed from the beginning).
WARM RESTART
No "remaining start-up" is
AUTOMATIC OB 20 .
COLD RESTART processed, (OB 20 or OB 21 is not
resumed).
AUTOMATIC MANUAL OB 20 STOP
WARM RESTART |COLD RESTART
MANUAL OB 21 An AUTOMATIC WARM RESTART
WARM RESTART is executed (OB 22 is called and
processed from the beginning);
AUTOMATIC OB 22

no "remaining start-up” is processed
(OB 21 or OB 22 is not resumed).

CPU 948 Programming Guide
C79000-G8576-C848-04

RUN Mode

4.4 RUN Mode

Execution of the user program

Timers, counters, process
image

BASP

IPC flags

CYCLE

PROCESS INTERRUPTS/
INTERRUPTS

TIMED INTERRUPTS

CPU 948 Programming Guide
C79000-G8576-C848-04

When the CPU has executed a START-UP (and only then) it changes
to theRUN mode. This mode is characterized by the following
features:

The user program in OB 1 is executed cyclically and additional
interrupt-driven program sections can be nested in it.

All the timers and counters started in the program continue to run, the
process image is updated cyclically

The BASP signal (disable command output) is switched inactive. This
enables all the digital outputs.

The IPC flags (if programmed in DB 1) are updated cyclically.

In the RUN mode, the following program execution levels exist:

The user program in OB 1 is processed cyclically.

The execution of the user program is interrupt-driven (4 interrupt
levels or 1 process interrupt level with 8 sub-levels).

The user program is processed time-controlled (9 cyclic timed
interrupts, 1 delayed interrupt, 1 clock-controlled interrupt).

The execution levels differ from each other as follows:
« they are triggered by different events

» there are one or more organization blocks serving as user
interfaces for each level of program execution.

All the processing levels in a CPU 948 can be programmed
simultaneously. The levels are called by the system program
according to the events that occur and the preset priority (refer to
Section 4.2).

RUN Mode

441
Cyclic Program Execution

Triggering

Principle

With programmable controllersyclic program execution(program
execution leveCYCLE) is the main mode.

If the CPU has completed the start-up program without errors, it then
begins cyclic program execution.

The principle of cyclic program execution (system activities):

From start-up

\ 4

_> Trigger cycle monitoring time

Update IPC input flags

Supply process image of the
inputs (PII)

Call cyclic user program (OB1)

User program

including nesting in of
other program
execution levels

Output process image of the
outputs (PIQ)

Update IPC output flags

System activities e.qg.
loading or deleting blocks
compressing blocks . . .

y

Fig. 4-6 Cyclic program execution

CPU 948 Programming Guide
C79000-G8576-C848-04

RUN Mode

User interface OB 1 During cyclic program execution, organization block OB 1 is called
regularly as the user interface. The STEP 5 user program in OB 1 is
processed from the beginning with the block calls you have
programmed. After the system activities, the CPU starts again from
the beginning with the first STEP 5 statement in OB 1.

In OB 1, you program the calls for program, function and sequence
blocks to be executed within the cyclic program.
Interrupt points Cyclic program execution can be interrupted by the following:

« time-controlled program execution at block or operation
boundaries,

e process interrupt-driven program execution via input byte 1B O at
block boundaries,

e interrupt-driven program execution (interrupts INT A/B/C/D, E, F,
G) at block or operation boundaries..

You specify the type of interrupt (at block or operation boundaries) in
data block DX O (refer to Chapter 7).
Cyclic program execution can be interrupte@loorted regardless of

the parameter setting in DX 0 as follows:

e when a device fault or program error occurs (at operation
boundaries,

« by operator intervention:
- stop switch, HALT (at operation boundaries),
- PG function (at checkpoints - refer to Chapter 11),

e by the stop command STS (at operation boundaries),

« by a power failure on the central controller or in the expansion unit
(at operation boundaries).

CPU 948 Programming Guide
C79000-G8576-C848-04 4-31

RUN Mode

442

Specifying Time and With time and interrupt-driven program execution, various types are
Interrupt-Driven Program available which can at present only be used as alternatives (i.e. not
Execution mixed). You decide which of the types of processing you want to use

by setting the parameter in data block DX 0O (refer to Chapter 7).

"

"Process interrupts via IB 0 The execution mode "process interrupts via IB 0" has the following

features:
» only possible irsingle processor operation

» the nesting of higher priority program levels is only possible at
block boundaries

« the delayed interrupt (processed by OB#&)not be used,
« the time-controlled interrupt (processing by OR:8hnot be used.

"System interrupts" mode The "system interrupts" mode is characterized by the following
features:

e single or multiprocessor modepossible,

» higher priority program levels are nestedblack or command
boundaries

« delayed interrupts are processed by OB 6,

e time-controlled interrupts are processed by OB 9.

Interrupting time and Time and interrupt-driven program execution can be interrupted or
interrupt-driven program aborted regardless of the parameter setting in DX 0 as follows:
execution

e when a device fault or program error occurs (at operation
boundaries,

« by operator intervention:
- stop switch, HALT (at operation boundaries),
- PG function (at checkpoints - refer to Chapter 11),

e by the stop command STS (at operation boundaries),

« by a power failure on the central controller or in the expansion unit
(at operation boundaries).

CPU 948 Programming Guide
4-32 C79000-G8576-C848-04

RUN Mode

4.4.3
Time-Controlled Program
Execution

Delayed interrupts
Clock-controlled interrupt

Cyclic timed interrupt

Priorities

Og

CPU 948 Programming Guide
C79000-G8576-C848-04

This type of program execution includes the delayed interrupt, the
time-controlled interrupt and cyclic timed interrupts.

All these interrupts aréme-controlled.

Time-controlled program execution uses THeIED INTERRUPTS
level.

Triggered once after a selected delay time in the millisecond range.
Organization block OB 6 is called with this interrupt.

Triggered at a selected interval or once at an absolute point in time.
Organization block OB 9 is called with this interrupt.

Triggered at 9 different intervals. Each timed interrupt is assigned an
organization block (OB 10 to OB 18). This involves fixed cycles, i.e.
the interval between two program stops is fixed.

Within time-controlled program execution, the following priorities are
set:

Delayed interrupt OB6 |OB 6

cyclic timed int., period 1 |OB 10, shortest period
cyclic timed int., period 2 |OB 11

cyclic timed int., period 3 |OB 12

cyclic timed int., period 4 |OB 13 ascending
cyclic timed int., period 5 |OB 14 priority
cyclic timed int., period 6 |OB 15

cyclic timed int., period 7 |OB 16

cyclic timed int., period 8 |OB 17

cyclic timed int., period 9 |OB 18, longest period
time-controlled interrupt |OB 9

Note

Time-controlled interrupt servicing in OB 6 and in OB 9 is only
possible when the parameter "process interrupts via IB 0 = off"|is
set in DX 0. With the default setting in DX 0 ("process interrupts
via IB 0 = on") the corresponding process interrupts of IB 0 are
processed using OB 6 and OB 9 (refer to Section 4.5.4).

RUN Mode

Delayed interrupt With the delayed interrupt of the CPU 948, small time intervals with a
resolution of 1 ms can be set. Once the selected time has elapsed, the
system program calls OBdice

Resolution The delayed interrupt is generated by calling the special function
organization block OB 153 (refer to Section 6.14). As soon as the
delay time assigned with OB 153 has elapsed, the system program
interrupts the current program execution and calls OB 6 (program
execution level TIMED INTERRUPTS). Following this, program
execution is resumed at the point at which it was interrupted.

The use of the delayed interrupt is, however, only possible when
"process interrupts via IB 0 = off" is set in the data block DX 0.

User interface OB 6 is called as the user interface for a delayed interrupt. In OB 6, you
OB 6 write a STEP 5 program to be executed in this situation. If OB 6 is not
loaded, program execution is not interrupted.

Interruptions With the default setting, the TIMED INTERRUPTS level has the
highest priority of the basic levels (can be modified by changing the
parameter assignment in DX 0).

In timed-controlled program execution, the servicing of the delayed
interrupt has highest priority.

Owing to the distribution of priorities, the processing of the delayed
interrupt cannot be interrupted by any other user program.

Special features * A delayed interrupt is only processed in the RUN mode. Delayed
interrupts owing in the STOP mode, durjpgwver down or
START-UP araliscarded

« A generated delayed alarm (= OB 153 call was processed) is
retained in the transition to the STOP mode and during POWER
OFF.

CPU 948 Programming Guide
4-34 C79000-G8576-C848-04

RUN Mode

Clock-controlled interrupt

Triggering

User interface OB 9

CPU 948 Programming Guide
C79000-G8576-C848-04

« If you generate a new delayed interrupt, i.e. call OB 153 with
new parameters, a previously set delayed interrupt is cancelled.
A delayed interrupt currently being processed is continued. This
means that onlgne delayed interrupt is valid at any one time.

« If adelayed interrupt occurs without the previous one being
completely processed, the new interrupt is discafdelhyed
interrupts are not checked for collisions!

* Note the special functions OB 122 and OB 142 with which you
can disable or delay the servicing of delayed interrupts.

The CPU 948 has a battery-backed clock (central back-up via the
power supply of the central controller), which you can set and read out
using the STEP 5 program. This clock allows time-controlled
execution of a program section.

While the delayed interrupt is used for fast events, time-controlled
interrupts are particularly suitable for processing events which occur
onceor which occur abnger intervals, e.g. hourly, daily or monthly.
Once the point in time is reached, the system program calls OB 9.

A clock-controlled interrupt (timed job) is generated by calling the
special function organization block OB 151 (refer to Section 6.13).
Once the time set in OB 151 is reached (a time, a date) the timed job is
executed. The system program interrupts the current program
execution and calls OB 9 (program execution level TIMED
INTERRUPTS). Following this, program execution is resumed at the
point at which it was interrupted.

To use the clock-controlled interrupt, "process interrupts via IB 0 =
off" must be set in data block DX 0.

For a clock-controlled interrupt, OB 9 is called as the user interface. In
OB 9, you write a STEP 5 program to be processed when the OB is
called. If OB 9 is not loaded, program execution is not interrupted.

RUN Mode

Interruptions

Special features

Owing to the default, the TIMED INTERRUPTS layer has the highest
priority of the basic layers (can be modified in DX 0).

In time-controlled program execution, the execution of
clock-controlled interrupts has the lowest priority. This can therefore
be interrupted by the processing of a delayed interrupt or a cyclic
timed interrupt.

« A clock-controlled interrupt is only processed in the RUN mode.
Clock-controlled interrupts occurring in the STOP mode, when
there is gpower failure or during START-UP ardiscarded

* Once a clock-controlled interrupt has been generated (= OB 151
call has been processed) it is retained in a WARM RESTART and
following POWER DOWN/POWER UP; it is, however, deleted
during a COLD RESTART.

* If you generate a new clock-controlled interrupt, i.e. call
OB 151 with new time values, a previously set clock-controlled
interrupt is cancelled. A clock-controlled interrupt currently
being processed is continued. This means thatamdy
clock-controlled interrupt is valid at any one time.

« If atime-controlled interrupt occurs without the previous one
being completely processed, the clock time-controlled interrupt is
discardedClock-controlled interrupts are not checked for
collisions!

* Note the special functions OB 122 and OB 142 with which you
can disable or delay the servicing of clock-controlled interrupts.

CPU 948 Programming Guide
C79000-G8576-C848-04

RUN Mode

Cyclic timed interrupts

Triggering

Time interval

CPU 948 Programming Guide
C79000-G8576-C848-04

On the CPU 948, you can process 9 different time-controlled
programs, each being called at a different cyclic interval.

The basic clock pulse for timed interrupt processing is set to 100 ms.
Using a special parameter in data block DX 0, you can adjust this in
steps of 10 ms (basic clock pulse =y30 ms where: 014 yy <

FFH).

You can base the setting of the clock pulse on the shortest time
required by your application for cyclic processing.

Cyclic timed interrupts are processed at fixed intervals with 9 possible
intervals (periods). Each interval is assigned to a specific organization
block. You can select between two sets of intervals. You select the
sets of intervals using a special parameter in data block DX 0.

the following table illustrates the two sets of intervals with the
assignment of the different intervals to organization blocks.

Table 4-5 Sets of intervals and intervals of the TIMED INTERRUPTS
Interval set 1 Interval set 2 OB called
(default)
1x basic clock pulse |1 x basic clock pulse OB 10
2 X basic clock pulse |2 x basic clock pulse OB 11
5 x basic clock pulse |4 x basic clock pulse OB 12
10 x basic clock pulse|8 x basic clock pulse OB 13
20 x basic clock pulse| 16 x basic clock pulse OB 14
50 x basic clock pulse| 32 x basic clock pulse OB 15
100 x basic clock pulse4 x basic clock pulse OB 16
200 x basic clock pulsgl28 x basic clock pulse OB 17
500 x basic clock pulsg56 x basic clock pulse OB 18

Note

Thefirst TIMED INTERRUPT OB call following the start-up

takes place within the time assigned to the OB.

If, for example, the interrupt time "500 s" is set for OB 18 (basig

clock pulse setting in DX 0 = 1 s and time base = 1), then the fi
OB 18 call takes place after approximately 20 s following a
COLD RESTART. All further calls are then at intervals of 500 s

4 -37

rst

RUN Mode

User interfaces
OB 10to OB 18

Interruptions

When a timed interrupt occurs, the corresponding organization block
is called as the user interface at the next block boundary (or operation
boundary).

For example, you would program the routine to be inserted in cyclic
program execution every 100 ms in OB 10 (default).

The timed interrupt is only processed if #esigned organization
block is loaded If none of the organization blocks OB 10 to OB 18
are loaded, there is no time-controlled program execution and the
cyclic program is not interrupted.

You can disable the execution of timed interrupts by setting a
parameter in data block DX 0, e.qg. for testing your program.

As default, the TIMED INTERRUPTS level has the highest priority of
the basic levels (can be modified in DX 0).

Owing to the distribution of priority within time-controlled program
execution, the following interruptions in the processing of a cyclic
timed interrupt are possible:

» the processing of a cyclic timed interrupt can be interrupted by the
processing of a delayed interrupt

» organization blocks with shorter time bases have higher priority
and can interrupt organization blocks with longer time bases (e.g.
OB 12 can interrupt OB 17).

Note

With thethree shortest time bases (OB 10 to 1&)ultiple
processing without interruption is possible. If, for example, whil
OB 10 is being processed, a further timed interrupt for OB 10
occurs, the currently active processing of OB 10 is first
completed. Following this, OB 10 is called immediately again. If,
however, there are more thémee timed interrupts pending for
one of the time basescallision of timed interrupts error occurs.

1)

CPU 948 Programming Guide
C79000-G8576-C848-04

RUN Mode

Collision of timed interrupts

In the CPU 948 there are two different types of collisions of timed

to 12),

- one of the other OBs (OB 13 to 18
is called again before it has been
completely processed.

interrupts:
Type of error/cause ISTACK ID Reaction of the CPU
Timed interrupt queue overflow: In the "ISTACK output" of | The system program calls
- there are more than three the programmer, the error IDOB 33 as the user interface.
timed interrupts pending for one of| WEFES is marked in the If this is not loaded, the CPU
the three shortest time bases (OB 1€ontrol bits. changes to thstop mode

If the program can be interrupted at | In the "ISTACK output" on | The system program calls
block boundaries, the timed processinghe programmer, the error IDOB 33 as the user interface.
is blocked by the run time of a block in WEFEH is marked in the If this is not loaded, the

the cyclic user program; the run time ocontrol bits. system programontinues
the block is longer than the basic cloc program execution

rate set in DX 0.

Error reaction
OB 33

In OB 33, you can program the required reaction to the interrupt

collisions listed above. When OB 33 is called, the system program
enters a collision ID in ACCU-1-L (bit nos. 0 to 9). You can see the

meaning of these bits (bit ='1’) in the following table.

Table 4-6 Timed interrupt collision IDs: meaning of the bits in ACCU-1-L

Bit number Meaning

0 Queue overflow in timed interrupt period 1 (more than three timed interrupts are
pending for OB 10).

1 Queue overflow in timed interrupt period 2 (more than three timed interrupts are
pending for OB 11).

2 Queue overflow in timed interrupt period 3 (more than three timed interrupts are
pending for OB 12).

3 Queue overflow in timed interrupt period 4 (OB 13 has been called again before the
prior call was completely executed).
Queue overflow in timed interrupt period 5 (OB 14 has been called again before the

4 prior call was completely executed).

CPU 948 Programming Guide

C79000-G8576-C848-04

RUN Mode

Bit number Meaning

5 Queue overflow in timed interrupt period 6 (OB 15 has been called again before the
prior call was completely executed).

6 Queue overflow in timed interrupt period 7 (OB 16 has been called again before the
prior call was completely executed).

7 Queue overflow in timed interrupt period 8 (OB 17 has been called again before the
prior call was completely executed).

8 Queue overflow in timed interrupt period 9 (OB 18 has been called again before the
prior call was completely executed).

9 Timed interrupt clock pulse masked for too long.

After processing OB 33, the program is resumed at the interrupted

timed interrupt OB.

Note
If "interruptability at block boundaries" is set, following a collision

boundary the collision of timed interrupts took place (BE
statement) but rather to the block which called the block that
caused the error (the return address). You can set the following
parameters in data block DX O (refer to Chapter 7) for
time-controlled program execution:

- setting the basic clock rate

- setting the clock distributor,

- setting priorities relative to interrupt-driven program executio
- enabling/disabling timed interrupt processing.

CPU 948 Programming Guide
C79000-G8576-C848-04

of timed interrupts, the SAC does not point to the block at whose

RUN Mode

444
Interrupt-Driven Program
Execution

G !)

PROCESS INTERRUPTS via
input byte IB 0

Triggering

User interfaces
OB2toOB9

CPU 948 Programming Guide
C79000-G8576-C848-04

Depending on the selected mode, two different types of interrupt-driven
program execution are possible with the CPU 948:

e PROCESS INTERRUPTS
via input byte IB 0 (max. 8 interrupts),

e INTERRUPTS
via signal lines of the S5 bus (max. 4 interrupts)

To service process interrupts, the default "process interrupts via IB 0 =
on" must not be changed in the data block DX 0.

Program execution controlled by process interrupts means that a
signal change in the input byte IB 0 causes the current program
execution to be interrupted and a special program section to be
executed.

Note

If you enable "servicing process interrupts via IB 0" gaonot
use the delayed interrupt, the time-controlled interrupt and the
system interrupt.

The signal state change of a bit in input byte 1B 0 triggers the process
interrupt.

If a process interrupt occurs, one of the OBs listed in the following
table is called as the user interface.

Table 4-7 User interfaces for process interrupts

Signal state change in 1B 0 with bit OB called
10.0 OB 2
10.1 OB 3
10.2 OB 4
10.3 OB5
104 OB 6
10.5 OB7
10.6 OB 8
10.7 OoB9
4-41

RUN Mode

Priority of process interrupts

O

\Y%

In the organization blocks OB 2 to OB 9, you program the part of your
STEP 5 program to be executed when one of the process interrupts
occurs indicated by a bit in input byte 1B 0.

If the corresponding OB isot loaded program execution is not
interrupted. No interrupt-driven program processing takes place.

Note

If the 1/0O module no longer acknowledges when the CPU accesses
IB 0, the system program recognizes a timeout and calls the user
interface OB 28. If OB 28 is not loaded, the CPU changes to th
stop mode.

The default setting means that PROCESS INTERRUPTS have a lower
priority than the TIMED INTERRUPTS level.

A parameter in data block DX 0 allows you to change the default so
that the PROCESS INTERRUPTS level has a higher priority than the
TIMED INTERRUPTS level.

The following priorities are set for process interrupt processing:

10.0 OB 2

10.1 OB 3

10.2 OB 4 ascending
10.3 OB5 priority
10.4 OB 6

10.5 OB7

10.6 OB 8

10.7 OB 9

With process interruptsio nested execution is possible. When a
process interrupt OB has been completely processed and there are
further process interrupts pending, the system program calls the OB
with the next lower priority and processes it.

The PROCESS INTERRUPTS level is only exited when each signal
change in input byte IB 0 has been dealt with and the corresponding
OB completely processed.

Note
Process interrupt-driven program executiannotbe interrupted
by further process interrupt-driven program execution.

CPU 948 Programming Guide
C79000-G8576-C848-04

RUN Mode

INTERRUPTS via signal
lines of the S5 bus

Jumper settings for system
interrupts

CPU 948 Programming Guide
C79000-G8576-C848-04

Interrupt-driven program execution means that an S5 bus signal from
an 1/0 module with interrupt capability (e.g. digital inputs, IPs, CPs)
causes the CPU to interrupt program execution and to process a
specific section of program.

Note

If you want to use interrupt-driven program execution via S5 bus
signal lines on your CPU, you must set "process interrupts via IB 0
= off" in DX 0 and activate the individual interrupts by means of
DX 0 parameters. The interrupts must also be enabled with
jumpers on the module (refer to the Appendix and /2/). In contrast
to the CPU 946/947, you can set "interrupt at block boundaries”|or
“interrupt at operation boundaries" as the mode in DX 0.

For interrupt-driven program execution with the CPU 948, there are
four system interrupts available to you:

- INT A/B/C/D (dependent on the slot in the CPU, see the System
Manual (Further Reading /2/)),

- INTE

- INTF
and

- INTG.

The interrupts you want to use must be enabled with the supplied

jumpers. The jumper plug is located on the basic board above the
receptacle for the memory card. The exact position can be seen in
Appendix 1.

RUN Mode

Triggering

User interfaces
OB2toOB5

Priority of process interrupts

O

\Y%

The active state of an interrupt line on the S5 bus triggers the
interrupt. The interrupt signal is level-triggered (low level). To
acknowledge the interrupt, please refer to the operating instructions
for the module which triggers the interrupt.

If an interrupt occurs, one of the OBs listed in the following table is
called as the user interface.

Table 4-8 User interfaces for interrupts

Interrupt triggered by OB called
Interrupt signal X OB 2
(A, B, C or D, slot-dependent)

Interrupt signal E OB3
Interrupt signal F OB 4
Interrupt signal G OB5

If, for example, the interrupt signal 'F’ occurs, the system program
calls OB 4.

If the relevant OB isot loaded program execution is not interrupted.
There is no interrupt-driven program execution.

The default setting means that PROCESS INTERRUPTS have a lower
priority than the TIMED INTERRUPTS level.

A parameter in data block DX 0 allows you to change the default so
that the process interrupts level has a higher priority than the TIMED
INTERRUPTS level.

Within interrupt servicing, the priorities of the individual interrupts

are specified as follows:

« If there are several interrupts pending, the corresponding
organization blocks are called according to the order of priority
you specify in DX 0 (single priority).

You can specify priority levels 1 to 5 for the four interrupts.

CPU 948 Programming Guide
C79000-G8576-C848-04

RUN Mode

When an interrupt OB has been completely executed and there are
further interrupts pending, the system program calls and processes the
OB with the next lowest priority.

The INTERRUPTS processing level is only exited when every active
signal state (low level) of an interrupt line on the S5 bus has been
dealt with and the corresponding OB has been completely processed.

Note
Interrupt-driven program executieannotbe interrupted by the
same interrupt occurring again.

Disabling interrupt-driven An interrupt-driven program is called at a block or STEP 5 operation

processing boundary in the cyclic program. This interrupt can cause problems when
a cyclic section of program must be processed within a certain time (e.g.
to achieve a certain reaction time) or when a series of operations must not
be interrupted (e.g. when reading or writing interdependent values).

If a program section muabt be interrupted by interrupt-driven
processing, the following strategies are possible:

Interrupts at block boundaries

Program this program section so that it does not contain a block
change. Program sections that do not contain a block change can
then not be interrupted.

« Use OB 122 with which you can disable the processing of process
interrupts for a specific program section. Remember, however, that
the timed interrupts are also disabled (refer to Section 6.3).

e Program the STEP 5 operation 'lA’ (disable process interrupts).
With the operation 'RA’ (enable process interrupts) you can enable
interrupt processing again.

Between these two operations, no process interrupt-driven
program execution is permitted. The program section between
these two operatioreannot be interrupted.

* ’IA’and 'RA’ are only possible in function blocks (extended
operation set - refer to Section 3.5.4) and only apply to process
interrupts via IB 0.

Note
If a process interrupt is disabled using OB 22 or delayed using
OB 142, the RA operation is not effective.

CPU 948 Programming Guide
C79000-G8576-C848-04 4-45

RUN Mode

Interrupts at operation
boundaries

Reaction time

Program execution levels
and flags

» Program the section that must not be interrupted in an interrupt OB
and assign the highest priority to it.

* Use the special function OB 122. With this, you can disable
interrupts and timed interrupts (refer to Section 6.3).

e Using the operation LIM and SIM (system operations - refer to
Section 3.5.4) read or set the 32-bit interrupt mask.

Interrupt servicing can be disabled completely or separately for
individual interrupts in data block DX 0. This is, however, only
possible following a COLD RESTART (refer to Chapter 7), since
DX 0 is only evaluated in a COLD RESTART.

The time required to react to a process interrupt/interrupt request
corresponds to the processing time of a block (for interrupts at block
boundaries) or a STEP 5 operation (for interrupts at operation
boundaries). If, however, at the time the cyclic program is interrupted
there are higher priority timed interrupts pending, the interrupt-driven
program is only executed when all the pending timed interrupts have
been completely processed.

The maximum reaction time between the occurrence and execution of
a process interrupt/hardware interrupt is increased in this case by the
processing time of the higher priority timed interrupts.

If you run your user program not only cyclically but also time and
interrupt-driven, you run the risk of overwriting flags.

This is the case when the same flag areas are accessed at different
program processing levels.

Itis therefore advisable to assign flags to individual program
processing levels or at the beginning of time or interrupt-driven
program execution, to "save" the signal states of multiply assigned
flags in a data block and to write the values back at the end of the
interrupt servicing. The same applies for a warm restart.

To avoid double use of flags, you can also use the S flags for most
applications. Special "saving" strategies for flags are then no longer
necessary, providing the S flags are assigned exclusively to individual
program processing levels (there are enough S flags available).

CPU 948 Programming Guide
C79000-G8576-C848-04

Interrupt and 5
Error Diagnostics

Contents of Chapter 5

5.1

5.2

5.3

5.4

541
5.4.2
5.4.3

5.5

5.6

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10
5.6.11
5.6.12

5.7

5.71
5.7.2
5.7.3
574

Frequent Errors in the User Program. it 5-4
Error Information 5.-5
Procedure for Error ANalysis :8...5
Control Bits and Interrupt Stack 5-9
CoNtrol BitS. . . . o e 5-10
ISTACK Content.o e e e s 5-.14
Example of Error Diagnosis using the ISTACK i 5-19
Error Handling Using Organization Blocks. 5-20
Causes of Error and Reactions of the CPU i 5-23
OB 19: Calling a Logic Block That Is Not Loaded (KB). 5-24
OB 19: Calling a Data Block That Is Not Loaded (KDB) 5-24
OB 23/24, OB 28/29: Timeout Error (QVZ).« e 5-25
OB 25: Addressing Error (ADF)ot 5-26
OB 26: Cycle Time Exceeded Error (ZYK) oot 5-27
OB 27: (Substitution Erf@UF). 5-28
OB 30: Parity Error and Timeout Error in the User Memory (PARE). 5-28
OB 32: Load and Transfer Error (TRAF) e 5-29
OB 33: Collision of Timed Interrupts Error WEFES/WEFEH) 5-30
OB 34: Error with G DB/GX DX (FEDBX).ot 5-32
OB 35: Communication EIrOrst 5-32
OB 36: Errorin Self-test 5-33
Self-TeSt . 5-34
OVBIVIBW . . o e 5-34
Description of the Test FUNCHONS.o e e 35..5-
SBINGS . . .t 5-37

Error Handling o e 5.-.38

CPU 948 Programming Guide
C79000-G8576-C848-04 5-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Interrupt and
Error Diagnostics

CPU 948 Programming Guide
C79000-G8576-C848-04

5

This chapter explains how to avoid errors when planning and
programming your STEP 5 programs.

You will see what help you can get from the system program for
diagnosing and reacting to errors and which blocks you can use to
program reactions to errors.

At the end of the chapter, you will learn how to activate integrated
system functions for a self-test of the CPU 948.

Frequent Errors in the User Program

5.1

Frequent Errors in the User Program

The system program can detect effects of errors in the user program,
faulty operation of the CPU, or errors in the system program
processing.

The following list describes errors that occur most frequently during
the start-up of the user program. You can avoid these errors by doing
the following when you write you STEP 5 program.

* When specifying byte addresses for I/Os, make sure that the
corresponding modules are plugged into the central controller or
the expansion unit.

e Make sure that you have provided correct parameters for all
operands.

* Be careful when changing function blocks. Check to see that the
FBs/FXs are assigned the correct operands and that the actual
operands are specified.

« Make sure that outputs, flags, timers, and counters are not
processed in several locations in the program with operations that
counteract each other.

* Make sure that timers are scanned only once per cycle (e.g., AT1).

e Make sure that all data blocks called in the program exist and are long
enough.

* Check to see if all blocks called are actually in the memory.

e If required by other blocks (e.g. standard function blocks),
scratchpad flags should be saved by interrupt-driven and
time-controlled programs and loaded again when these program
sections have been completed.

CPU 948 Programming Guide
C79000-G8576-C848-04

Error Information

5.2 Error Information

LEDs on the front
panel of the CPU

CPU 948 Programming Guide
C79000-G8576-C848-04

If an error occurs during system start-up or during cyclic processing of
your program, the sources of information described in this section can
help you to find the problem. This includes:

e LEDs on the front panel of the CPU

* interrupt stack ISTACK and control bits

* block stack BSTACK

The following sections explain the ways of evaluating this information
and how to use the information to analyze problems.

If the CPU goes into the STOP mode when you do not want it to,
check the LEDs on the front panel. They can indicate the cause of the

problem.

LED display

Meaning

STOP LED lit continuously

STOP LED flashes slowly

STOP LED flashes quickly

SYS FAULT LED lit
continuously

The various states of
the STOP LED indicate
specific causes of
interruptions and errors
(see section 4.1).

ADF LED lit continuously

Addressing error

QVZ LED lit continuously

Timeout error

ZYK LED lit continuously

Cycle time exceeded error

Error Information

PG online function OUTPUT
ISTACK

Online function OUTPUT
BSTACK

You can get information about the status of the control bits and the
contents of the interrupt stack (ISTACK) by using die PG online
function OUTPUT ISTACK.

When the CPU goes into the STOP mode, the system program enters all
the information it requires for a warm restart inlfB€ACK . This
information includes:

e contents of registers,

e contents of accumulators,

e STEP address counter SAC
and

* results codes

Depending on where the interruption leading to the STOP occurred,
the displayed information refers to user blocks or blocks of the system
program (OB 0).

These entries are a valuable aid in error diagnosis.

Before the actual ISTACK is output on the programmer, the status of
thecontrol bits is displayed. The control bits mark the current

operating status and specific characteristics of the CPU and the user
program and provide additional information on the cause of an error.

You can call the ISTACK programmer function not only when the
CPU is in the STOP mode, but also when it is in the RESTART or
RUN mode. However, in the RESTART and RUN modes, you can
only display the control bits (i.e., the first page of ISTACK
information).

The meaning of the control bits and structure of the interrupt stack are
described in detail in Section 5.4.

You can display the contents of the block stack (BSTACK - see
section 3.2 "Nesting blocks") using the PG online function OUTPUT
BSTACK.

The BSTACK contains a listing of all blocks (blocks of the user
program and organization block OB 0 of the system progcatigd

in sequenceand not completely processed when the CPU went into
the STOP mode. Since the BSTACK is filled from the bottom, the top
line of the BSTACK display contains the block thatled the block
containing an error.

CPU 948 Programming Guide
C79000-G8576-C848-04

Error Information

Example

In thefirst line, the information shown below is available:

Information

Meaning

BLOCK NO

Type and number of the block that called the
faulty block

BLOCK ADDR

Absolute start address of the calling block in
the program memory

RETURN ADDR

Absolute ddress of the first STEP 5 operatio
of this block in the user memory.

REL ADDR

Relative address (= difference "RETURN
ADDR - BLOCK ADDR") of the next

operation to be processed in the calling block.

(You can display relative addresses on a
programmer in the mode "disable input"/ke
switch and withS5-DOSfrom Stage IV

upwards using the function key "addresses").

DB NO

Number of the last data block opened in the
calling block

DB ADDR

Absolute start address in the program memory

of the last data block opened in the calling
block (address of data word DW 0)

Evaluating the BSTACK function:

BLOCK NO |BLOCK ADDR | RETURN ADDR REL ADDR |DBNO DB ADDR
PB 3 00090 08 00008 0
PB 2 00050 51 00001 0
PB 1 00040 41 00001 0
OB 1 00010 11 00001 0
oB 66 Y E2B10 E2C40 00130 0
OB 63 EOFCO E12FA 0033A 0
OB 62 E0490 EOCBE 0082E 0
OB 61 E0010 E0273 00263 0

1)
chronologically).

The blocks executed before OB 1 are internal blocks belonging to the system progranT ABKBSstructured

In the example, PB 3 called the faulty block at relative address
"00008 - 1 = 00007".
During the jump to this faulty block, no data block was open.

CPU 948 Programming Guide
C79000-G8576-C848-04

Procedure for Error Analysis

5.3

Procedure for Error Analysis

If the CPU is in an abnormal stop mode, make use of all the
information available to analyze the error, as follows:

Step

Action

Check the status of the STOP and SYS FAULT
LEDs and the error LEDs on the front panel. Thes
indicate causes of certain errors and interruptions

[¢]

Using the PG online function OUTPUT ISTACK,
analyze the status of the control bits and the
content of the ISTACK. This will provide you
with further information about the location of the
error and its cause.

Select the PG online function OUTPUT BSTACK:
in the top line of the BSTACK display you will
find information about the block whidalled the
block causing the error.

The system datdS 75(refer to Section 8.3.4) alsp
contains further detailed error information.

CPU 948 Programming Guide
C79000-G8576-C848-04

Control Bits and Interrupt Stack

5.4 Control Bits and Interrupt Stack

CPU 948 Programming Guide
C79000-G8576-C848-04

You can use the online functions PLC INFO and OUTPUT ISTACK to
analyze the following: operating status, characteristics of the CPU,
characteristics of the user program, possible causes of errors and
interruptions.

Note
You can display theontrol bits in any mode. You can display
thelSTACK only in theSTOP mode.

« Thecontrol bits indicate the current and previous operating status
and the cause of the problem.
If several errors occurred, the control bits indieditef them.

* ThelSTACK indicates the location of the interruption in question
(addresses) with the current condition codes, the accumulator con-
tents, and the cause of the problem.

If several interruptions occurred, a multiple level ISTACK is
constructed as follows (maximum 5 levels):

DEPTH (level) 01 = last cause of interruption
DEPTH (level) 02 = next to last cause of interruption, etc.

When an ISTACK overflow occurs, the CPU goes into the STOP
mode immediately (HARD STOP!). You must then turn the power
off and on again and perform a cold restart.

The meanings of the individual abbreviations in the control bits and in
the ISTACK are described below.

Note

The text on the screen of your programmer depends on the PG
software you are using. It may therefore differ from the display

shown here. The description of the screen information is nevertheless
relevant.

Control Bits and Interrupt Stack

54.1
Control Bits When you display the ISTACK on your programmer, the status of the
control bits is indicated on the first page (see Fig. 5-1).

Note

The ISTACK screen form shown in Fig. 5-1 reflects the PG
software STEP 5/ST, Version 6.3 or STEP 5/MT Version 6.0 with
the "Delta diskette CPU 948". In older versions of the PG
software, the abbreviations of the control bits may be different.
The meaning of the control bits, however, is as described in the
following tables.

CONTROL BITS

SYSTEM DESCRIPTION: EOVH GEP BATT EINP MEHRP SYNCR
X X
TEST BSTG BEFG MCG
X
STOP CAUSE: PGSTP HALT STP STS STOPS BEARBE

UPROG USYS UANL AFEL SYSFHL

START-UP IDs: NEUDF WIEDF URLDF NEUZU WIEZU URLER
X
AWEG ANEG MSEG
X
ERROR IDs: QVZIN PARIN BSTKF BSTEF UMCG MODUN

FE2S SRAMF UAFEHL KDB1 KDX0 FDB1
\ FDXO0 FMODE FEDBX QVZNIO WEFES DBov

Fig. 5-1 Example of the first screen form page "OUTPUT ISTACK"™: control bits

You can output the control bits in every mode. They mark the current or
previous status of the CPU and provide information on specific features
of the CPU and your STEP 5 program.

The control bits listed under ERROR IDS mark errors that can occur
in the RESTART (e.g., during an initial cold restart) and RUN (e.g.,
during time-controlled program processing) modes. If several errors
occur,all errors are displayed in the control bits.

CPU 948 Programming Guide
5-10 C79000-G8576-C848-04

Control Bits and Interrupt Stack

The following tables explain the meaning of the individual bits.

Table 5-1 Meaning of the control bits SYSTEM DESCRIPTION

SYSTEM DESCRIPTION

Bit Meaning

EOVH |Input byte IB O (process interrupts) exists, i.e. the digital
input module addressed with ‘0’ was plugged in during
the last cold restart and the module acknowledged.

GEP Programmable controller has a central back-up battery.

BATT |Battery failure in the central controller (BAU)

EINP | Single processor operation

MEHRP | Multiprocessing operation

SYNCR | Start-up of the CPUs in multiprocessing operation is
synchronized

TEST | Test operation

BSTG | DX-0 setting "interrupts at block boundaries"

BEFG | DX-0 setting "interrupts at operation boundaries

MCG |Memory card inserted

Table 5-2 Meaning of the control bits STOP CAUSE

STOP CAUSE (see RS 7)

Bit Meaning

PGSTP | STOP mode set from programmer

HALT |Multiprocessor STOP mode:

a) Selector switch on the coordinator (COR) is
in the STOP position
or

b) Stop status caused by command STOP operation
from system program when the corresponding
error OB is not loaded and an error occurs

STS STOP mode caused by STEP 5 operation 'STS’ (after
executing an operation)

STOPS | STOP mode caused by setting the mode selector tq the
STOP position

BEARBE | STOP mode after the PROGRAM TEST END
programmer function

CPU 948 Programming Guide
C79000-G8576-C848-04 5-11

Control Bits and Interrupt Stack

STOP CAUSE (see RS 7)

Bit

Meaning

Table 5-2 continued:

the
r8).

UPROG | STOP mode caused by user program
USYS | STOP mode caused by systewgpam
(warm restart possible)
UANL |STOP mode caused by illegal start-up type
AFEL |STOP mode caused by errors in the start-up block
SYSFHL | STOP mode caused by system error (may be caused by
user error, e.g. overwriting system RAM with a block
transfer or similar (when a system error is marked, a
four-digit hexadecimal number/error code appears at
bottom edge of the screen - refer to RS 75 in Chapte
Table 5-3 Meaning of the control bits START-UP IDS
START-UP IDs (see RS 8)
Bit Meaning
NEUDEF | COLD RESTART was executed as last start-up type.
WIEDF |WARM RESTART was executed as last start-up typ
URLDF |Overall reset was executed or is active.
NEUZU |COLD RESTART permitted as next start-up type.
WIEZU |WARM RESTART permitted as next start-up type.
URLER | Overall reset required.
AWEG |AUTOMATIC WARM RESTART is preset.
ANEG |AUTOMATIC COLD RESTART is preset.
MSEG | Manual start is preset.

CPU 948 Programming Guide
C79000-G8576-C848-04

Control Bits and Interrupt Stack

Table 5-4 Meaning of the control bits ERROR IDS
ERROR IDs
Bit Meaning
QVZIN |Timeout error in initialization
PARIN |Parity error in initialization
BSTKF | Wrong block ID
BSTEF | Wrong block delimiter
UMCG |lllegal memory card inserted
MODUN |Content of the meory card too large for the available
internal user memory
FE2S | Error on the second interface
SRAMF | System RAM error
UAFEHL |Error in the interrupt condition code word (UAW)
KDB1 |No DB 1 in multiprocessing operation
KDX0 |No DX 0 in multiprocessing operation
FDB1 |ErrorinDB 1
FDX0 |Errorin DX 0
FMODE | No IB 0 process interrupts allowed in multiprocessor
mode
FEDBX |Error in the STEP 5 operations G DB, GX DX
QVZNIO |QVZ test faulty
WEFES | Collision of software-driven timed interrupts: queue
overflow
DBOUN |DB 0 has been changed since the last COLD
RESTART. Therefore, no WARM RESTART possible

CPU 948 Programming Guide
C79000-G8576-C848-04

Control Bits and Interrupt Stack

5.4.2
ISTACK Content If the CPU is in the stop state, you can display the content of the
ISTACK on the screen after the control bit display by pressing the
enter key. When the CPU goes into the STOP mode, the system
program enters all the information it needs in this ISTACK for a warm
restart.
You can use the entries in this ISTACK to see what kind of error
occurred and where it occurred in the program.
If the stop state was causedagingleerror, onlyonelevel of the
ISTACK information is displayed. Witkeveralerrors, the
corresponding numberof ISTACK levels are output (DEPTH 01,
DEPTH 02, etc.). At all levels, only one error is marked as the
CAUSE OF INTERRUPT.
If several errors have occurred DEPTH 01 marks the error detected
immediately before the change to the stop state.
Fig 5-2 is an example of a PG display of the ISTACK content.
ISTACK

Depth 01

OP-REG: 1205 SAC (new): 000B3 DB-ADD: 00000 BA-ADD: 00108

BLK-STP: EDEFF PB-NO.: 9 DB-NO. OB-NO.: 1

PAGE REL-SAC: 00013 DBL-REG: 0000 BR-REG: 00000

NUMBER: O0FD SAC (old): 000B2 ICMK: O09DF3FBF ICRW: FFFFFFFF

BRACKETS: KE1 000 KE2 000 KE3 000 KE4 000 KE5 000 KE6 000

ACCUL: 0000 31BA ACCU2: 0000 0005 ACCU3: 0004 0005 ACCU4: 0004 0005

CONDITION CODE: cc1 CcCo OVFL OVFLS ODER ERAB

CAUSE OF INTERR.:

N

STATUS RLO

X X
KB KDB TRAF SUF STUEB STUEU
NAU QvZ ADF PARE ZYK STOP

STS

X

WEFEH PEU HALT J

Fig. 5-2 Example of a screen page "OUTPUT ISTACK"

CPU 948 Programming Guide
C79000-G8576-C848-04

Control Bits and Interrupt Stack

Explanation of the ISTACK
screen

DEPTH

Information about the error

CPU 948 Programming Guide
C79000-G8576-C848-04

Information level of the ISTACK when more than one error has
occurred:

DEPTH 01 = last cause of stop to occur
DEPTH 02 = next to last cause of stop to occur

DEPTHO5 = (maximum depth)

The following table contains information about the ISTACK IDs with
which the statement in the user program can be found which caused
the CPU to change to the STOP mode.

Table 5-5 Meaning of the ISTACK IDs for errors

Information about the error

ISTACK ID Meaning

OP-REG Operation register:
Contains machine code (first word of the
instruction processed last in an interrupted
program processing level.

SAC (new) STEP address counter (new):

Contains thabsoluteaddress of the next
operation in th@rogram memory to be
processed. When a warm restart occurs
the CPU continues the program with this
operation.

DB-ADD Absolute start address (DW 0) in the
program memory of the data block currently
opened (= 0000 if no data block was
opened)

BA-ADD Absolute address in the program memory
for the operation to be processed next in the
block where théast block call was made

U

BLK-STP Block stack (BSTACK) pointer:
Contains the 20-bit offset address of the
last BSTACK entry (alwayBExxxx).

PB-NO Block type and number of the most
(depending on typerecentlyprocessedlock
PB,OB..)

Control Bits and Interrupt Stack

Information about the error

ISTACK ID

Meaning

Table 5-5 continued

o

is

1]

ts

DB-NO. Number of the data block currently opened
OB-NO. Block type and number of the lastlling
(depending on typeblock
OB, PB..)
REL-SAC Relative STEP address counter:
contains theelative address (related to
the block start address) of the next
operation to be processed in the
last block processed.
DBL-REG Length of the data block currently
opened
BS-REG Content of the base address register prior {
the transition to the stop mode
PAGE Number of the current dual-port RAM page
NUMBER selected (dual-port RAM access refers to th
dual-port RAM page, you will find
information about page access in Chapter 9
SAC (old) STEP address counter (old):
contains thabsoluteaddress of the last
operation processed in theogram
memory of an interrupted program level;
if an error occurs, SAC (old) indicates th
operation which caused the error.

ICMK Interrupt condition code masking word:
ICMK contains all the causes of interrup
which have occurred and not yet been
completely processed.

ICRW Interrupt condition code reset word

BRACKETS Number of bracket levels:
"KEx abc" where
x=1to07 levels,
a ='OR’ (refer to bit codes),
b =" RLO’ (result of logic operation,
refer to bit codes),
c=1."A(,
c=0:"0(.
ACCU1l to Contents of the calculation registers
ACCU4 (accumulators) at the time of the interruptio

=

CPU 948 Programming Guide
C79000-G8576-C848-04

Control Bits and Interrupt Stack

CONDITION CODE see Section 3.5

CAUSE OF INTERR. The following abbreviations (ISTACK IDs) indicate the most important
causes of interruptions.

Table 5-6 ISTACK IDs CAUSE OF INTERRUPTION

CAUSE OF INTERR.

ISTACK |Meaning (called error OB)
ID

KB Called block not loaded (OB 19)

KDB Opened data block not loaded (OB 19)

TRAF |Load or transfer error (OB 32)

SUF Substitution error (OB 27):
Processed STEP 5 operation cannot be
substituted

STUEB | Block stack overflow:
Nesting depth too great; required action:
COLD RESTART

STUEU | Interrupt stack overflow:

Nesting depth too great; required action:
POWER DOWN, POWER UP,

then COLD RESTART

NAU Power failure in the central controller

QvZ Timeout (OB 23/0OB 24/0OB 28/0B 29)

ADF Addressing error for digital inputs and outputs with
process image (OB 25)

PARE | Parity error (OB 30)

ZYK Cycle monitoring time exceeded (OB 26)

STOP STOP mode caused by setting the mode selector to the
STOP position

STS STOP mode caused by STEP 5 operation 'STS’ (after
executing an operation)

CPU 948 Programming Guide
C79000-G8576-C848-04 5-17

Control Bits and Interrupt Stack

CAUSE OF INTERR.

ISTACK
ID

Meaning (called error OB)

Table 5-6 continued:

WEFEH

Collision of timed interrupts caused by the hardwar
clock (OB 33):
timed interrupt clock was masked (ignored)
for too long

PEU

I/Os not ready = power failure in expansion unit:
After a statically pending PEU signal is removed
(expansion unit is switched on), the system
program always calls OB 22 (AUTOMATIC
WARM RESTART).

HALT

Multiprocessor STOP mode:

a) selector switch on the coordinator (COR) is
in the STOP position

b) another CPU entered the STOP mode in
multiprocessing.

[0

CPU 948 Programming Guide
C79000-G8576-C848-04

Control Bits and Interrupt Stack

54.3
Example of Error Diagnosis
using the ISTACK

Fig. 5-3 illustrates the structure of the ISTACK in conjunction with the
interruptions that have occurred.

- The program execution level CYCLE (OB 1) is interrupted by an interrupt.
- Following this, the program processing level interrupt is activated and
OB 3 called.

- The occurrence of a timed interrupt means that the INTERRUPT level is

exited and the TIMED INTERRUPT level activated and OB 13 processed.
- An incorrect addressing operation leads to the activaton of the ADF

level where OB 25 is processed. In the error handling program, the user

has programmed a stop operation (STS) the CPU aborts program execution.

; STS

Depth 01
ADF
OB 25
STS
X
\ Depth 02
TIMED INTERRUPTS
OB 13
s
ADF
X
\ Depth 03
INTERRUPT
OB 3
E—
\ Depth 04
OB 1
_—
Program execution levels ISTACK

Fig. 5-3 Example of evaluating the ISTACK

Before the final transition to the stop mode, a total of four different

program execution levels were interrupted. If you now display the ISTACK on

the PG, you will obtain a four-level ISTACK, at the top the ISTACK with

depth 01, with the ID of the last interrupted program execution level (=

ADF). You can page down through the ISTACK until you reach depth 04,

representing the CYCLE program execution level, which was interrupted first

CPU 948 Programming Guide
C79000-G8576-C848-04 5-19

Error Handling Using Organization Blocks

5.5 Error Handling Using Organization Blocks

When the system program detects an error, it calls the appropriate
organization block to handle it. You can determine further operation of
the CPU by programming the appropriate organization block.
Therefore, the CPU can do one of the following:

e continue normal program processing

e go into the STOP mode

and/or

e process a special "error handling program"

For the following causes of error, OBs are available:

Table 5-7 The organization blocks called in case of errors

Cause of error Organization Reaction of CPU
block called if OB is not
programmed

Call of a block that is not loaded (KB) OB 19 none
Attempt to open a data block DB/DX that is not loaded OB 19 STOP
(KDB)
Timeout in the user program during access to 1/O peripherals| OB 23 none
(Qv2)
Timeout during update of the process image table and during| OB 24 none
interprocessor communication flag transfer (QVZ2)
Addressing error (ADF) OB 25 sToP
Cycle time exceeded (ZYK) OB 26 STOP
Substitution errorQUF) OB 27 STOP
Timeout by reading input byte IB 0 OB 28 STOP
(process interrupts — QVZ2)
Timeout during access to the distributed I/O peripherals (extende®B 29 none
address area — QV2)
Parity error and timeout in the user memory (PARE) OB 30 STOP

CPU 948 Programming Guide
5-20 C79000-G8576-C848-04

Error Handling Using Organization Blocks

Cause of error Organization Reaction of CPU
block called if OB is not
programmed

Table 5-7 continued:
Load and transfer error (TRAF) OB 32 STOP
Collision of timed interrupts: OB 33

a) queue overflow (control bit WEFES) STOP

b) timed interrupt clock was masked (ignored) for too long none

(WEFEH)

Error during STEP 5 operation "G DB/GX DX" OB 34 STOP
(control bit FEDBX)
Error in self-test (refer to Section 5.7) OB 36 none

D The cPU changes to the STOP mode only if the addressing error is hi¢dlisathe STEP 5 operation "IAE".

Examples of reactions to
organization blocks which are
not loaded

a) No reaction; cyclic program processingis interrupted.

If a timeout error occurs and neither OB 23 nor OB 25 is loaded, cyclic program processing is
interrupted according to the table above. The CPU does not react.

If you want the CPU to go into the STOP mode when a timeout error occurs, you must enter a stop
statement (STP for STOP at cycle end) in the appropriate organization block (e.g. OB 23 with QYZ) and
terminate it with the block end statement 'BE’.

Example of OB 23:

QVZ has occurred
:STP Cyclic processing is aborted
‘BE CPU changes to the stop mode

b) Reaction : the CPU changes to 81lROP mode

The CPU changes to the STOP mode immediately when a corresponding error (e.g. cycle or
load/transfer error) occurs - if you did not load the appropriate organization blocks.

If, as an exception, you do not want one of these errors to interrupt cyclic program processing
(e.g. while putting the system into operation), a block end statement in the appropriate
organization block is sufficient.

Example of OB 25:
: ADF occurred

‘BE Cyclic processing is continuety CPU STOP

CPU 948 Programming Guide
C79000-G8576-C848-04 5-21

Error Handling Using Organization Blocks

Interruptions during
processing of error
organization blocks

After the system program calls the appropriate organization block, the
user program in that block is processed.

If another error occurs while that organization block is being
processed, the program is interrupted at the next operation boundary
and the appropriate organization block is called, just as in cyclic
program processing.

The system program processes organization blocks in the order in
which they are called.

Note

You can nest a maximum of five error organization blocks. Wit
more than 5 errors, the CPU goes into the HARD STOP mode
because of ISTACK overflow.

CPU 948 Programming Guide
C79000-G8576-C848-04

Causes of Error and Reactions of the CPU

5.6 Causes of Error and Reactions of the CPU

CPU 948 Programming Guide
C79000-G8576-C848-04

Specific events can interrupt cyclic, time-controlled, or interrupt-
driven program processing at operation boundaries when the CPU is
in the RUN mode.

During initialization and also in the RESTART mode, interruptions
can stop the start-up program and put the CPU into the STOP mode.
The CPU then changes to the stop mode and calls the organization
block for this particular error. Interruptions during the start-up
program are handled like those in the RUN mode.

The reaction depends on the cause of the interruption:

* immediate change to the STOP mode, without calling the error OB
(e.g. NAU - hard stop, STUEW- hard stop, PEU- soft stop),

« before changing to the STOP mode, the system program calls an
error OB which you can program and (depending on the cause of
the error) avoid a change to the stop mode (e.g. QvVZAB 0
OB 28, ADF - OB 25).

If an error occurs, note the entries in the control bits under "Eys3r
and the entries in the ISTACK under CAUSE OF INTERR.

The following sections explain possible causes of error in greater
detail.

Causes of Error and Reactions of the CPU

5.6.1

OB 19: Calling a Logic
Block That Is Not Loaded
(KB)

5.6.2
OB 19: Calling a Data Block
That Is Not Loaded (KDB)

If your program jumps to a block that does not exist, the system
program detects an error. This applies to all logic blocks and also for
conditional and unconditional calls.

When the system program detects the call of a logic block that is
not loaded, it call©B 19, if this is loaded. In OB 19, you can
specify how the CPU should proceed.

If OB 19 does not exist, the system program continues executing the
interrupted STEP 5 program at the next operation.

If you call a data block or an extended data block in your program that
does not exist in the memory or is marked as invalid, the CPU detects
an error and the system program c@B 19, if this is loaded. If

OB 19 is not loaded, the CPU changes to the STOP mode. A zero is
entered in the DBA and DBL registers.

Note

OB 19 is called both when a logic or data block is not loaded.
You can read system data register RS 75 to determine (via the
STEP 5 program) which type of error occurred. The contents of
RS 75 are as follows:

- for a KB error: 0101H,

- fora KDB error: 0904H.

CPU 948 Programming Guide
C79000-G8576-C848-04

Causes of Error and Reactions of the CPU

5.6.3
OB 23/24, OB 28/29:
Timeout Error (QVZ)

OB 23

OB 24

Extension of the execution
time

CPU 948 Programming Guide
C79000-G8576-C848-04

A timeout error occurs when an addressable memory area does not
respond to write or read accesses with the ready signal ("RDY")
within a specific time after being addressed. This time is monitored by
the hardware. A defective module or the removal of a module during
operation of the programmable controller can cause a timeout error.

The following timeout errors interrupt the user program, jump to

system program error handling, and call the appropriate blocks if they
are loaded:

QVZ with direct I/O access:

Cause of error Reaction to error

Timeout error in the user If OB 23 is not loaded, the
program during direct access vigsystem program continues the
the S5 bus to an IP, COR, or |processing of the user program
to a peripheral module (e.g.,
with load and transfer operations
"L/TP..."or"LIT Q...").

Cause of error Reaction to error

Timeout error during update of |If OB 24 is not loaded, the

the process image input/output |system program continues
tables or during transfer of processing of the user program.
interprocessor communication
flags.

With calling OB 23 or OB 24 a timeout error increases the execution
time of the STEP 5 operation which caused the timeout when the
program is resumed:

extension = "acknowledgement monitoring time + time of error
handling in the system program + processing time if error OB is
called".

Causes of Error and Reactions of the CPU

OB 28

OB 29

Error address

5.6.4
OB 25: Addressing
Error (ADF)

Cause of error Reaction to error

Timeout error at input byte IB 0| If OB 28 is not loaded, the CPU
(process interrupts) changes to the STOP mode.

Cause of error Reaction to error

Timeout error of the distributed | If OB 29 is not loaded, the

peripherals in the following system program continues

address areas: processing of the user program
- F 0000H to F EFFFH
- F F200H to F FFFFH

When a timeout error occurs, you can read the error address in the
system data area (see Chapter 8):

RS Contents Address
68 QVZ error address high E FO44H
69 QVZ error address low E FO45H

An addressing error occurs when a STEP 5 operation references a
process image input or output to which no 1/O module was assigned at
the time of the last COLD RESTART (the module is not plugged in, it
is defective, or it is not defined in data block DB 1 of the CPU.

The STEP 5 operation at which the addressing error occurred is
processed completely: For bit operations, the bit in the process image
is scanned and combined logically or set/reset. Load and transfer
operations are also executed. Continued processing can, however,
result in incorrect or unwanted reactions.

CPU 948 Programming Guide
C79000-G8576-C848-04

Causes of Error and Reactions of the CPU

When an addressing error occurs, the system program interrupts
further processing of the user program and calls organization block
OB 25. After running the program contained in OB 25, the program is
resumed at the next operation.

If OB 25 is not loaded, the CPU changes to the STOP mode with an
addressing error.

The STEP 5 IAE operation disables addressing error monitoring for
individual program parts or for the entire program. You can enable it
again using the RAE operation (see Section 3.5.4 and List of

Operations).
5.6.5
OB 26: Cycle Time The cycle time is the time between the start of one OB 1 and the next.
Exceeded Error (ZYK) Itincludes the entire duration of cyclic program processing including

interrupts, interrupt servicing and system program activities. The cycle
monitoring time set on the CPU can, for example, be exceeded by
incorrect programming (program loop).

Note

Hardware faults as the cause of cycle time errorexdremely
rare. Normally, the error is in the user program or the program
and cycle monitoring time are incompatible.

When a cycle time exceeded error (ZYK) occurs, the system program
interrupts the user program and c@®B 26 if this is loaded. The
monitoring time is then restarted (triggered). If the monitoring time is
exceeded again, before OB 26 is completed, the CPU changes to the
stop mode.

If OB 26 is not loaded, the CPU changes to the STOP mode.

The cycle monitoring time is variable (10 to 2550 msec) and is
retriggerable (see above).

You can specify the cycle monitoring time individually by making an
entry in DX O (refer to Chapter 7) or by programming OB 31. The default
monitoring time is 200 ms.

In the cyclic program, the cycle monitoring time can be retriggered by
calling the special function OB 222.

CPU 948 Programming Guide
C79000-G8576-C848-04 5-27

Causes of Error and Reactions of the CPU

5.6.6
OB 27: (Substitution
Error SUF)

5.6.7

OB 30: Parity Error and
Timeout Error in the User
Memory (PARE)

PARE accessing the
operating system RAM

If an operation with a formal operand is to be carried out in a function
block, the CPU replaces (substitutes) this formal operand with the
actual operand in the block when the block is called during user
program processing.

If the CPU detects an illegal substitution, it interrupts the user
program and call®B 27, if this is loaded. If OB 27 is not loaded, the
CPU changes to the STOP mode.

Apart from an illegal substitution, SUF is also indicated in the
following situations:

* illegal operation code,

e special situation:
you cannot open data blocks DB 0 and DB 1. The CPU handles the
operations "C DB 0" and "C DB 1" like substitution errors. A zero
is entered in the DBA and DBL registers.

The user memory is protected by a parity bit. The system program
checks whether the parity bit is correct each time the user memory is
accessed. If the parity bit is incorrectly set, a parity error is indicated.

The system program cal®B 30. If OB 30 is not loaded, the CPU
changes to the STOP mode.

The same reaction takes place if a timeout error occurs in the user
memory.

If a parity error occurs when accessing the operating system RAM, the
system program doest call OB 30, buthanges to a HARD STOP

CPU 948 Programming Guide
C79000-G8576-C848-04

Causes of Error and Reactions of the CPU

Error address If a parity error or timeout occurs, the address that caused the error can
be read out of the system data area (refer to Chapter 8):

RS Contents Address
70 PARE error address high E FO46H
71 PARE error address low E FO47H
5.6.8
OB 32: Load and Transfer A load and transfer error is indicated in the following situations:

Error (TRAF)

* When accessing data in data blocks or extended data blocks, the
CPU compares the length of the opened block to the parameter in
the load or transfer operation.

If the specified parameter exceeds the actual data block length, the
CPU does not execute the load or transfer operation. This prevents
data in the memory from being overwritten by mistake during
transfer operations. With load errors, the contents of the
accumulator are retained.

e Aload or transfer error is also detected if a single bit within a
non-existent data word is to be scanned or changed.

« If no data block has yet been opened (with "C DBn" or
"CX DXn") prior to access to a data word, this also causes a
load/transfer error.

e Accessing the memory using incorrect absolute addresses via the
BR register or incorrect area boundaries with the "TNW", "TXW"
and "TXB" operations can cause a load or transfer error.

When the system program detects a load or transfer error, it calls

OB 32, if this is loaded. The operation that caused the load or transfer
error is not processed.

If OB 32 is not loaded, the CPU changes to the STOP mode.

CPU 948 Programming Guide
C79000-G8576-C848-04 5-29

Causes of Error and Reactions of the CPU

5.6.9

OB 33: Collision of Timed
Interrupts Error
(WEFES/WEFEH)

Queue overflow

Masking the timed interrupt
clock

Time-controlled program processing (timed interrupts) is handled by
organization blocks OB 6, OB 9 and OB 10 to OB 18.

The following types of timed errors can occur on the CPU 948:
Cause:
Queue overflow servicing timed interrupts:

« there are more than three timed interrupts pending for one of the
three shortest periods (OBs 10 to 12)

or

« one of the other OBs (OBs 13 to 18) has been called before the
first call was completely processed.

Reaction:

The system program calBB 33 as the user interface, if this is loaded.
You can program the reaction to this state in this OB.

If OB 33 is not loaded, the CPU changes to the STOP mode.

PG display in "OUTPUT ISTACK™:

The bit WEFES is marked in the control bits.

Cause

The internal timed interrupt clock is masked (ignored) too long
(applies to interruptions at block boundaries/process interrupts).

This situation is related to the basic clock rate of the internal timed
interrupts and the scan time of a block in the cyclic user program. If
the scan of a cyclic block runs longer than the basic clock rate, a
collision of timed interrupts occurs.

CPU 948 Programming Guide
C79000-G8576-C848-04

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide
C79000-G8576-C848-04

Reaction:

The system program cal®B 33as user interface, if this is loaded.
Here, you can program the reaction to this state.

If OB 33 is not loaded, the CPU continues processing the program.

PG display with "OUTPUT ISTACK':

The bit WEFEH is marked in the control bits.

When the system program calls OB 33, a code for the collision of
timed interrupts is transferred to ACCU-1-L (see Section 4.5.3).

Note

In the "process interrupt via IB 0" modad "interruptability at
block boundaries" the step address counter (SAC) does not po
to the blockat whose boundary (BE statement) the collision of
timed interrupts took place. It points to the block thetled the
block that caused the error(return address).

t

>

As long as an error is pending or reoccurs every time the STER 5
operation in question is processed in each scan, the appropriat
error organization block is always called.

[¢]

[¢]

This can increase the cycle time considerably, depending on th
duration of error handling by the system program and of
processing time of the organization block.

Causes of Error and Reactions of the CPU

5.6.10

OB 34: Error with
G DB/GX DX
(FEDBX)

5.6.11
OB 35: Communication
Errors

Reaction if OB 35 is not loaded

Error information in ACCU 1

Causes:

« with the operation G DB/GX DX, an illegal block number was
specified (number of a reserved block, number > 255),

« with the operation G DB/GX DX, an illegal block length was
specified (> 4091),

« there is no longer enough space in the user memory for the
operation GDB/GXDX.

Reaction:

The system program cal®B 34 is this is loaded. If OB 34 is not
loaded, the CPU changes to the stop mode.

If problems occur on the second serial interface with an RK 512
computer link, data transfer with procedure 3964/3964R, data transfer
with an open driver or data transfer with SINEC L1, the system
program calls organization block OB 35 and enters additional
information about the error in ACCU 1.

If you have not programmed OB 35, the system programrdues
react and the CPU doast change to the STOP mode.

The system program checks whether errors have occurred on the serial
interface every 100 ms. If an error has occurred, the system program
enters error information in ACCU 1.

Error numbers for up to a maximum of three errors can be transferred
when OB 35 is called. If there are more than three errors, this is indicated
by an overflow identifier.

CPU 948 Programming Guide
C79000-G8576-C848-04

Causes of Error and Reactions of the CPU

Structure of the error
information in ACCU 1

31 24 23 18 15 87 0
ACCUl‘ 0‘ 0‘ 0‘ O‘ F‘ U‘ B‘ 0‘ Error number (1 Errornumbe*z Errornumb#r?;

F =’0’, means no error entry
'1’, means one or more errors entered

C
|

='0’, means no error overflow (maximum three entries)
‘1', means error overflow (more than three entries)

vy]
|

='0’, means no BREAK on the interface
'1’, means BREAK on the interface

BREAK If there is a BREAK on the interface, OB 35 is only called at the
beginning of the BREAK state.

Error number 1 to error Here, a maximum of three error numbers for errors detected on the
number 3 interface are entered in the order in which they were detected by the
system.

Meaning of the error numbers The meaning of the error numbers and further information about
dealing with interface errors can be found in the communication
manual (Further Reading /14/).

5.6.12
OB 36: Error in Self-test OB 36 is called if one of the self-test routines detects an error when it
is run (for detailed information, refer to Section 5.7).

CPU 948 Programming Guide
C79000-G8576-C848-04 5-33

Self-Test

5.7 Self-Test
5.7.1
Overview

Activating/deactivating

Time slice

What can be tested?

The CPU 948 contains integrated self-test routines in the system
program.

You can activate or deactivate the functions of the self-test using bits
in system data RS 137.

To reduce the cycle load caused by the self-test in the RUN mode,
only part of the self-test is carried out within a cycle (time slice). The
time available for the self-test can be set in RS 136 (refer to
Section 5.7.3).

The self-test routines can carry out the following tests:

WHAT IS TESTED? WHEN?
The user memory During OVERALL RESET
The BASP signal In the STOP mode
(disable command output)
The hardware clock During COLD RESTART
The cycle time monitoring During START-UP
The address lines Cyclically in the RUN mode

The code of the system programCyclically in the RUN mode
(checksum)

The code of the STEP 5 logic |Cyclically in the RUN mode
blocks in the user memory

(checksum)

CPU 948 Programming Guide
C79000-G8576-C848-04

Self-Test

5.7.2
Description of the Test
Functions

Testing the user memory

Testing the BASP signal

Testing the hardware clock

CPU 948 Programming Guide
C79000-G8576-C848-04

(During OVERALL RESET, without time slice)

The user memory is tested during an OVERALL RESET. This test
checks the user memory, the byte areas, the flags and process images.

During the test, the whole area (including the byte areas) are written
with a test pattern and then checked to make sure that they match. At
the end of the test, the area is written with zeros.

Note
The user memory test takes time to complete

- CPU 948-1 (640 Kbytes) approx. 5 seconds
- CPU 948-2 (1 664 Kbytes) approx. 22 seconds

(In the STOP mode, without time slice)

This test checks whether a BASP signal is output by the CPU. The test
function runs in the stop loop. The BASP signal is then read cyclically.
If an error is detected, an entry is made in the error buffer. At the next
START-UP, OB 36 (error in self-test) is called, if it exists. If OB 36 is
loaded and contains an STP operation, the START-UP is aborted.
Otherwise, the CPU changes to the cyclic mode.

(During START-UP, however, only in CPCOLD RESTART;
without time slice)

This test is made before OB 20 is called and takes one second.

The current time is retained; existing timed jobs (clock-controlled
interrupts - OB 9) on the other hand are deleted.

Self-Test

Testing cycle time monitoring

Testing the address lines

Testing the system program
code

Testing the block code of
STEP 5 logic blocks

(During START-UP, without time slice)

With this function, the cycle time monitoring is checked during the
start-up phase. The cycle monitoring time is set to the minimum value
(20 ms) and then a program loop started until the cycle error occurs.

(Cyclically in RUN mode, with time slice)

In this test, wire breaks and short circuits on the address lines are
detected by writing test patterns via the lines, reading them back and
comparing them.

(Cyclically in the RUN mode, with time slice)

In the operating code test, the content of the CPU operating system in
the internal RAM is checked (test area D 0000H to E 7FFDH).

The test is made by adding the content of the test area and then
comparing this with the checksum in the EPROM.

(Cyclically in the RUN mode, with time slice)

The checksum of each valid STEP 5 logic block is checked.

If a memory card is inserted, the checksum of the logic blocks of the
CPU 948 is created following an OVERALL RESET and after
copying the memory card contents to the internal user memory. Logic
blocks added at a later point in time are also checked.

Note

In the code test of the STEP 5 blocks, an error is detected if ong or
more logic blocks were modified dynamically.

It is possible to modify blocks with the PG. If this is the case, th
checksum is created by the system program of the CPU 948.

CPU 948 Programming Guide
C79000-G8576-C848-04

Self-Test

5.7.3
Settings

Calculating and setting the
number of time slices

Calculating the number

Setting the number

Activating/deactivating the
tests

CPU 948 Programming Guide
C79000-G8576-C848-04

The processing time for the self-functions is distributed on time slices
which are called once per cycle. The number of time slices can be
selected. This means that you can increase the time required for the
self-test functions per cycle.

First, you must estimate the time you can leave for the self-test within
the cycle: the length of a time slice is approximately |%)d.e. the
self-test requires 50@s in each cycle.

Once you have estimated how much time is available, you can
calculate the number of time slices each taking approximatelp&00

You can set the number of time slices in system data R8rti36
(16-bits wide). The default istime slice (minimum value). You can
set up to a maximum of 10 time slices (5 ms required in the cycle).

The number of time slices is derived from the value of system data
word RS 136 as follows:

RS 136=0o0r1: 1 time slice

RS 136 = 2: 2 time slices
RS 136 = 3: 3 time slices
etc.

You can activate the individual tests, e.g. in a start-up block, by setting
the corresponding bits in RS 137 to "1’ and deactivate the tests by
setting the bits to '0’.

Note

After an OVERALL RESET on a newly inserted CRill the test
functions areswitched off

The next time you make an OVERALL RESET, only the test
functions to be run in th@VERALL RESET areactivated. All
other test functions are deactivated.

This means that you can only check the user memory of a newly
inserted CPU by activating the test function in RS 137 following
an OVERALL RESET and then repeating the OVERALL RESE

-

Self-Test

Assignment of system data
word RS 137

574
Error Handling

Test function Bit no.
Check the code of the system program 2
Check the code of the STEP 5 logic blocks in the 5
user memory
Check the address lines 7
Check the clock 10
Check the BASP signal 11
Check the cycle time monitoring 13
Test the user memory 15

The bit numbers not listed in the table are not used.

Providing the test function is not running within an OVERALL

RESET, the test function calls error OB 36 (refer to Section 5.6.11) if
an error is detected and transfers the content of RS 137 containing the
bits of the activated test routines to ACCU 1.

All the test routines also enter information about the type of test and
error detected in the system data words RS 75 to RS 78.

For test components which only run in an OVERALL RESET, the
cause of the error is indicated in RS TBe STOP LED then flashes
quickly, when the tests are completed with an error in an
OVERALL RESET .

Errors detected by the self-test component "BASP signal" in the STOP
mode are also indicated in RS 75. The following START-UP only
leads to cyclic operation ifo STP operationis programmed in

OB 36.

CPU 948 Programming Guide
C79000-G8576-C848-04

Self-Test

Error information

Testing the user memory

System data word Error information
RS 75 error no. 640CH testing the word memory
error no. 650CH testing the byte memory
RS 76 test pattern in which the error occurred
RS 77 incorrect address, high
RS 78 incorrect address, low
Testing the BASP signal
System data word Error information
RS 75 error no. 6700H
RS 76 FFFFH
RS 77 FFFFH
RS 78 FFFFH
Testing the hardware clock
System data word Error information
RS 75 error no. 6800H
RS 76 FFFFH
RS 77 FFFFH
RS 78 FFFFH
Testing cycle time monitoring
System data word Error information.
RS 75 error no. 6600H
RS 76 FFFFH
RS 77 FFFFH
RS 78 FFFFH

CPU 948 Programming Guide
C79000-G8576-C848-04 5-39

Self-Test

Testing the address lines

Testing the system program
code

Testing the block code of
STEP 5 logic blocks

System data word

Error information

RS 75 error no. 630BH

RS 76 FFFFH

RS 77 incorrect address, high
RS 78 incorrect address, low

System data word

Error information

RS 75 error no. 610BH
RS 76 FFFFH

RS 77 actual checksum, high
RS 78 actual checksum, low

System data word

Error information

RS 75 error no. 620AH

RS 76 block type/block no. (IDs from block head
RS 77 expected checksum

RS 78 actual checksum

CPU 948 Programming Guide
C79000-G8576-C848-04

er)

Integrated Special Functions 6

Contents of Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

INtrOdUCTION.o o e e e e 6-4

OB121: Set/Read System TimMeot e e e 6-8
OB 122: "Disable Interrupts” On/Off 6-12
OB 124: Delete STEP 5 BIOCKS.o e e 6-14
OB 125: Generate STEP 5 Blocks.o 6-17
OB 126: Define, Transfer Process Images.t i 6-20
OB 129: Battery State.o 6. 25..

OB 131: Delete ACCUS 1, 2,3 and 4. oot 6 - 26
OB 132/133: Roll-Up ACCU/ROII-DOWN ACCUo 6 - 27
OB 141.: "Disable Single Cyclic Timed Interrupts”" On/Off 6-29
OB 142: "Delay All Interrupts” On/Off. 6-32
OB 143: "Delay Single Cyclic Timed Interrupts" On/Off 6-35
OB 150: Set/Read System Time.ot 6-38
OB 151: Set/Read Time for Clock-Controlled Interrupt. 6 - 43
OB 153: Set/Read Time for Delayed Interrupt i 6 - 50
Ob 180: Variable Data BIOCK ACCESS oot 6 - 53

CPU 948 Programming Guide
C79000-G8576-C848-04 6-1

Contents

6.17

6.18

6.19

6.20

6.21

6.22

OB 181: Test Data Blocks (DB/DX) oot e e e 6 -57
OB 182: Copy Data Area.ot 59.. 6 -
OB 202 to 205: Multiprocessor Communication i, 6 - 62
OB 222: Restart Cycle Monitoring Time.t e 6 - 63
OB 223: Compare Start-up Modes e 6 -64
OB 254/255: Copy/Duplicate Data BIoCkS i 6 - 65

CPU 948 Programming Guide
C79000-G8576-C848-04

Integrated Special Functions 6

CPU 948 Programming Guide
C79000-G8576-C848-04

The following chapter describes the special functions integrated in the
system program, where you can use these functions and how to call
and assign parameters to the special function OBs.

You will also learn how to recognize errors in the execution of a
special function and possible ways of handling them in the program.

Introduction

6.1 Introduction

The operating system of the CPU 948 provides you with special

functions which you can call if necessary with a conditional (JC OB x)
or an unconditional (JU OB x) block call. Organization blocks OB 100

to 255 are reserved for these special functions.

These functions are known as integrated special functions, since they

are a fixed part of the system program. As user, you can call these
special functions but cannot read or modify the corresponding

program.

The following table provides an overview of the existing special

functions.

Table 6-1 Overview of the special functions available with the CPU 948
Block Function Refer to
section/page

OB 121 Set/read system time (compatible with CPU 946/947 6.2/6 - 8
OB 122 "Disable interrupts" on/off 6.3/6 - 12

OB 124 Delete STEP 5 blocks 6.4/6 - 14

OB 125 Generate STEP 5 blocks 6.5/6 - 17

OB 126 Define/transfer process images 6.6/6 - 20
OB 129 Battery state 6.7/6 - 25

OB 131 Delete ACCU 1, 2,3 and 4 6.8/6 - 26
OB 132 Roll-up ACCU 6.9/6- 27

OB 133 Roll-down ACCU 6.9/6- 27

OB 141 "Disable single cyclic timed interrupts" on/off 6.10/6 - 29

OB 142 "Delay all interrupts" on/off 6.11/6 - 32

OB 143 "Delay single cyclic timed interrupts" on/off 6.12/6 - 35

OB 150 Set/read system time 6.13/6 - 38

OB 151 Set/read time for clock-controlled interrupt 6.14/6 - 43

OB 153 Set/read time for delayed interrupt 6.15/6 - 50

OB 181 Test data block 6.16/6 - 53
OB 182 Copy data area 6.17/6 - 55
OB 200, 202 Functions for multiprocessor communication 6.18/6 - 58
203, 204, 205

OB 222 Restart cycle monitoring time 6.19/6 - 59
OB 223 Compare start-up modes in multiprocessor mode 6.20/6 - 60
OB 254, 255 Copy/duplicate DB and DX data blocks 6.21/6 - 61

CPU 948 Programming Guide

6-4 C79000-G8576-C848-04

Introduction

Interfaces

Block call

Parameters

Writing to ACCUs

CPU 948 Programming Guide
C79000-G8576-C848-04

The following are available as interfaces to the special functions:

e Conditional/unconditional block call JC .. / JU ..

» Parameters for defaults via ACCU 1 and possibly ACCU 2 and/or

memory locations

In the following description of the individual special functions, all
the data required by the CPU to execute the special function
correctly are listed under the teparameters Before calling the
special function in the STEP 5 program, you must load this data in

the accumulators or in the specified memory locations.

When assigning parameters for the special function organization
blocks, please note the following conventions for writing to the

ACCUs:

ACCU 1: ACCU 1, 32 bits

ACCU-1-L: ACCU 1, low word, 16 bits

ACCU-1-LL: ACCU 1, low word, low byte, 8 bits

ACCU-1-LH: ACCU 1, low word, high-byte, 8 bits

High word Low word
High byte Low byte High byte Low byte

31 24 23 16 15 87 0

6-5

Introduction

Error handling

ACCU condition code bits

RLO,
cco/cea

An error occurring in the execution of the active special function triggers
a special error reaction in the system program.

In terms of this error reaction by the system program, two groups of
special functions can be distinguished.

e Group 1:

Group 1 includes all the special functions with which IDs are
transferred to ACCU 1 if an error occurs to further explain the
error.

* Group 2:

With some of the special functions, the RLO or the status bits
CCO0/CCL1 are written to indicate errors for specific special
functions.

If an error occurs when using one of these special functions, the
RLO is set to "1" in most cases. In your STEP 5 program, you can
use a JC operation (conditional jump) to evaluate the RLO for
these special functions and then react to an error.

In some special functions, the results bits CC0O and CC1 are
affected by the processing of a special function. You can scan
these bits in your STEP 5 program using a compare operation and
once again program a reaction to an error.

Which of the error reactions occurs for the individual special function
OBs is explained in the following sections.

CPU 948 Programming Guide
C79000-G8576-C848-04

Introduction

CPU 948 Programming Guide
C79000-G8576-C848-04

Note
Calling a special function OB using the "JU OB 131/132/133" or

"JC OB 131/132/133" operation does not have the same effect|as
a "genuine" block change, but functions as a STEP 5 operation
without block operandNo interrupts are nested (with the default
“interrupts at block boundaries").

OB 121: Set/Read System Time

6.2 OB 121: Set/Read System Time

Function

Parameters

With OB121 you can set or read the system time (date and time). This
function is compatible with the CPU 946/947.

1. Data field

Four words in the word-oriented memory area.

With the"set system time" function the arehefore the OB121 call
must be loaded with the time values to be set. The system program
checks these values to ensure they are logically correct.

With the"read system time" function, OB121 enters the current time
values in this area.

Structure of the data field

Bitno. 15 12 11 98 4 3 0

1stword| Sec.x 10 Sec.x1 10th Sec. 100th Sec.

2ndword| Hour x 10 Hour x 1 Min. x 10 Min x 1

3rd word] Day x 10 Day x 1 Weekday| 0

4th word| Yearx 10 Yearx 1 Month x 10 Month x [L
Note

The structure of the data field corresponds to the structure of
system data RS 96 to RS 99 (current time).

Possible time values:

100th seconds: 0to9
10th seconds: Oto9
Seconds x 1: Oto9
Seconds x 10: Oto5
Minutes x 1: Oto9
Minutes x 10: Oto5
Hours x 1: Oto9
Hours x 10:
Bit no.
12 /13: 0 to 1 with 12 hour format

0 to 2 with 24 hour format
Bitno. 14: 0 =AM with 12 hour format
1=PM " "
0 in 24 hour format
Bitno. 15: 0 =12 hour format
1 = 24 hour format

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 121: Set/Read System Time

Weekday: 0 to 6 for Mon to Sun
Days x 1: Oto9
Days x 10: Oto 3
Month x 1: 0to9
Month x 10: Oto1l
Year x 1: Oto9
Year x 10: Oto9

2. BR register (base address register)

Start address of a data field in an area of memory organized in words,
from which the time values to be set are read or in which the current
time values are to be stored. The BR register must be loaded with the
addresbeforethe OB 121 call.

3. ACCU-1-L

Function no.,
Permitted values: 1 = set system time
2 =read system time

Result After correct and error-free processing, the system program enters the
value '0’ in ACCU-1-L. After the "set" function, the system time is set
to the values contained in the data field; after the "read" function, the
data field contains the current time values.

Possible errors The errors listed in the following table can occur. If one of these errors
does occur, the system program enters the error ID shown in the table
in ACCU-1-L.

Table 6-2 Error IDs of OB 121 in ACCU-1-L

ID Meaning

FOO1H lllegal function no.

FOOFH Multiple block call

F101H Year specification illegal
F102H Month specification illegal
F103H Day specification illegal
F104H Weekday specification illegal
F105H Hour specification illegal
F106H Minute specification illegal
F107H Seconds specification illegal
F108H 100th to 10th seconds in the data field unequal tg 0.
Entries from the 100th to the 10th second must
equal 0.

F109H Hour format differs from setting in OB 151

CPU 948 Programming Guide
C79000-G8576-C848-04 6-9

OB 121: Set/Read System Time

Examples

Programming example for "set system time"

FB 13 is programmed for the "set system time" function. The new values are
transferred in data block DB 10 (data word DW 0 to DW 3).

STEP 5 program:

FB13

NAME :CLKWR
:C DB 10 Open DB 10
L KH 1500 15 seconds (10th .. 100th sec. = Q!)
T DW 0
L KH 9555 24 hour mode, 15 hours 55 minutes
T DW 1
L KH 1010 the 10th, Tuesday
T DW 2
L KH 9308 1993, August
T DW 3
:MBR EECO00 Load start address of the DB list
: in the BR
‘LRW +10 Load the start address of DB 10 in memory
: (paragraph address) in ACCU 1
:SLD 4 Absolute address of DB 10 (DW 0)
:MAB Load content of ACCU 1 into BR register
L KB 1 Load function no. '1’ in ACCU-1-L
JU OB121 Set system time
L KB O
><F Scan error bits
:JC =ERRO Jump to error handling
:BEU

ERRO : Error handling
:BE

Data block DB 10 contains the following information when OB 121 is called:

: KH = 1500;
: KH = 9555;
: KH =1010;
: KH =9308;

APWNEFO

OB 121 transfers the required time parameters from DB 10 to the system data
area RS 96 to RS 99.

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 121: Set/Read System Time

Programming example for "read system time"

FB 14 is programmed for the "read system time" function. The current values
should be stored in data block DB 11 (data word DW 0 to DW 3).

STEP 5 program:

FB14

NAME :CLKRD
:MBR EECO00 Load start address of the DB list
: in BR
‘LRW +11 Load start address of DB 11 in memory
: (paragraph address) in ACCU 1
L KB 0
A=F Check that OB 11 is loaded
:JC =NIVO Jump to error handling
: if DB start address =0
‘TAK
:SLD 4 Absolute address of DB 11 (DW 0)
:MAB Load contents of ACCU 1 into BR register
L KB 2 Load function no. '2’ in ACCU-1-L
JU OB121 Read system time
:BEU

NIVO : Error handling
:BE

Data block DB 11 contains the following information after OB 121 is called
(example):

0: KH =2994; 29 sec., 940 millisec.

1: KH = 9555; 24 hour format, 15 hours, 55 minutes

2: KH =1010; 10 days, weekday '1'(Tuesday), O

3: KH =9308; 93 years, 8 months

4:

It is Tuesday the 10th of August 1993, 15 hours, 57 minutes, 29 seconds and
940 milliseconds (9 tenths and 4 hundredths of a second).

CPU 948 Programming Guide
C79000-G8576-C848-04 6-11

OB 122: "Disable Interrupts” On/Off

6.3 OB 122: "Disable Interrupts" On/Off

Function

Parameters

A STEP 5 program can be interrupted at block boundaries or operation
boundaries by programs at an execution level with a higher priority.
The program execution levels with higher priority include the

following:

e TIMED INTERRUPTS
and
e PROCESS INTERRUPTS.
The time required to run the interrupted programs is expanded by the

run time of the nested programs.

Using OB 122, you can prevent interrupt servicing blocks being
nested at one or more consecutive block or operation boundaries.

OB 122 influences the acceptance of interrupts:

« "Disable interrupts" on means the following:
no interrupts will be registered from now on.

« "Disable interrupts" off means the following:
all interrupts occurring will be registered from now on and the
corresponding blocks will be nested and executed at the next
operation or block boundary (depending on the mode set in DX 0).

Interrupts that have already been registered, are then no longer
serviced if the mode "interruptability at block boundaries" is set in
DX 0.

ACCU-1-L

Function no.,
Permitted values: 1 =disable all interrupts
2 = enable all interrupts

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 122: "Disable Interrupts"” On/Off

Result After correct and error-free processing, the system program enters the
value '0’ in ACCU-1-L.

Note

By calling OB 122, the RLO (undefined) is influenced. The BR
register is not modified.

To disable and enable processing interrupts, you can also use the
STEP 5 operations IA and RA instead of OB 122. The blocking|of
interrupts is cleared at the next system checkpoint (refer to
Chapter 11).

Possible errors The errors listed in the following table can occur. If one of these error
does occur, the system program writes the error ID shown in the table
into ACCU-1-L.

Table 6-3 Error IDs of OB 122 in ACCU-1-L

ID Meaning

FOO1H lllegal function number

Example

Excerpt of a STEP 5 program in which all
interrupts are disabled using OB 122 immediately
before a critical program section following which
they are enabled again:

L KB 1 Load function ID in ACCU-1-L
JU OB 122 Disable all interrupts

)
)
)
} Critical program section
)
)

L KB 2 Load function ID in ACCU-1-L
JU OB 122 Enable all interrupts

CPU 948 Programming Guide
C79000-G8576-C848-04 6-13

OB 124: Delete STEP 5 Blocks

6.4 OB 124: Delete STEP 5 Blocks

Function

Parameters

Result

With OB 24, you can delete any STEP 5 blocks (logic and data
blocks) in the user memory. The deleted block is removed from the
address list in DB 0.

The gap in memory resulting from deleting a block is used again when
new blocks are loaded.

1. ACCU-1-LH

Block type of the block to be deleted

2. ACCU-1-LL

Block number of the block to be deleted

Permitted block types and numbers:

ACCU-1-LH (block type) ACCU-1-LL (block number)
1=PB 0to 255
2=SB 0to 255
3=FB 0to 255
4 =FX 0to 255
5=DB 31to 255
6 = DX 3to 255
7=0B 1t0 39

After correct and error-free processing, the system program sets the
RLO to '0’ and clears the condition codes CC 1 and CC 0.

Note
While the blocks are actually being deleted, user interrupts are
disabled: no interrupts come through.

By calling OB 124, the contents of ACCU 1 to ACCU 4 are
modified. The BR register is retained.

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 124: Delete STEP 5 Blocks

Possible errors and
warnings

Condition code bits

Results bits

CPU 948 Programming Guide
C79000-G8576-C848-04

If an error or warning occurs, the system program stops processing
OB 124 and continues program execution at the next STEP 5
operation. It also sets the RLO to '1’ and writes an ID to ACCU-1-LL
(refer to Table 6-5).

If the function is aborted with a warning, it may be possible to achieve
correct execution of OB 124 by re-calling the special function
(possibly several times).

In the following case, OB 124 is aborted witivarning:

During the last 10 ms OB 124, OB 125, OB 254 or OB 255 has been
called. (Only one call for these special functions is allowed within

10 ms. This avoids multiple calls for the OBs listed above blocking
the interface to the PG so that it can no longer be processed.)

After calling OB 124, you can check whether the special function has
been executed correctly or was aborted with an "error" or "warning"
using the result of logic operation and the condition code bits CC 1
and CC 0. The result can be evaluated with conditional jump
operations.

Table 6-4 Results bits of OB 124

RLO | CC1 | CCO |Meaning Scan

0 0 0 Special function was JC
processed correctly Jz

1 1 0 Processing of special JC
function aborted with JP

"warning" JN

1 0 1 Processing of special JC
function aborted with "error’ JM

JN

6-15

OB 124: Delete STEP 5 Blocks

IDs in ACCU-1-LL

Example

In ACCU-1-LL, the system program stores IDs about the processing
result, with which the cause of a warning or error is specified in more

detail.

Bit no.

E Cause of error/warning

The following group bits are fixed:

Bit no. 7 (W) = 1: warning
Bit no. 6 (E) = 1: error
Table 6-5 Result IDs of OB 124 in ACCU-1-LL
ID Meaning
01H Function was correctly processed
Error:
45H Block type not permitted
47H Block does not exist
4DH Online function COMPRESS MEMORY active
Warning:
8DH Conflict with an online function (except for
"compress memory")
8EH 10 ms waiting time not elapsed
L KY 6,100 This sequence of operations deletes
data block DX 100 in the user

JU OB 124

memory

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 125: Generate STEP 5 Blocks

6.5 OB 125: Generate STEP 5 Blocks

Function

Parameters

Result

CPU 948 Programming Guide
C79000-G8576-C848-04

With OB 125, you can generate any STEP 5 blocks (logic and data
blocks) in the user memory. Generating logic blocks should, however,
be left to specialists.

The specified block is set up in the internal RAM with a block header
and block body and entered in DB 0. The block body contains random

data. For this reason, a newly generated block must first be written to
before any useful data can be read out of it.

1. ACCU-1-LH
Block type of the block to be generated
2. ACCU-1-LL

Block number of the block to be generated

Permitted block types and numbers

ACCU-1-LH (block type) ACCU-1-LL (block number)
1=PB 0to 255
2=SB 0to 255
3=FB 0to 255
4 =FX 0to 255
5=DB 3to 255
6 = DX 3to 255
7=0B 1t0 39
3. ACCU-2-L

Number of words (required block length without block header). The
maximum assignable block length is 32762 data words. At present,
approximately 2 K words can be edited with a PG.

After correct and error-free processing, the system program sets the
RLO to '0’ and clears the condition codes CC 1 and CC 0.

Note
While the blocks are actually being generated, user interrupts are
disabled: no interrupts come through.

By calling OB 125, the contents of ACCU 1 to ACCU 4 are
modified. The BR register is retained.

OB 125: Generate STEP 5 Blocks

Possible errors and
warnings

Condition code bits

Result bits

If anerror occurs, the system program stops processing OB 125 and
continues program execution at the next STEP 5 operation. It also sets
the RLO to '1’ and writes an ID to ACCU-1-LL (refer to Table 6-7).

If the function is aborted with a warning, it may be possible to achieve
correct execution of OB 125 by re-calling the special function
(possibly several times).

In the following case, OB 125 is aborted witivarning:

During the last 10 ms OB 124, OB 125, OB 254 or OB 255 has been
called. (Only one call for these special functions is allowed within 10
ms. This avoids multiple calls for the OBs listed above blocking the
interface to the PG so that it can no longer be processed.)

After calling OB 125, you can check whether the special function has
been executed correctly or was aborted with an "error" or "warning"
using the result of logic operation and the condition code bits CC 1
and CC 0. The result can be evaluated with conditional jump
operations.

Table 6-6 Result bits of OB 125

RLO | CC1 | CCO |Meaning Scan

0 0 0 Special function was JC
processed correctly Jz

1 1 0 Processing of special JC
function aborted with JP

"warning" JN

1 0 1 Processing of special JC
function aborted with "error’ JM

JN

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 125: Generate STEP 5 Blocks

IDs in ACCU-1LL

Example

CPU 948 Programming Guide
C79000-G8576-C848-04

In ACCU-1-LL, the system program stores IDs about the processing
result, with which the cause of a warning or error is specified in more
detail.

Bitno. | 7| 6|5 (
W | E Cause of error/warning

The following group bits are fixed:

Bit no. 7 (W) = 1: warning
Bit no. 6 (E) = 1: error

Table 6-7 Result IDs of OB 125 in ACCU-1-LL

ID Meaning

01H Function correctly processed
Errors:

42H Block already exists

43H Not enough memory

44H Block length not permitted
45H Block type not permitted
4DH Online function COMPRESS MEMORY active

Warnings:

8DH Conflict with an online function (except for
"compress memory")

8EH 10 ms waiting time not yet elapsed

L KF +2000 This sequence of operations

L KY 5,24 generates DB 24 with a length of

JU OB 125 2000 data words

: (total length including header:
2005 words)

OB 126: Define, Transfer Process Images

6.6 OB 126: Define, Transfer Process Images

Function

Parameters

Function no.

Each time the cycle is run through, the system program updates the
process image of the digital inputs and outputs and IPC flags. The
inputs, outputs and IPC flags included in the process image are stored
in system data block DB 1 (refer to Chapter 10).

With OB 126, you can use additional process images.

Using OB 126, you can program up to four further process images in
addition to the process image in DB 1 duriff@LD RESTART.

These additional process images can be read in and output with the
STEP 5 program any program execution level

1. Data field

6 flags with the following structure:

Bitno. 7 0
FYn Function no.

FY n+1 Address list no.

FY n+2 Block type

FY n+3 Block number

FY n+4 Data word no. of the first ID word

FY n+5 in the address list

Parameters of the data field:

With the function number, you stipulate which job OB 126 is to
perform (refer to the table).

Permitted values: 1to5

Function no.| Function

Read in the process image of the digital inputs
Output the process image of the digital outputs
Read in the process image of the IPC input flags
Output the process image of the IPC output flags

albhwpnN

Set up system internal address list (analogous to
DB 1)
(only permitted in COLD RESTART OB 20)

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 126: Define, Transfer Process Images

Address list number Number of the address list for the additionally defined process image;

permitted values: 1to4

Block type Type of data block containing the address list;
permitted values: 1=DB
2=DX
Block number Number of the data block containing the address list;

permitted values: 3to 255

DW no. 1st ID word Here, you enter the number of the data word in whicfirtelD
word of the address list is located (refer to structure of DB 1,
Section 10.1.6).
The following 1D words are possible:

KH = DEOO (digital inputs)
KH = DAOQO (digital outputs)
KH = CEOQO (IPC input flags)
KH = CA0O0 (IPC output flags)

The parameter occupigglag bytes!

Note
The complete data field only needs to be set up when OB 26 is to
generate the address list during a COLD RESTART (= function
5). To execute functions 1 to 4 it is adequate to simply enter the
address list number alongside the function number in the data
field. The remaining entries are then not needed.

You must structure the data block with which you want to set up
the address list for an additional process image (= function 5)
analogous to DB 1.

You can store the address list information for each of the
additional process images in this data block by adding an end ID
to each field of information as in DB 1.
To set up the address list, you must however call OB 126 for each
additional process image using function "5" singly (only in COLD
RESTART).

2. ACCU-1-L
No. of the flag byte~Y n, at which the data field begins

permitted values: 0to 250

CPU 948 Programming Guide
C79000-G8576-C848-04 6-21

OB 126: Define, Transfer Process Images

Result

Possible errors

IDs in ACCU-1-L

After correct and error-free processing, the system program sets the
RLO to’0’ and enters a1’ in ACCU-1-LL.

Note
When processing OB 126, user interrupts are disabled: no
interrupts come through.

Calling OB 126 changes the contents of ACCU 1 to ACCU 4.
The BR register is retained.

During a WARM RESTART the remaining cycle is processed

with BASP activated. All the digital outputs are disabled. At the
end of the cycleall outputs (also those in address lists 1 to 4) are
reset.

If the special function cannot be executed, the system program
interrupts processing of OB 126 and continues program execution
with the next STEP 5 operation. It also sets the RLO to '1’ and
writes an ID to ACCU-1-LL (refer to the following table).

Special situation when handling errors:

If OB 126 is to execute function '5’ (set up system internal address
list), the system program checks the correct structure of the address
list. It also checks whether the inputs and outputs or IPC flags
contained in the address list acknowledge the corresponding modules.
If an incorrect address list has been transferred, the CPU reacts in the
same way as to a DB 1 error. It changes to the soft stop state and the
STOP LED flashes slowly. A DB 1 error is indicated as the cause of
the error.

Table 6-8 Result IDs of OB 125 in ACCU-1-LL

ID Meaning
01H Function correctly processed
02H Function number illegal

03H Pointer in ACCU-1-L (flag number) illegal
04H Block type/number illegal or DB/DX block does not
exist
0O5H The first ID word is not located in the specified data
word of the data block (wrong DW number) or the
address list contains an incorrect ID word
06H Address list number illegal

07H The call for the function is not permitted at the
current program execution level

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 126: Define, Transfer Process Images

Examples

CPU 948 Programming Guide
C79000-G8576-C848-04

Creating the address listin DB 5

Using the function keys <input>, <scr form>,
"block: DB 5" program a data block DB 5 on the PG
with the following parameters:

Digital inputs: 1, 2,
Digital outputs: 3,

IPC input flags: 5,6,7,
IPC output flags: 20, 22,

If you create DB 5 manually, it must be
structured like a DB 1 (with start ID, ID words
and operand areas, end ID; refer to Section
10.1.6).

Entering the address list in the COLD
RESTART/OB 20:

First, you must set up the data field in the flag
area. This occupies flag bytes FY 20 to FY 25:

KB 5 Transfer function no. '5’

FY 20 to FY 20

KB 1 Transfer address list no. "1’

FY 21 to FY 21

KH 0105 Transfer block type DB ('1") and

FW 22 number’5 to FY 22 and FY 23

KB 3 Trans. DW no.’3 (DW 3in DB 5
FW 24 contains 1st ID word) to FY 24 & 25

SQrdarAarAac

Once the data field has been correctly set up,
the number of the first flag byte in the data

field must be transferred to ACCU-1-L. Following
this, OB 126 is called which sets up the address
list:

L KB 20 Data field begins with FY 20
:JU OB 126 Call for address list generation
: poss. evaluation of status bits

Note:

The address lists with numbers 1 to 4 are only
accepted by the CPU using an OB 126 call in OB 20
(COLD RESTART). To do this, OB 126 must be called
with function number '5’ in OB 20.

OB 126: Define, Transfer Process Images

Output the process image of the outputs

The following STEP 5 program sequence can be
located in any program execution level (in OB 1,
in a timed interrupt OB or in a process interrupt
OB etc.) and causes the process image of all
outputs in address list 1 to be output.

KB 2
FY 50
KB 1
: FY 51
L KB 50
:JU OB 126

L
T
L

T

Transfer function no. 2’

to FY 50

Transfer address list no. "1’

to FY 51

Data field begins with FY 50

Call for outputting the PIQ
possibly evaluation of status bits

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 129: Battery State

6.7 OB 129: Battery State

Function

How the BAU signal is

formed

Jumper setting in the power

supply

With OB 129, you can check the state of the back-up battery with a
STEP 5 program (OB 129 scans the BAU signal). Depending on the
result, you could, for example, set a fault indicator (lamp).

The power supply contains two back-up batteries, a lithium cell (MB
for main battery) and an accumulator (RB for reserve battery). The
BAU signal is formed by ANDing the battery monitoring signals.

In the power supply of the PLC, there are two jumpers with which the
monitoring of the batteries can be influenced. Jumper MB-NB
determines when the BAU signal is generated (if this jumper is not
inserted, BAU is generated once following POWER UP). Otherwise
the signal is monitored cyclically during operation. The monitoring
signal of the accumulator can be disabled with the jumper MA-NA.
The possible combinations of jumper settings and the resulting battery
monitoring by OB 129 are illustrated in the following table:

Jumper MB-NB | Jumper MA-NA Time when BAU signal BAU signal generated from
generated monitoring signal of ...
open open after POWER UP lithium cell
open closed after POWER UP lithium cell and accu
closed open cyclic lithium cell
closed closed cyclic lithium cell and accu
Parameters none

Result

CPU 948 Programming Guide
C79000-G8576-C848-04

RLO ='0": battery OK

RLO = ’'1": battery run down

OB 131: Delete ACCUs 1, 2, 3and 4

Example

With the following sequence of operations, you
can check whether or not the battery is OK and if
it is not, you can energize a lamp:

JU OB 129

JC =BATL RLO =1 -> battery run down
‘BEU

BATL :SU Q 225 switch on warning lamp at
: output byte 22, bit 5
‘BE

6.8 OB 131: Delete ACCUs 1,2,3and 4

Function By calling special function organization block OB 131 once, you can
delete the contents of ACCUs 1 to 4 extremely simply. OB 131
overwrites all four registers with '0’.

Parameters None
Result The ACCUs 1 to 4 (each 32 bit) are deleted ('0").
Possible errors None

CPU 948 Programming Guide
6-26 C79000-G8576-C848-04

OB 132/133: Roll-Up ACCU/Roll-Down ACCU

6.9 OB 132/133: Roll-Up ACCU/Roll-Down ACCU

Function OB 132 and OB 133 roll the ACCU contents up or down:

e OB 132 (roll up) moves the contents of ACCU 4 to ACCUL, the
contents of ACCU 1 to ACCU 2, the contents of ACCU 2 to
ACCU 3 etc.

e OB 133 (roll down) moves the contents of the ACCUs in the
opposite direction: the contents of ACCU 1 to ACCU 4, ACCU 4
to ACCU 3 etc.

Parameters None

Result Figs. 6-1 and 6-2 show the ACCU contdot$ore andafter calling
OB 132 and OB 133.

Note

With the STEP 5 operations ENT (extended operation set) and
TAK (system operation) the ACCU contents can also be shifte
(refer to Section 3.4.3).

Possible errors None

CPU 948 Programming Guide
C79000-G8576-C848-04 6-27

OB 132/133: Roll-Up ACCU/Roll-Down ACCU

Shift Accu contents

A |
31 0 31 0
ACCU 4 <ACCU 4> <ACCU 3>
A
ACCU 3 <ACCU 3> <ACCU 2>
A
¥ 0B 132
ACCU 2 <ACCU 2> 3 <ACCU 1>
A
ACCU 1 <ACCU 1> <ACCU 4>
A
before after
Fig. 6-1 Effect of the "roll-up” function
Shift Accu contents
31, 0o 31 0
ACCU 4 <ACCU 4> <ACCU 1>
v
ACCU 3 <ACCU 3> <ACCU 4>
A 0B 133
A 4 :
ACCU 2 <ACCU 2> f <ACCU 3>
Y
ACCU 1 <ACCU 1> <ACCU 2>
y
before after

Fig. 6-2 Effect of the "roll-down" function

CPU 948 Programming Guide
6-28 C79000-G8576-C848-04

OB 141: "Disable Single Cyclic Timed Interrupts"” On/Off

6.10 OB 141: "Disable Single Cyclic Timed Interrupts" On/Off

Function

Parameters

CPU 948 Programming Guide
C79000-G8576-C848-04

Using OB 141, you can prevent certain cyclic timed interrupt OBs (timed
interrupts afixed intervals) from being called at one or more

consecutive block or operation boundaries. For example, you can prevent
an OB 10 (period 1) and an OB 11 (period 2) from being called in a
particular program section that must not be interrupted. On the other
hand, all remaining programmed timed interrupts are processed as usual.

OB 141 affects the reaction to cyclic timed interrupts.

"Disable single cyclic timed interruptst means that none of the
specified cyclic timed interrupts are registered from this point onwards
and the interrupts that were already registered (e.g. those waiting for a
block boundary) are deleted. If a timed interrupt OB (for processing a
timed interrupt with a fixed interval) has already been started, it is
processed completely.

"Disable single cyclic timed interrupteff means that all cyclic timed
interrupts are registered again and are processed at the next block or
operation boundary (depending on the setting in DX 0).

1. Control word

OB 141 records the timed interrupts to be disabled in a system-internal
control word:

Bitno. 15 0

Control word

The bits of the control word have the following significance:

Bit no. Interrupt
Oto2 Reserved, these bits must be '0’
Cyclic timed interrupts with fixed interval:
3=""r period 1 (OB 10)
4="1 period 2 (OB 11)
5="0 period 3 (OB 12)
6="01 period 4 (OB 13)
7="0 period 5 (OB 14)
8="1 period 6 (OB 15)
9="0 period 7 (OB 16)
10="1 period 8 (OB 17)
11="1 period 9 (OB 18)
12to 15 Reserved; these bits must be "0’

As long as a bit is set to "1’ the corresponding interrupt is disabled.

OB 141: "Disable Single Cyclic Timed Interrupts"” On/Off

Result

2. ACCUs
2a)ACCU-2-L

Function no.,
Permitted values: 1, 2 or 3 where:

1: The contents of ACCU 1 are loaded in the
control word.

2: All the bits marked "1’ in the mask in
ACCU 1 are set to '1’ in the control word.
The new control word is loaded in ACCU 1

3 All the bits marked "1’ in the mask in
ACCU 1 are set to '0" in the control word.
The new control word is loaded in ACCU 1
2b)ACCU 1
New control word or mask depending on the required function.
After correct and error-free processing the system program sets the

RLO to '0".
Calling OB 141 has the following results:

Contents of ACCU 1
Funct. no.

in ACCU-2-L before after
1 control word control word

2 mask new
control word

3 mask new
control word

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 141: "Disable Single Cyclic Timed Interrupts"” On/Off

Possible errors If an error occurs, the system program sets the RLO to '1".
The errors listed in the following table can occur. If an error occurs,
the system program enters the error ID listed below in ACCU-1-L.

Table 6-9 Error IDs of OB 141 in ACCU-1-L

ID Meaning

8DO1H illegal function no. in AccuU-2-LY
8D02H one of the reserved bits in ACCU 1is ¥

D' the incorrect value is located in ACCU-2-L
Scan control word e The status of the control word can be scanned with the following
program sequence:
1. load function no. '2’ or '3’ in ACCU-2-L,
2. load value '0" in ACCU 1,
3. call OB 141,

4. read out ACCU 1.

CPU 948 Programming Guide
C79000-G8576-C848-04 6-31

OB 142: "Delay All Interrupts” On/Off

6.11 OB 142: "Delay All Interrupts" On/Off

Function

Parameters

A STEP 5 program can be interrupted at block or operation boundaries
by programs with a higher priority. The process interrupts and all

timed interrupts belong to these higher priority program execution
levels. The runtime of the interrupted program is extended by the
runtime of the nested programs. Using OB 142, you can prevent the
nesting of higher priority program execution levels at one or more
consecutive block or operation boundaries (depending on the setting
in DX 0).

OB 142 affects the servicing of interrupts:

"Delay interrupts'on means that all interrupts occurring are registered

and pending interrupts remain registered. The registered interrupts are,
however, initially not serviced. The operation or block boundaries for
servicing interrupts are temporarily made ineffective. If an OB for process
interrupt servicing or an OB for timed interrupt servicing has already
started, this is processed completely.

"Delay interrupts'bff means that all registered interrupts are processed at

the next block or operation boundary.

Note

The time in which the interrupts are delayed must be shorter than
three times the value of the shortest timed interrupt periodIf

this is not the case, a collision of timed interrupts occurs.

1. Control word

OB 142 enters the interrupts to be delayed in a system-internal control
word, as follows:

Bitno. 15 0

Control word

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 142: "Delay All Interrupts” On/Off

CPU 948 Programming Guide
C79000-G8576-C848-04

The bits in the control word have the following meaning:

Bit no. Type of interrupt
o=""r Cyclic timed interrupts, fixed period
1="1 Clock-controlled interrupt

2="1 Process interrupts

3="7 Delayed interrupt

41015 Reserved: these bits must be "0’

As long as a hit is set to '1’, the corresponding interrupt is disabled.
2. ACCUs
2a)ACCU-2-L

Function no.,
Permitted values: 1, 2 or 3 where:

1: The contents of ACCU 1 are loaded in the
control word.

2: All the bits marked "1’ in the mask in
ACCU 1 are set tal’ in the control word.
The new control word is loaded in ACCU 1

3: All the bits marked "1’ in the mask in
ACCU 1 are set tdJ in the control word.
The new control word is loaded in ACCU 1

2b) ACCU 1

New control word or mask depending on the required function.

OB 142: "Delay All Interrupts” On/Off

Result After correct and error-free processing the system program sets the
RLO to '0".
Calling OB 142 has the following results:
Contents of ACCU 1
Funct. no.
in ACCU-2-L before after
1 control word control word
2 mask new
control word
3 mask new
control word
Possible errors If an error occurs, the system program sets the RLO to '1".

The errors listed in the following table can occur. If an error occurs,
the system program enters the error ID listed below in ACCU-1-L.

Table 6-10 Error IDs of OB 142 in ACCU-1-L

ID Meaning

8EO1H | lllegal function no. in ACCU-2-LY
8EO2H One of the reserved bits (no. 4 to 15) in
ACCU1is'1 V)

8EFFH Incorrect mode (e.g. when the delayed interrupt is to
be disabled and DX 0 contains the parameter
"process interrupts via IB 0 = on")

D' the incorrect value is located in ACCU-2-L
Scan control word The status of the control word can be scanned with the following
program sequence:
1. load function no. '2’ or '3’ in ACCU-2-L,
2. load value '0"in ACCU 1,
3.call OB 142,

4. read out ACCU 1.

CPU 948 Programming Guide
6-34 C79000-G8576-C848-04

OB 143: "Delay Single Cyclic Timed Interrupts"” On/Off

6.12 OB 143: "Delay Single Cyclic Timed Interrupts" On/Off

Function

Parameters

CPU 948 Programming Guide
C79000-G8576-C848-04

Using OB 143, you can prevent certain cyclic timed interrupt OBs
(timed interrupt OBs with a fixed period) from being called at one or
more consecutive block or operation boundaries. For example, you
can select a program section which cannot be interrupted by an OB 10
(period 1) and an OB 11 (period 2). On the other hand, all the
remaining programmed timed interrupts are processed as usual.

OB 143 affects the processing of cyclic timed interrupts:

"Delay single cyclic timed interruptgh means that all interrupts are
registered and pending timed interrupts remain registered. The timed
interrupts specified in the control word are, however, not processed
immediately. Temporarily, all the operation and block boundaries for
processing these timed interrupts are made ineffective. If a timed interrupt
OB (for processing a timed interrupt with fixed period) has already
started, it is processed completely.

"Delay single cyclic timed interruptsff means that all registered
interrupts are serviced at the next block or operation boundary (depending
on the setting in DX 0).

1. Control word

OB 143 enters the timed interrupts to be delayed in a system-internal
control word:

Bitno. 15 0

Control word

The bits in the control word have the following meaning:

Bit no. Interrupt
Oto2 Reserved, these bits must be '0’
Cyclic timed interrupts with fixed period
3=""r period 1 (OB 10)
4="1 period 2 (OB 11)
5="0 period 3 (OB 12)
6="01 period 4 (OB 13)
7="0 period 5 (OB 14)
8="1 period 6 (OB 15)
9="0 period 7 (OB 16)
10="1 period 8 (OB 17)
11="1 period 9 (OB 18)
12to 15 Reserved, these bits must be '0’

As long as a hit is set to '1’, the corresponding interrupt is disabled.

OB 143: "Delay Single Cyclic Timed Interrupts"” On/Off

Result

2. ACCUs
2a)ACCU-2-L

Function no.,
Permitted values: 1, 2 or 3 where:

1: The contents of ACCU 1 are loaded in the
control word.

2: All the bits marked "1’ in the mask in
ACCU 1 are set to '1’ in the control word.
The new control word is loaded in ACCU 1

3 All the bits marked "1’ in the mask in
ACCU 1 are set to '0" in the control word.
The new control word is loaded in ACCU 1
2b)ACCU 1
New control word or mask depending on the required function.
After correct and error-free processing the system program sets the

RLO to 0.
Calling OB 143 has the following results:

Contents of ACCU 1
Funct. no.

in ACCU-2-L before after
1 control word control word

2 mask new
control word

3 mask new
control word

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 143: "Delay Single Cyclic Timed Interrupts"” On/Off

Possible errors If an error occurs, the system program sets the RLO to '1".
The errors listed in the following table can occur. If an error occurs,
the system program enters the error ID listed below in ACCU-1-L.

Table 6-11 Error IDs of OB 143 CCU-1-L

ID Meaning

8FO1H | lllegal function no. in ACCU-2-LY
8F02H One of the reserved bits in ACCU 1is ¥

1) the incorrect value is located in ACCU-2-L

Scan control word e The status of the control word can be scanned with the following
program sequence:

1. load function no. '2’ or '3’ in ACCU-2-L,
2. load value '0’ in ACCU 1,
3. call OB 143,

4. read out ACCU 1.

CPU 948 Programming Guide
C79000-G8576-C848-04 6-37

OB 150: Set/Read System Time

6.13 OB 150: Set/Read System Time

Features of the
system time

The system time is backed up by the battery in the PLC rack. If the
time is set, it therefore remains correct even following a power
failure.

The resolution is 10 ms for reading and 1 s for setting.

Leap years are taken into account.

Hours can be represented either using the 24 hour clock or the 12
hour clock "am™" and "pm".

The weekday is specified.

Input and output is BCD coded.

Function Using OB 150, you can set or read out the date and time of the CPU 948
in your user program. The date and time are known as the "system time".
Note
The system time is started (initially with a default value) after the
CPU is plugged in.
Parameters 1. Data field for the time parameters
Whensetting the system time, OB 150 reads in the values to be set
from a data field, whereading the time, OB 150 transfers the current
time to the data field. You can set up this data fielddata block or
in one of the twdlag areas(F or S flags).
The data field consists of four words.
1la)Format of the data field faretting the system time.
Bitno. | 15| | |12/ 11 | | 8 7| | | 4 3 | | o
word 1 Seconds 0
word 2 Format ‘ Hours Minutes
word 3 Day of month Weekday ‘ 0
word 4 Year Month

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 150: Set/Read System Time

1b) Format of the data field wherading the system time

Bitno. | 15| | |12/ 11 | | 8 7| | | 4 3 | | o
word 1 Seconds 1/100 seconds

word 2 Format ‘ Hours Minutes

word 3 Day of month Weekday ‘ 0

word 4 Year Month

Data field in the flag area

CPU 948 Programming Guide
C79000-G8576-C848-04

The time parameters have the following meaning, range of values and

representation:

Parameter | Permitted range of values Value in
Seconds 0to 59 BCD format
1/100 seconds |0 to 99 (with "set system time" =0
Minutes 0to 59
Hours 0to 23 or 1 to 12, depending on the

"format”
Weekday 0 to 6 for Mon to Sun
Day of month |1to 31
D 1to0 12
Month 0to 99
Year
Format Format for the hour field with the -
following meaning:
Bit15=0: 12 hour format
("am” or "pm"
selected in bit 14)
Bit15=1: 24 hour format
(bit 14 =0)
Bit14=0: "am"
Bitl4=1: "pm"

1) After OB 150 is called, the specified value is checked logically for the correct data
taking into account leap years.

If you set up the data field in a flag area, you must take into account the
following assignment of the data field words to the flag bytes. 'x’ is the
parameter "number of 1st data field word" which must be written to
ACCU-1-L when OB 150 is called:

Bit no. |15 87 0

Data field word 1

Flag byte x

Flag byte x+1

Data field word 2

Flag byte x+2

Flag byte x+3

Data field word 3

Flag byte x+4

Flag byte x+5

Data field word 4

Flag byte x+6

Flag byte x+7

OB 150: Set/Read System Time

2. ACCUs
2a)ACCU-2-L

ACCU-2-L contains information about the required function and the
data field used. It must have the following structure:

Bitrno. | 15| | |12/ 11 | | 8 7| | | 4 3 | | o
Function no. Address area type Data block no.

Parameters in ACCU-2-L

Function no.,
Permitted values: 1 = set system time
2 =read system time

Address area type,

Permitted values: 1 = DB data block
2 = DX data block
3 =Fflag area
4 =S flag area

Data block no.,

Permitted values: 3 to 255 (only with address area type '1’ or '2’;
with address area type '3’ or '4’ irrelevant)

2b)ACCU-1-L

Number of the 1st data field word
Permitted values (depending on the address area type):

DB, DX: 0 to 2039
F flags: 0to 248

(= no. of flag byte 'x ")
S flags 0 to 4088

(= no. of flag byte 'x ")

Result After correct processing of OB 150, the RLO, the condition code bits
OR,ERAB and OS = 0.

Possible errors The errors listed in the following table may occur. If an error occurs,
the system program sets the RLO to '1’ and stores the error IDs listed
in the table in ACCU 1.

CPU 948 Programming Guide
6 - 40 C79000-G8576-C848-04

OB 150: Set/Read System Time

Table 6-12

Error IDs of OB 150 in ACCU-1-L

ID

Meaning

9601H
960FH
9611H
9612H
9613H
9614H
9615H
9621H
9622H
9623H
9624H
9625H
9626H
9627H
9628H
9629H

Data block not loaded

Multiple call for the block

lllegal function no.

Address area type illegal

Data block number illegal

"Number of first data field word" illegal

Data block length < 4 words

Year specification in the data field illegal
Month specification in the data field illegal
Day of month specification in the data field illegal
Weekday specification in the data field illegal
Hour specification in the data field illegal
Minute specification in the data field illegal
Second specification in the data field illegal
1/100 seconds in the data field not equal to O
Hour format not equal to setting in OB 151

Note

If the parameters are incorrectly assigned for the "set system ti
function and if the time has already been set correctly at least

once, the error IDs listed are transferred; the previously set sys
time, however, continues to run.

Examples

" Set system time":

onwards.

DB 10

You want to set the system time to the following values:
"Thurs, 24.10.1993, 11:30 hours 0 seconds, 24 hour clock”

The time parameters are stored in data block DB 10 from data word DW 0

0:KH= 0000 left byte = seconds (BCD), right byte =0

1I: KH= 9130 91 = Format (=80H) + hour (=11 BCD)

30 = Minutes (BCD)
22KH= 2430 24 = Day of month (BCD)

30 =Weekday (3 = Thursday) + bit0to 3=0
3:KH= 9310 93 =Year (BCD)

10 = Month (BCD)

Continued on next page

me

tem

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 150: Set/Read System Time

" Set system time" (continued)

STEP 5 operations in OB 1 for calling OB 150:

L KH 110A Values for ACCU-2-L:
: B no.=10

: unction no. = 1 for "set"
'L KF +0 ACCU-1-L:

No. of 1st data field word = 0

JU OB 150 Call OB 150

ddress area type = 1 for "data field in DB"

"Read out system time":

You want the current system time to be written to data block DB 10 from data
word DW 4 onwards. You must therefore call OB 150 with the following
parameters:

L KH210A Values for ACCU-2-L:
: ‘ ——DBno.=10
Address area type = 1 for "data field in DB"

Function no. = 2 for "read"

L KF +4 ACCU-1-L:

: No. of 1st data field word = 4
JU OB 150 Call OB 150

:C DB 10 Open DB 10

Evaluate DB 10

After OB 150 is called, the current system time is written to data block DB
10 in the following form ("Thurs, 24.10.93, 11:30 hours 20 seconds, 13/100
of a second, 24 hour clock™):

DW4: KH= 2013 Seconds = 20 (BCD)
1/100 seconds = 13 (BCD)
DW 5: KH= 9130 Format = 24 hour (bit 15 = 1, bit 14 = 0),
Hour = 11(BCD), minutes = 30 (BCD)
DW6: KH= 2430 Day of month = 24 (BCD)
Weekday = 3 = Thursday
DW7 KH= 9310 Year=93(BCD)
Month = 10 (BCD)

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 151: Set/Read Time for Clock-Controlled Interrupt

6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt

Function By calling OB 151 you can do the following:

» cause the CPU 948 to activate the clock-controlled interrupt (“timed
job" - OB 9, refer to Section 4.5.3) at a selected time:
- every minute
- every hour
- every day
- every week
- every month
- every year
- once,

« read out the current status of a timed job,
e cancel a previously generated timed job.

OB 151 can be called in the START-UP and RUN modes. A generated
clock-controlled interrupt is retained when a WARM RESTART
(automatic or manual) is carried out. A COLD RESTART deletes an
existing timed job.

If you generate a new timed job, an existing timed job is automatically
cancelled. This means that owliye clock-controlled interrupt can be
active.

Parameters 1. Data field for job parameters

Whengeneratingor cancellinga timed job, OB 151 takes the

required job parameters from a data field. Wieaing out the

current status of the job management, OB 151 transfers the current job
parameters to a data field.

You can set up this data field irdata block or in one of the twélag
areas(F or S flags).

The data field consists of four words and has the following format
when generating and reading out a timed job:

Bitno. | 15 | 12 11 8 7 4 3 0
Word 1 Seconds 0

Word 2 | Format ‘ Hours Minutes

Word 3 Day of month Weekday ‘ Job type
Word 4 Year Month

CPU 948 Programming Guide
C79000-G8576-C848-04 6-43

OB 151: Set/Read Time for Clock-Controlled Interrupt

The parameters have the following meaning, range of values and

representation:
Parameter | Permitted range of values Value in
Job type 0 to 7 where: BCD format
0: cancel job or
no job active
1: every minute
2: every hour
3: every day
4: every week
5: every month
6: every year
7: once
Seconds 0 to59 BCD format
1/100 seconds |0
Minutes 0to 59
Hours 0to 23 or 1to 12, depending on the
format
Weekday 0 to 6 for Mon to Sun
Day of month |1to 31
D 11012
Month 0to 99
Year
Format ? Format for the hour field with the -
following meaning:
Bit15=0: 12 hour clock
Bit15=1: 24 hour clock
(bit 14 =0)
Bit14=0: "am"
Bitl4=1: "pm"

1) After calling OB 151, the specified value is checked logically that the date is correct
taking into account leap years.

2) For the meaning of "am" and "pm": refer to OB 150 in the previous section:
"format" must match the form specified when setting the system time with OB 150.

Data field in the flag area If you set up the data field in a flag area, you must take into account
the following assignment of the data field words to the flag bytes. "x"
is the parameter 'number of the 1st data field word’ which must be

written to ACCU-1-L when OB 151 is called.

Bit no. |15 87 0

Data field word 1

Flag byte x

Flag byte x+1

Data field word 2

Flag byte x+2

Flag byte x+3

Data field word 3

Flag byte x+4

Flag byte x+5

Data field word 4

Flag byte x+6

Flag byte x+7

CPU 948 Programming Guide

C79000-G8576-C848-04

OB 151: Set/Read Time for Clock-Controlled Interrupt

Bit no. 15\ \ \12

2. ACCUs
2a)ACCU-2-L

ACCU-2-L contains information about the required function and the
data field used. It must have the following structure:

u] | [s 7] | [43 | |o

Function no.

Address area type Data block no.

Result

CPU 948 Programming Guide
C79000-G8576-C848-04

Parameters in ACCU-2-L

Function no.,
Permitted values: 1 = generate job
2 =read job status

Address area type,

Permitted values: 1 = DB data block
2 = DX data block
3 =Fflag area
4 =S flag area

Data block no.,
Permitted values: 3 to 255 (only with address area type '1’ or '2’;
with address area type '3’ or '4’ irrelevant)

2b) ACCU-1-L

No. of the 1st data field word,
Permitted values (depending on the address area type):

DB, DX: 0 to 2039
F flags: 0to 248

(= no. of flag byte 'x ")
S flags 0 to 4088

(= no. of flag byte 'x ")

Note
There is no point in generating a timed job cyclically (e.g. with an
unconditional OB 151 call with function number '1’ in OB 1).

After correct processing of OB 151, the RLO, the condition code bits
OR,ERAB and OS = 0.

OB 151: Set/Read Time for Clock-Controlled Interrupt

Note

If, when reading out the timed job, the job typedisand all the
remaining parameters af€ ‘'or 'FF' (hex) in the data field, no
timed job is active.

This status can occur in the following situations:

a) there was a COLD RESTART without a timed job being
generated

b) when a "one-time" timed job was due
or

¢) when you have cancelled a job.

Possible errors The errors listed in the following table can occur. If one of these errors
occurs, the system program sets the RLO to '1’ and writes the error
IDs listed in the table to ACCU 1.

Table 6-13 Error IDs of OB 151 in ACCU-1-L

ID Meaning

9701H Data block not loaded

970FH Multiple call for the block

9710H Wrong mode ("process interrupts via IB 0 = on")
9711H lllegal function no.

9712H Address area type illegal

9713H Data block no. illegal

9714H "Number of the 1st data field word" illegal

9715H Data block length less than 4 words

9721H Year specification in the data field illegal

9722H Month specification in the data field illegal
9723H Day of month specification in the data field illegal
9724H Weekday specification in the data field illegal
9725H Hour specification in the data field illegal

9726H Minute specification in the data field illegal
9727H Second specification in the data field illegal
9728H 1/100 seconds in the data field not equal to O
9729H Hour format not equal to setting in OB121/0OB 150
972AH Job type illegal

Note

If incorrect parameters are assigaed a valid timed job was
previously generated, the error IDs listed above are transferred;
the previously generated timed job, however, remains active

CPU 948 Programming Guide
6 - 46 C79000-G8576-C848-04

OB 151: Set/Read Time for Clock-Controlled Interrupt

Points to note with the time
parameters

Regardless of when a clock-controlled interrupt (timed job) is to be
triggered, the individual time parameters must be specified in certain
combinations. Depending on the selected time for the clock-controlled
interrupt, certain parameters must be specified, while others are not
evaluated by the system program.

The following table shows which time parameters must be specified
for which timed job (XXX = must be specified, --- = irrelevant).

Table 6-14 Assignment of "timed job - time parameters”

Interval Seconds| Minu- | Hours | Week- | Day of | Month | Year
tes day month
every minute XXX
every hour XXX XXX
every day XXX XXX XXX
every week XXX XXX XXX XXX
every month XXX XXX XXX XXX
every year XXX XXX XXX XXX XXX
once XXX XXX XXX XXX XXX XXX
Whenreading out the time parameters, the irrelevant parameters are
assigned the value FFH.
Special situations » If the "29th of February" is selected with the job type "every year"

CPU 948 Programming Guide
C79000-G8576-C848-04

(= 6), this means that OB 9 is only called every leap year.

e If the value "29", "30" or "31" is selected with the job type "every
month" (= 5), OB 9 is only called in the months which have these
dates.

OB 151: Set/Read Time for Clock-Controlled Interrupt

Examples

Various timed jobs (in 24 hour format):
1. "Job at 29th second of every minute”
(12:44:29, 12:45:29 etc.):

Job type =
Seconds =

You must specify:

2. "Job every hour at xx:14:15":

Job type =
Seconds =
Minutes =

You must specify:

3. "Job daily at 5:32:47":

Jobtype =
Seconds =
Minutes =
Format/hour =

You must specify:

4. "Job weekly, Tuesdays at 10:50:00":

Job type =
Seconds =
Minutes =
Format/hour =

You must specify:

5. "Job monthly, on the 14th at 7:30:15":

Jobtype =
Seconds =
Minutes =
Format/hour =
Day of month=

You must specify:

6. "Job yearly, on the 1st of May at 00:01:45";

You must specify:
Seconds =
Minutes =
Format/hour =
Day of month=
Month =

1 (Function no.in ACCU-2-L = 1)

2 (Function no. in ACCU-2-L = 1)

3 (Function no. in ACCU-2-L = 1)

85

4 (Function no. in ACCU-2-L = 1)

Weekday =

5 (Function no. in ACCU-2-L = 1)

Job type = 6

Continued on the next page

29

15
14

47
32

00
50
90
01

15
30
87
14

(Function no. in ACCU-2-L = 1)
45
01
80
01
05

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 151: Set/Read Time for Clock-Controlled Interrupt

Various timed jobs (in 24 hour format),
7. "Job once on the 31.12.1999 at 23:55:00":

You must specify: Job type = 7
Seconds =
Minutes =
Format/hour =
Day of month=
Month
Year

8. "Cancel job":

You must specify: Jobtype = 0

9. "Read out time job":

Data field word 0:
Data field word 1:
Data field word 2:
Data field word 3:

continued

(Function no. in ACCU-2-L = 1)
00
55
A3
31
12
99

(Function no. in ACCU-2-L = 1)

You must specify: Function no. in ACCU-2-L =2

If no job is active, you obtain the following result in the data field:

FFFF H
FFFF H
FFFO H
FFFF H

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 153: Set/Read Time for Delayed Interrupt

6.15 OB 153: Set/Read Time for Delayed Interrupt

Using OB 153, you can transfer so-called "delay jobs" to the system
program. After a specified delay time "a delayed interrupt" is then
processed (refer to OB 6, Section 4.5.3).
Function By calling OB 153, you can do the following:
» define and start a delay time,
« stop an activated delay time (cancel delay job),
e read how long the delay time still has to run.
A delay job can be activated in the START UP and RUN modes.
Life of a delay job The delayed interrupt triggered by a delay job is only activated by the
system program in tiRUN mode (OB 6 call).
Jobs which become due in a mode other than RUN are discarded by
the system programithout any message
A currently active (but not yet due) job is also discarded if the CPU
changes to the STOP mode or if the power is switched off.
Parameters ACCUs
a)ACCU-2-L

ACCU-2-L only needs to be supplied with the function number ’
("define delay time") when OB 153 is called, as follows:

Delay time in milliseconds (max. 65535)

Permitted values: 0001H feFFFH

b) ACCU-1-L
Function no.
Permitted values: 1 = define and start delay time

2 = stop delay time (= cancel job)
3 =read remaining delay time

CPU 948 Programming Guide
6 -50 C79000-G8576-C848-04

OB 153: Set/Read Time for Delayed Interrupt

Result

Possible errors

Examples

Note

If a previously defined delay time is not yet elapsed when a
further delay time is defined, the previously defined time is lost
and the new delay time started.

After correct processing of OB 153, the RLO, the condition code bits
OR,ERAB and OS = 0.

When OB 153 is called with the function no. 2’ or '3’, ACCU-1-L
contains the remaining time to run in milliseconds.

If no delay job is active when OB 153 is called with function no. '2’
or'3’, ACCU-1-L contains the value '0'.

The errors listed in the following table can occur. If one of the errors
occurs, the system program sets the RLO to '1’ and writes the error
IDs listed in the table to ACCU 1.

Table 6-15 Error IDs of OB 153

ID Meaning

990FH Multiple call for the block
9910H Wrong mode ("process interrupt via IB 0 = on")
9911H lllegal function number

9921H Delay time illegal

Define and start delay time:

When an AUTOMATIC WARM RESTART is performed, after 5 seconds a certain
STEP 5 operation sequence must be run through once. To do this, the delay
time is defined and started in start-up organization block OB 22.

The STEP 5 operations in OB 22 for calling OB 153:

L KF +5000 Value for ACCU-2-L: 5000 ms

L KF +1 Value for ACCU-1-L: function no. = 1 for
: "define and start delay time"

JU OB 153 Call OB 153

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 153: Set/Read Time for Delayed Interrupt

Stop delay time (cancel job)
STEP 5 operations for calling OB 153:

L KF +2 Value for ACCU-1-L: function no. = 2 for
: "stop delay time"

;JU OB 153 Call OB 153

Read out remaining time of a delay job:

STEP 5 operations for calling OB 153:

L KF +3 Value for ACCU-1-L: function no. = 3 for

: "read out remaining time"
:JU OB153 Call OB 153

ACCU-1-L contains the time the delay job still
has to run.

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 180: Variable Data Block Access

6.16 OB 180: Variable Data Block Access

Using OB 180 You can use OB 180 when working with data blocks that are longer
than 261 words (incl. 5 words header).
Using OB 180, you can shift an "access window" of 256 data words in
steps of 16 words over a data block (at paragraph addresses). Call
OB 180 each time you want to shift the access window further.

In contrast to the CPU 928B, you cannot shift the access window
continuously but only in steps that aneltiples of 16,

Function When you use OB 180, the start address of the current data block is
shifted towards the end of the block by the specified value. This takes
into account that the length of DB still available is reduced (DBA and

DBL registers are loaded in keeping with the shift, see Sections 8.3
and 9.2.1).

Note
Before calling OB 180, a data block (DB or DX) withafequate
length must already be open.

Parameters ACCU-1-L

Shift number S: Number of data words, by which the data block start
address will be shifted.

Permitted values: 8@V <DBL,S=n*16(16, 32,48 ...)
Result After you have called OB 188uccesfully

» the relative address of DW O is shifted by the value contained in
ACCU-1-L (the DBA and DBL registers are updated accordingly),

e the RLO is cleared (RLO = 0),
« all other bit and word codes are cleared,

¢ the content of ACCU-1-L = 0.

CPU 948 Programming Guide
C79000-G8576-C848-04 6-53

OB 180: Variable Data Block Access

Possible errors

Setting the access window
back to the start value

Reaction to nesting

The errors listed in the following table can occur. If an error does
occur, the system program sets the RLO to '1’ and enters the error IDs
listed in the table in ACCU 1. The other bit and word codes are
cleared.

The values of the DBA and DBL remain unchanged.

Table 6-16 Error IDs of OB 180

ID Meaning

B401H No data block is open

B410H The shift number S is not a multiple of 16

B411H a) The shift number is too high; the block end is
exceeded by the new window position.

b) The shift number is negative.

Opening the data block again with the operations C DB or C DX
returns the access window to its original position.

If the access window is shifted by calling OB 180 in a logic block and
a further logic block is then called, the position of the access window
remains where it is in the called logic blaghtil OB 180 is called

again (the DBA/DBL values do not change).

If, on the other hand, the access window is shifted in a called logic
block by calling OB 180, when program execution returns from the
called block (block end operatiorit)js returned to the position it

had when the nested logic block was called.

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 180: Variable Data Block Access

Example

You want the data block start address (DBA = 4152H in DB 17, length = 256
DW) to be shifted by 32 data words relative to the end of the block.

:C DB 17 open DB 17
L KB 32 shift value as constant
JU OB 180 call OB 180: shift access window

After OB 180 has been called, the data word, for example, at address 4
1543H can no longer be addressed with DW 35 but only with DW 3 etc. (see
Fig. 6-3).

Due to the change made at the same time in the DBL register, error monitoring
is not affected: the operation T DW 223 is permitted, while T DW 224/L DW 224
causes an error.

By calling OB 180 again, the DBA can be increased again (and the DBL
reduced). The operation C DB 17 returns the block to its original settings
(DBA = 4152H, length 256 DW).

If DB 17 had a length of 256 data words for example, you could then no
longer access DW 256 and DW 257 using STEP 5 operations. By shifting the
DBA resgister by 16, data words 256 and 257 can be addressed as "DW 240"
and "DW 241".

Continued on next page

CPU 948 Programming Guide
C79000-G8576-C848-04 6 -55

OB 180: Variable Data Block Access

Example continued:

Address DB 17
4 151BH
5 words
block header
4 151FH
DBA, 4 — > 4 1520H "00"
(4152H)
4 1530H "16"
L DBL,|q
DBA, ., > 4 1540H "3" pwo 4
4154H o
() 4 1541H 33 DW 1
4 1542H 34" DW 2
4 1543H "35" DW 3
4 1544H "36" DW 4
4 1545H "37" DW 5
4 1545H "38" DW 6
DBLneW

15 0

Fig. 6-3 Shifting the DB start address

CPU 948 Programming Guide
6 - 56 C79000-G8576-C848-04

OB 181: Test Data Blocks (DB/DX)

6.17 OB 181: Test Data Blocks (DB/DX)

With the special function organization block OB 181, you can test
data blocks as follows:

» whether or not a particular DB or DX data block exists,
« the address at which the first data word of the data block is stored,

* how many data words the data block contains.

Using OB 181 The function "test DB/DX" is useful before the operations TNB/TNW,
G DB/GX DX and before calling special function organization blocks
OB 182, OB 254 and OB 255.

Before transferring data words, for example, you can call OB 181 to

check that the destination data block is valid and long enough for the
transfer.

Function OB 181 checks whether a specified data block exists and returns the
characteristic parameters of a data block.

Parameters ACCU-1-L
a) ACCU-1-LL

Block number,
Permitted values: 1to 255

b) ACCU-1-LH

Block ID,
Permitted values: 1=DB
2 =DX

CPU 948 Programming Guide
C79000-G8576-C848-04 6 -57

OB 181: Test Data Blocks (DB/DX)

Result

Possible errors

If the function is executed without any error and if the block exists on
the CPU, the system program transfers the following values:

- ACCU-1-L: Address of the 1st data word (DW 0),
20-bit address,

- ACCU-2-L: Length of the data block in words (without
block header)
Example: ACCU-2-L contains the value'7’:
The data block consists of data
words DW 0 to DW 6,

- RLO: =0.
The errors listed in the table below can occur. If an error occurs, the

system program sets the RLO to '1’ and the following condition code
bits as shown in the table. It also enters an error ID in ACCU-1-L.

Table 6-17 Error codes of OB 181 and their scans
RLO |[CC1|CCO| ACCU-1-L |Meaning Scan
1 0 1 B501H Block does not exist JC
JM
JN
1 1 0 B502H | Wrong block number JC
JP
JN
1 1 0 B503H | Wrong block ID JC
JP
JN
CPU 948 Programming Guide
6 - 58 C79000-G8576-C848-04

OB 182: Copy Data Area

6.18 OB 182: Copy Data Area

Function OB 182 copies a data area of variable length from one data block to
another. The source and destination blocks can be DBs or DXs. The
start of the area in the source and destination blocks can be freely
selected. OB 182 can copy a maximum of 4091 data words.

Note

The source and destination block can be the same. The data areas of
the source and destination can overlap. Even if they overlap, the
original data of the source area are copied unchanged to the
destinationarea. Tharea of the overlapin thesourceis

overwritten after the copy function. You can use this to shift a dat
area within a block.

Parameters 1st data field with parameters for copy function

Before calling OB 182 make a data field available with the parameters
for the copy function. This data field can be set up in a DB or DX data
block or in the F or S flag area.

The data field identifies the source and destination blocks, the start
address of the area in both blocks and the number of data words to be
copied. It consists of five words:

Bit no. 15 8 7 0
1st word Source DB type Source DB no.

2nd word No. of 1st transferred data word in source DB

3rd word Destination DB type Destination DB no.

4th word No. of 1st transferred data word in the destination DB

5th word No. of data words

CPU 948 Programming Guide
C79000-G8576-C848-04 6 - 59

OB 182: Copy Data Area

Data field in flag area

The parameters have the following significance and range of values :

Parameter Permitted range of values
Data block type (source and destination) 1=DB
2 =DX
Data block no. (source and destination) 3to 255
No. of 1st data word (source and 0 to 4090
destination)
Number of data words 1to 4091

If you set up the data field in a flag area, you must take into account the
following assignment of data field words to flag bytes. 'x’ is the
parameter "no. of the 1st data field word" which you must enter in
ACCU-1-L when OB 182 is called:

Bitno. |15 78 0
1st data field word Flag byte x Flag byte x+1
2nd data field word Flag byte x+2 Flag byte x+3
3rd data field word Flag byte x+4 Flag byte x+5
4th data field word Flag byte x+6 Flag byte x+7
5th data field word Flag byte x+8 Flag byte x+9

2. Accumulators
2a)ACCU-2-L

ACCU-2-L contains information about the data field used. It must
have the following structure:

Bitno. |15 8| 7 0
Address area type Data block no.

Parameters in ACCU-2-L

Address area type,

Permitted values: 1 = DB data block
2 = DX data block
3 =Fflag area
4 =S flag area

Data block no.,
Permitted values: 3 to 255 (only with address area type '1’ or '2’;
with address area type '3’ or '4’ irrelevant)

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 182: Copy Data Area

2b) ACCU-1-L

Number of the 1st data field word,
possible values (depending on the
address area type:

DB, DX: 0to 2038
F flags: 0 to 246

(= No. of flag byte 'x ")
S flags 0 to 4086

(= No. of flag byte 'x ")

Result After correctly processing OB 182: RLO, condition code bits OR,
ERAB and OS = 0.

Possible errors If an error occurs, an error ID is entered in ACCU 1 (see table below).
Table 6-18 Error IDs of OB 182 kCCU-1-L

ACCU-1-L |Meaning

B601H |Data block not loaded

B60FH |Multiple block call

B611H |Incorrect content in the data field

B612H |Address area type illegal

B613H |Data block no. illegal

B621H |"Number of the 1st data field word" illegal
B622H |"Source data block type" illegal

B623H |"Source data block no." illegal

B624H |"No. of the 1st data word to be transmitted in source
DB" illegal
B625H |Length of the source data block in the block header
<5 words

B626H |"Destination data block type" illegal

B627H |"Destination data block no." illegal

B628H |"No. of 1st data word to written in destination
DB" illegal

B629H |Length of the destination block in block header < §
B62AH |words

"Number of data words to be transmitted" illegal
B62BH (=0 or>4091)

B62CH |Source data block too short

Destination data block too short

CPU 948 Programming Guide
C79000-G8576-C848-04 6-61

OB 202 to 205: Multiprocessor Communication

6.19 OB 202 to 205: Multiprocessor Communication

A detailed description of these special function organization blocks
can be found in Chapter 10.

The special function organization blocks OB 200 and OB 202 to

OB 205 allow data transfer between the individual CPUs using the

coordinator COR C in multiprocessor operation.

* OB 200: initialize
This special function organization block sets up the memory in the
COR C coordinator in which the blocks of data to be transferred are
buffered.

* OB 202: send

This function transfers a block of data to the buffer of the COR C
and specifies how many blocks of data can still be sent.

e OB 203: send test

The special function OB 203 checks the number of free memory
fields in the buffer of the COR C.

« OB 204: receive

This function accepts a block of data from the COR C buffer and
indicates how many blocks of data can still be received.

« OB 205: receive test

The special function organization block OB 205 checks the number
of occupied memory fields in the COR C buffer.

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 222: Restart Cycle Monitoring Time

6.20 OB 222: Restart Cycle Monitoring Time

Parameters

Possible errors

CPU 948 Programming Guide
C79000-G8576-C848-04

The special function OB 222 causes the cycle monitoring time to be
restarted, i.e. the timer for monitoring is started from the beginning.
By calling this special function, the maximum permitted cycle time for
the current cycle is extended by the value selected at the time of the
call.

none

none

OB 223: Compare Start-Up Modes

6.21 OB 223: Compare Start-Up Modes

Function

Parameters

Result

Possible errors

Condition code bits

By calling OB 223, you can check whether the start-up modai$ of
CPUs involved in multiprocessor operation are the same and able to
execute a programmed reaction to errors.

none

After calling OB 223, the system program sets the RLO to '0’ and
writes the value 01H to ACCU-1-LL when the start-up modes are the
same.

e Start-up modes are not the same

e Other errors, refer to condition code bits

If an error occurs, the system program sets the RLO to "1’ and
transfers an error ID to ACCU-1-LL.

Table 6-19 Results IDs of OB 223 in ACCU-1-LL

ID Meaning
01H Start-up modes the same
02H Internal system error
O3H Start-up modes not the same
04H Single processor mode, comparison of start-up
modes not possible

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 254/255: Copy/Duplicate Data Blocks

6.22 OB 254/255: Copy/Duplicate Data Blocks

Application

Copying

Conditions

Function

CPU 948 Programming Guide
C79000-G8576-C848-04

With the special functions OB 254/255, you copy individual data
blocks from a memory card to the user memory or duplicate individual
data blocks within the user memory.

The special function OB 254 and OB 255 work identically, with

OB 254 exclusively for DX data blocks and OB 255 for DB data
blocks.

Note
During the copying or duplication, the user interrupts are blocked.
No timed interrupts or process interrupts are accepted.

Copying data blocks from the memory card or duplicating data blocks
in the user memory and assigning a new block number.

By using the €opy' function of the two special function OBs
(OB 254 or OB 255 call), remember the following conditions:

e The memory card must be plugged in before the OVERALL
RESET and must not be removed afterwards

e The destination data block must not yet exist

e The online function "compress memory" must not be active

A data block is copied from the memory card to the user memory and
retains its original block number. The start address is entered in the
address list in DB 0.

OB 254/255: Copy/Duplicate Data Blocks

Parameters

Duplicating

Function

Parameters

1. ACCU-1-LL
Number of the block to be copied.

The following block numbers are possible:

Block type Block number
DB (OB 255) 3to 255
DX (OB 254) 3to 255
2. ACCU-1-LH

ACCU-1-LH must be zero.

A data block is duplicated within the user memory and it is assigned a
different block number. The start address of the new data block is
entered in the address list in DB 0. The start address of the old block is
retained, i.e. the original data block remains valid.

The start address is entered in DB 0 only after the transfer is
completed and all the IDs are correctly entered in the block header.
The duplicated block is therefore only declared valid or existent by the
system program after it has been completely transferred.

1. ACCU-1-LL

Number of the block to be duplicated (source).

2. ACCU-1-LH
Number of the new block (destination).

The following block numbers are possible:

Block type Block number
DB (OB 255) 3to 255
DX (OB 254) 3to 255

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 254/255: Copy/Duplicate Data Blocks

Result following copying
and duplicating

Possible errors and
warnings when copying and
duplicating

Condition code bits
following copying and
duplicating

Result codes

CPU 948 Programming Guide
C79000-G8576-C848-04

After the function has been executed correctly and error-free, the
system program sets the RLO to '0’ and clears the condition code bits
CClandCCOo.

Calling OB 254/255 changes the contents of ACCU 1 to ACCU 4.
The BR register is retained.

If an error or warning occurs, the system program stops processing
OB 254/255 and continues program execution at the next STEP 5
operation. It also sets the RLO to '1’ and writes an ID to ACCU-1-LL
(refer to Table 6-18).

If the function is aborted due to a warning, it may be possible to run
OB 254/255 correctly by calling the special function again (if
necessary, repeated several times).

In the following situation, OB 254/255 is aborted witivarning:

an OB 124, OB 125, OB 254 or OB 255 has been called during the
last 10 ms. (During a period of 10 ms, however, only one special
function OB call is permitted. This prevents multiple calls for the OBs
listed above preventing the interface to the PG from being processed.)

After OB 254/255 is called, you can see whether the special function
has been carried out correctly or whether it was stopped by an "error”
or "warning" based on the result of logic operation and the condition
code bhits CC 1 and CC 0. The result can be evaluated by conditional
jump operations.

Table 6-20 Result codes for OB 254/255
RLO | CC1 | CCO |Meaning Scan

0 0 0 Special function correctly JB
processed Jz

1 1 0 Special function aborted JB
with "warning" JP

JN

1 0 1 Special function aborted JB
with "error" JM

JN

6-67

OB 254/255: Copy/Duplicate Data Blocks

IDs in ACCU-1-LL The system program sets IDs in ACCU-1-LL which specify the causes
of a warning or error in more detail.

Bit no.

~
D
6]
o

W | E Cause of error/warning

The following group codes apply:

Bit no. 7 (W) = 1:warning
Bit no. 6 (E) = 1:error

Table 6-21 Result IDs for OB 254/255ACCU-1-LL

ID Meaning
01H Function correctly executed
Error:
41H Block header on memory card invalid
43H Not enough memory space
48H Source data block does not exist

4AH Block number or type illegal/source DB

4BH Block number or type illegal/destination DB
4CH Destination data block already exists in the user
memory

4DH Online function COMPRESS MEMORY active
4EH No memory card plugged in

Warnings:

8DH Conflict with an online function except "compress
memory"

8EH 10 ms waiting time not yet elapsed

Examples

1. "Copy"

L KY 0,120 This sequence of operations copies
JU OB254 the data block DX 120 from the
: memory card to the user memory

2. "Duplicate™:

L KY 80,85 This sequence of operations

JU OB 255 duplicates data block DB 85; the

: new data block has the number 80.
The contents of DB 80 and DB 85
are identical.

CPU 948 Programming Guide
6 -68 C79000-G8576-C848-04

Extended Data Block DX 0

Contents of Chapter 7

7.1 Application
7.2 Structure of DX 0.
7.2.1 Example of InputinDXO0....................
7.3 Parametersfor DX O,
7.4 Examples of Parameter Assignment.
7.4.1 STEP 5 Programming.
7.4.2 Parameter Assignment using the PG Screen Form

CPU 948 Programming Guide
C79000-G8576-C848-04

....................... 7.-8..

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Extended Data Block DX 0 7

CPU 948 Programming Guide
C79000-G8576-C848-04

The following chapter explains how to use the data block DX 0 and
how it is structured. You will find information about the meaning of
the various DX 0 parameters and will learn how to create and how to
assign parameters for a DX 0 data block based on examples.

Application

7.1 Application

Differences compared with
the CPU 946/947

You can adapt certain system program functions to meet your own
requirements by selecting alternative defaults in DX 0 compared to the
standard defaults (marked in the parameter table by "D").

The defaults of the system program (D) are automatically set during
each COLD RESTART and DX 0 is then evaluated. If you have not
assigned parameters in DX 0 and loaded it, the defaults remain valid;
otherwise the defaults you have selected in DX 0 become the valid
settings.

You can make settings in DX 0 by programming the values just as in
any normal data block (refer to Section 7.2 to 7.4.1) or using the PG
system software S5-DOS from Version 3.0 onwards, you can enter the
values as parameters in a special screen form on your PG (refer to
Section 7.4.2).

You can make use of the full range of functions of the DX 0 screen
form if the PG software STEP 5/ST, Version 6.3 or STEP 5/MT,
Version 6.0 plus the corresponding "Delta diskette CPU 948" is
installed on your PG.

Note

The settings or modifications made in DX 0 only become effectiv
following a COLD RESTART.

If amodified DX Ois read during a COLD RESTART, the
unmodified parameter assignments egtained.

Compared with DX 0 parameter assignment for the CPU 946/947,
there are various differences when assigning DX 0 parameters for the
CPU 948, as follows:

e Modes:
There is no longer a 150U/155U mode, instead of this, there is
now "interruptability at block boundaries " and
"interruptability at operation boundaries".

e Processing system interrupts:
With the CPU 948, you can now also combine "process interrupts
via IB 0 = off" (= system interrupt processing) with
"interruptability at block boundaries .
This means that multiprocessor operation is now also possible in
the "interruptability at block boundaries" mode.

e Additional timed interrupts:
If you switch off the mode "process interrupts via IB 0", the
additional timed interrupts tteelayed interrupt (OB 6) and the
clock-controlled interrupt (OB 9) are available.

CPU 948 Programming Guide
C79000-G8576-C848-04

Structure of DX 0

7.2 Structure of DX 0

Start ID

Field

Field ID

Field length

Parameters

End ID

CPU 948 Programming Guide
C79000-G8576-C848-04

DX 0 consists of three parts:
e thestartID for DX 0 (DW 0, 1 and 2),

» several fields of different lengths (depending on the number of
parameters)

and

e theendID.

ASCII characters MASKXO0 in DW 0 to DW 2

A field in DX 0 consists of one to n data words. These contain the
following:

 the field ID,
« the field length
and

« the field parameters.

Thefield ID specifies the meaning of the parameters following it.
Each field is assigned to a specific system program section or to a
specific system function (e.g. the field ID "04" identifies the parameter
field for cyclic program execution).

Thefield length specifies how many data words are occupied by the
parameters.

The possiblgarametersare listed in Section 7.3. The specified
numerical values are in hexadecimal format (KH).

This indicates the end of DX 0 with EEEEH in the last data word.

Structure of DX 0

Formal structure
Bit no. 15 8 7 0
DW 0 4 D 4 1 ASCII M A
1 5 3 4 B chars: S K
2 5 8 3 0 X0
3 Field ID 1 Field length 1
Parameter
Parameter Field 1
Parameter
Field ID 2 Field length 2

Field ID n Field length n
Parameter
Parameter Field n
Parameter
DW m E E E E End ID

Fig. 7-1 Structure of DX 0

CPU 948 Programming Guide
7-6 C79000-G8576-C848-04

Structure of DX 0

7.2.1
Example of Inputin DX 0

Start ID

Field ID/length
Parameters (occupies 1 DW)

Field ID/length
Parameters (occupies 2 DW)

End ID

DW 0: KH = 4D41
DW 1: KH = 534B
DW 2: KH = 5830
DW 3: KH = 0101 Field 1
DW 4: KH = 1001
DW 5: KH = 0402 _
DW 6: KH = 1000 Field 2
DW 7: KH = 0040
DW10: KH = EEEE

When assigning parameters for DX 0, note the following points:

CPU 948 Programming Guide
C79000-G8576-C848-04

Unnecessary fields do not need to be specified.

Maintain the order of the fields (e.g. specify the field with ID '02’
before the field with 1D '05’).

A specific field must only occuwsncein DX 0.

The number of parameters must correspond to the field length
specified at the beginning of the field.

Maintain the order of parameters. Unnecessary parameters towards
thebeginning of the fieldmust be assigned the default to ensure
that the parameter order is maintained.

Close DX 0 after entering the last field with the end identifier
"KH=EEEE".

Parameters for DX 0

7.3 Parameters for DX 0

Table 7-1 DX 0 parameters and their meaning

Field ID/length Parameters | Meaning b
1st/2nd word
Modes
01xx 2 1000 D Interrupts at block boundaried
(CPU 946/947: 150U mode)
1001 Interrupts at operation boundarie®
(CPU 946/947: 155U mode)
Start-up program execution
02xx 1000 D AUTOMATIC WARM RESTART after POWER UP
1001 AUTOMATIC COLD RESTART after POWER UP
1002 MANUAL COLD/WARM RESTART after POWER UP
2000 D Synchronization of START-UP in the multiprocessor mod
2001 No synchronization of START-UP in the multiprocessor
mode
BBO0O 00yy5) Number of timers to be updated)92/:
Permitted values: OOH to FFH
D yy=FF (timer TOto T 255)
4000 D Restart type = WARM RESTART
4001 Restart type = RETENTIVE COLD RESTART
Cyclic program execution
04xx 1000 00yy Setting the cycle monitoring timé*
Cycle monitoring time = (yy 10 ms)
Permitted values: 01H to FFH
D yy=14H (200 ms)
4000 D Updating of the process image and IPC flags without
semaphore protection
4001 Updating the process image and IPC flags with semaphqg
protection (in the field, refer to Section 10.1.3)
Interrupt servicing: timed interrupts
05xx 1000 000c |D Timed interrupt servicing "on"
1001 0000 Timed interrupt servicing "off"
¢ = level priority, permitted values: 1to5
D c¢ =1 (highest level priority)
CPU 948 Programming Guide
7-8 C79000-G8576-C848-04

Parameters for DX 0

Field ID/length Parameters | Meaning b
1st/2nd word
Table 7-1 continued:
05xx S .
Interrupt servicing: timed interrupts (cont.)
2000 00yy Basic clock rate for timed interrupt servicing:
Basic clock rate = (yy 10 ms)
Permitted values: 01H to FFH
D yy=0A (100 ms)
3000 D Clock rate distribution according to interval 1 (1, 2, 5, 10)
3001 Clock rate distribution according to interval 2’2
(Refer to Section 4.5.2)
Interrupt servicing: process interrupts via S5 bus/system interrupts
4000 000c System interrupt X "on" ¢ = level priority,
4001 0002 |D System interrupt X "off" Permitted values: 1 to 5
) . X=AB,CorD
5000 000c System !nterrupt E "on V ¢ =2 (level priority 2)
5001 0002 |D System interrupt E "off"
6000 000c System interrupt F "on” | (The servicing of system
6001 0002 |D System interruptF "off' | IMIerupts can aiso be
combined with
7000 000c System interrupt G "on" | "interruptability at block
7001 0002 |D System interrupt G "off* |boundaries" with the
CPU 948))
8000 000c |D Process interrupts via IB 0 "off"
8001 0000 Process interrupts via IB 0 "on"
¢ = level priority, permitted values 1 to 2
D c =2 (level priority 2)
When "process interrupts via IB 0 = on™:
- only single processor mode,
- only "interruptability at block boundaries".
EEEE End ID

D b = default with DX 0 not loaded or not present.

2 xx = field length (number of data words occupied by the parameters).

3) With the CPU 948, can also be combined with a system interrupt.

4 Must not be combined with process interrupts via IB 0.

9 When specifying the field length, the value "2" must be taken into account for parameters occupying two data words.

® For updating the timers, please read the explanation on the following page.

N set gcle monitoring time with OB 31 or DX 0: If the cycle monitoring time is set both with OB 31 and with DX 0, the system

program uses the setting made in OB 31 since it has already evaluated DX 0. For this reason, you should only use one of these
possibilities. We recommend setting the cycle monitoring time using DX 0.

CPU 948 Programming Guide
C79000-G8576-C848-04 7-9

Parameters for DX 0

Updating the timers e As standard, thetimers T 0 to T 255 are updated.
e If you enter the value "0" in DX Gyo timers are updated, even if
they are included in the program. There is then also no error
message output.

e Updating is as follows:

Entry !01 111 121 13! 141

Updating none| TOto] TOto | TOto | TOto
T1 T2 T3 T4

Level priorities You can specify different priorities for the program execution levels.
This is achieved either using the default or by specifying DX 0
parameters.

Priorities when "process interrupts via IB 0 = on" is selected
(PROCESS INTERRUPTS level)

These priorities have the following default values in DX O:
e timed interrupts: level priority 1 (higher priority)
* Process interrupts

via input byte IB O: level priority 2 (lower priority)

You can swap over the priorities in DX O.

Priorities when "process interrupts via IB 0 = off" is selected
(= processing of system interrupts level INTERRUPTS)

In this mode, the following default priorities are set:
e timed interrupts: level priority 1 (higher priority)

» system interrupts:level priority 2 (lower priority)

CPU 948 Programming Guide
7-10 C79000-G8576-C848-04

Parameters for DX 0

Example

CPU 948 Programming Guide
C79000-G8576-C848-04

You can modify these priorities for the following program execution

levels individually in DX 0, by specifying the priority value from "1’

to’5’ (the value "1’ means highest priority):

e timed interrupts

e system interrupt INT X (X = A, B, C or D),
e gystem interrupt INT E,

e system interrupt INT F,

e gsystem interrupt INT G.

Assignment of priorities for interrupt servicing
"system interrupts":

System interrupt INT A/B/C/D
level priority 1

Timed interrupts level priority 2 descending
System interrupt INT E level priority 3 priority
System interrupt INT F level priority 4

System interrupt INT G level priority 5

Examples of Parameter Assignment

7.4 Examples of Parameter Assignment

7.4.1
STEP 5 Programming

Example A:

You want to use three CPUs in the multiprocessor mode: CPU A, B and C. CPU
A and B work closely with each other, often exchange data and execute a
complicated start-up program.

CPU C executes a short, time-critical program largely independent of A and
B.

As standard, all CPUs operating in the multiprocessor mode start cyclic
program execution together, i.e. the CPUs wait for each other until they
have all completed their start-up and then change to cyclic program
execution together.

Since CPU C executes its program independently of the other CPUs and has a
very short start-up program , there is no need to synchronize its start-up
with the others. By assigning parameters in DX 0, CPU C can start its

cyclic program immediately after completing the start-up without waiting

for CPU A and B.

The parameter for synchronizing the CPUs in the multiprocessor mode is the
second parameter in the first field. To maintain the order of the

parameters, the first parameter for the start up must have the default

value (AUTOMATIC WARM RESTART after POWER UP).

Program DX 0 for CPU C as follows:

DX 0 Start ID "MASKXO0" DW O: KH =4D41
DW 1: KH =534B
DW 2: KH =5830
1st field ID/length DW 3: KH = 0202
Parameter 1 DW 4. KH = 1000
Parameter 2 DW 4. KH = 2001
End ID DW 5: KH = EEEE

Once you have loaded this DX 0 in the program memory, it becomes effective
at the next COLD RESTART. Since CPU C runs through a very short start-up
program and does not wait for A and B, its green RUN LED lights up
immediately following start-up. The BASP signal (disable command output)
is, however, only deactivated when all three CPUs have completed their
start-up. This means that CPU C cannot access the digital 1/Os.

CPU 948 Programming Guide
7-12 C79000-G8576-C848-04

Examples of Parameter Assignment

Example B:

The parameter assignment for DX 0 shown below achieves the following:

the mode "interrupts at operation boundaries" is set,

the timer updating is switched off,

- the cycle time is set to 2.5 seconds,

the level priority of timed interrupts is set to "2’
and

- the system interrupt INT E is activated with level priority "1'.

DX 0 Start ID "MASKX0" DW O: KH = 4D41
DW 1: KH = 534B
DW 2: KH = 5830
1st field ID/length DW 3: KH = 0101
Parameters DW 4: KH = 1001
2nd field ID/Ienclyth DW 5 KH = 0202
Parameters) DW 6: KH = BB0O
DW 7: KH = 0000
3rd field ID/Ienqth DW 8 KH = 0402
Parameters) DW : KH = 1000
DW10: KH = 00FA
4th field ID/length DW11: KH = 0504
Parameters) DW12: KH = 1000
DW13: KH = 0002
Parameters » DW14: KH = 5000
DW15: KH = 0001
End ID DW16: KH = EEEE

This parameter assignment in DX 0 has the following effects on program
execution:

Program execution is interrupted by higher priority levels at operation
boundaries instead of at block boundaries.

The runtime of the system program is slightly reduced since no timers are
updated.

A cycle error is only recognized when the runtime of the user program and
the system program together exceeds 2.5 seconds.

No process interrupts from input byte IB 0 are processed, but rather system
interrupt INT E. Owing to its higher priority, this interrupts timed

interrupt servicing, the processing of the delayed interrupt and the
processing of a timed job.

D Under "field length", specify the number of data words occupied by a

parameter!

CPU 948 Programming Guide
C79000-G8576-C848-04 7-13

Examples of Parameter Assignment

7.4.2
Parameter Assignment

With the PG system software, screen forms are available for assigning

using the PG Screen Form parameters in DX O for the CPU 948. The PG software automatically

generates data block DX 0 according to the default parameters (values
in bold face)and parameters you have specified. To assign parameters
to DX 0, two screen forms are required.

How to select and complete the PG screen forms is explained in your
STEP 5 manual.

Structure of the screen forms Two screen forms are required for completing parameter assignment

to DX 0:
The first screen form (Fig. 7-2) contains the parameter groups

- Interruptability,

- Restart after power up,

- Warm restart procedure,

- Number of timer cells,

- Cycle time monitoring,

- Synchronize multiprocessor restart,
- Block transfer of the IPC flags.

/ DX 0 - param. ass. (S5-155U CPU 948) DX 0 \
Interruptability: at block bounds. b
Restart after power up: 1 (1 = warm restart
2 = cold restart
3 = manual start)
Warm restart procedure: 1 (1 = warm restart
2 = cold restart with memory)
Number of timer cells: 256 (0...256)
Cycle time monitoring (x 10 ms): 20 (1..255)
Synchronize multiprocessor restart: YES
Block transfer of the IPC flags: NO
F1 ‘ F2 ‘ F3 ‘ Fa ‘ F5 ‘ F6 ‘ F7 ‘ F8
_ Select Continue %
1)

with older PG-software versions the following is displayed:

Mode 150U for “interruptability at block boundaries”
Mode 155U for "interruptability at operation boundaries"

Fig. 7-2 PG screen form for assigning parameters to DX 0 / Part 1

CPU 948 Programming Guide
C79000-G8576-C848-04

Examples of Parameter Assignment

If you move on to the second screen form (Fig. 7-3) you will find the
following parameters:

- Time interrupts,
- Hardware process interrupts,
- Process interrupts input byte 0.

4 N

DX 0 - parameter assignment (S5-155U CPU 948) DX 0

Time interrupts: D

Time interrupt servicing: YES Priority: 1
Basic clock (x 10 ms): 10 (1...255)
Clock pulse processing: 1 (1=factor1, 2,5 10

2 = factor 1, 2, 4, 8)

Hardware process interrupts: 2)
System interrupt A/B: NO Priority: 2
System interrupt E: NO Priority: 2
System interrupt F: NO Priority: 2
System interrupt G: NO Priority: 2
Process interrupts input byte 0 (only with interruptability at block boundaries)
Process interrupts: YES Priority: 2
F F F F F F F F
\d 2 3 Select 4 5 6 Continue 7 8 -/
D The delayed interrupt and clock-controlled interrupt must, if necessary, be activated extra
by switching off process interrupts (interrupt servicing on)
2) CPU 948: System interrupts can be serviced with "interruptability at
block boundaries" or "interruptability at operation boundaries"
Fig. 7-3 PG screen form for assigning parameters to DX 0 / Part 2
Using the screen forms The following flow chart explains how to complete the screen forms
and fields, how to save the parameters and load a generated DX 0 data

block.

CPU 948 Programming Guide
C79000-G8576-C848-04 7-15

Examples of Parameter Assignment

Flow chart for completing the
DX 0 screen forms

Are there parameters to be changed in the 1st screen form?
NO YES

Repeat the following procedure until you have made all the necessary
changes in the form:

- Select the input field:
Position the cursor on the parameter field. The display field F3
at the bottom of the screen indicates whether or not you can select
from different alternatives (SELECT displayed) or change the
parameter value (INPUT displayed).

- SELECT:
Press F3 until the alternative you require is displayed.

- INPUT:
Press F3 once; the cursor jumps to the start
of the field. You can now overwrite the field
with a permissible numerical value.

Are there parameters to be changed in the 2nd screen form?
NO YES

Press F6 (CONTINUE); the second screen form is displayed.

Change parameters as explained above for screen 1.

Now press the enter key. The PG software accepts all the parameter
settings from the two screens and generates data block DX 0.

DX 0 is stored on the PG. You can load it on the PLC with the PG’s
TRANSFER function.

Example

You want to assign parameters in DX 0 to achieve the following system
program response (different from the defaults):

mode "interrupts at operation boundaries"”,

- no timer updating,
- cycle monitoring time = 2.5 seconds,
- level priority for timed interrupts = 2

- system interrupt INT E with priority = 1 .

Continued on the next page

CPU 948 Programming Guide
7-16 C79000-G8576-C848-04

Examples of Parameter Assignment

Continuation of the example
Complete the screen form as follows to obtain this response:

First DX 0 screen form:

* For the MODE parameter, select "interruptability at operation boundaries"
with function key F3.

e For the parameter NUMBER OF TIMER CELLS first press function key F3 and
then type in the number 0 (= no timer).

e For the CYCLE MONITORING parameter, first press function key F3 and then
type in the number 250 (= 2.5 seconds).

* Press function key F6 (CONTINUE). The second DX 0 screen form is
displayed.

Second DX 0 screen form:

* For the TIMED INTERRUPT/PRIORITY parameter, select the value 2’ with
function key F3.

e Forthe SYSTEM INTERRUPT E parameter, select the setting 'yes’ with
function key F3.

e Forthe SYSTEM INTERRUPT E/PRIORITY parameter, select the value "1’ with
function key F3.

* For the PROCESS INTERRUPTS parameter, select the setting 'no’ with
function key F3.

* Press the enter key to confirm your input. Data block DX 0 is then
generated by the system software.

CPU 948 Programming Guide
C79000-G8576-C848-04

Examples of Parameter Assignment

CPU 948 Programming Guide
7-18 C79000-G8576-C848-04

Memory Assignment and 8
Memory Organization

Contents of Chapter 8

8.1

8.2

8.2.1
8.2.2

8.3

8.3.1
8.3.2
8.3.3
8.34
8.3.5
8.3.6

Structure of the Memory Area 8-4
Memory Assignmentinthe CPU 948 8-5
Memory Assignmerior the System RAM 8-6
Memory Assignment for the Peripherals 8-8
User Memory Organization inthe CPU 948. 8-10
Block Headers in User MEMOIY. ottt e e 8-12
Block Address Listin Data BIOCKDB O it e 8-13
RIRJIAIA. . . oot e e e e e 8-14

RS/RT ANBa . . o ot ottt e 8:-15

Bit Assignment of the System DataWordst 8-18
Addressable System Data Area e 8-42

CPU 948 Programming Guide
C79000-G8576-C848-04 8-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Memory Assignment and 8
Memory Organization

You can use this chapter as a reference section to check on the
organization of the CPU 948 memory. The chapter also includes
important information contained in some of the system data words.

CPU 948 Programming Guide
C79000-G8576-C848-04 8-3

Structure of the Memory Area

8.1 Structure of the Memory Area

The memory of the CPU 948 is essentially divided into the following
areas:

Table 8-1 Structure of the memory area

Memory area Data width | Location
User memory for: OBs, FBs, FXs, PBs, SBs, DBs, DXs 16 bits
Serial communications interface area: RI, RJ 16 bits CPU
System area: RS, RT 16 bits
Timers: T 16 bits -
Counters: C 16 bits internal
Flags: F 8 bits
Flags: S 8 bits Y
Process image (PI) inputs/
outputs: Pll, PIQ 8 bits
Peripheral area,
divided into:
Onthe
"P" peripherals 8 bits
"O" peripherals 8 bits S5 bus
Interprocessor communication flags 8 bits
Coordinator (COR) (semaphore, ...) 8 bits
Dual-port RAM pages (CP, IP, COR 923C) 8/16 bits
Distributed peripherals 8 bits
Hardware registers 8/16 bits

g flags occupy 8 bits in the 16-bit area. The high byte is undefined.

The next section lists the addresses of the memory areas shown.

Note

When using STEP 5, you should not access a memory register
within an operand area (e.g., flags) directly via the absolute
address of the memory register. This can result in undesirable
operating statuses. Access it only relative to the base address of its
operand area.

Direct access to the areas |, Q and F result in 'FFH’ in the high
byte and the data in the low byte. For direct access to S flags, the
high byte is undefined

CPU 948 Programming Guide
C79000-G8576-C848-04

Memory Assignment in the CPU 948

8.2 Memory Assignment in the CPU 948

With the CPU 948, there are two possible user memories (RAM)
available:

e the CPU 948-1 with 640 Kbytes of user memory
e the CPU 948-2 with 1664 Kbytes of user memory.

Fig. 8-1 illustrates the distribution of the address area of the CPU 948
and the location of the user memory versions.

Bit no.:
Address: 15 0
0 0000H 4

1 0000H
2 0000H | 640 Kbyte User RAM ™]
(CPU 948-1)

3 0000H

4 0000H

5 0000H

6 0000H "
1664 Kbyte User RAM

7 0000H [(CPU 948-2)
8 0000H

9 0000H
A 0000H

B 0000H

C 0000H

D 0000H

E 000OH | System RAM R

F 0000H
F FFFFH

Peripheral Area (S5 bus)

1) The last 20 words of the user RAM cannot be used.

Fig. 8-1 Memory assignment in CPU 948/overview

CPU 948 Programming Guide
C79000-G8576-C848-04 8-5

Memory Assignment in the CPU 948

(contains the paragraph
addresses of all blocks,
i. e. address bit no. 4
to address bit no. 19)

8.2.1
Memory Assignment for the
System RAM
Bit no.:
Address:\ 15 8,7
EE) gggﬁ: System program and system data
c Arer —
E E(;i\OFHH System program data
E DEB1H BSTACK (60 entries)
E DF6FH Reserved
E DF7CH ISTACK entry - 1
E DFAIH ISTACK (16 entries)
E E1FOH Reserved
E E1FBH DB 0 header 1
E E200H Address list OB 0 to OB 255
Reserved
E E400H Address list PB 0 to PB 255
Reserved
E E600H Address list SB 0 to SB 255
Reserved b8 0
E E800H Address list FB 0 to FB 255
Reserved
E EAOOH Address list FX 0 to FX 255
Reserved
E ECOOH Address list DB 0 to DB 255
Reserved
E EEOOH Address list DX 0 to DX 255
Reserved v

Fig. 8-2 Memory assignment for the system RAM/Part 1

CPU 948 Programming Guide
C79000-G8576-C848-04

Memory Assignment in the CPU 948

Bit no.:
Address: ™ 15 87 0
E FOOOH
RS Area (System Data, 256 Words)
Reserved
E F200H
RT Area (Extended System Data, 256 Words)
Reserved
E F400H _
RI Area (Serial Comm. Interface, 256 Words)
Reserved
E F600H .
RJ Area (Extended Serial Comm. Interface, 256 Words)
Reserved
E F800H Counters (256)
Reserved
E FAODH Timers (256)
Reserved
E FCOOH
Flags
E FDOOH
Reserved
E FEOOH Bl
E FE8OH PIQ
E FFOOH
Reserved
E FFFFH

Fig. 8-3 Memory assignment of the system RAM/Part 2

CPU 948 Programming Guide
C79000-G8576-C848-04 8-7

Memory Assignment in the CPU 948

8.2.2
Memory Assignment for the
Peripherals
Bit no.:
Address: _ 15 87 0
F 0000H
Unassigned Peripheral Address Space (52K Words)
F DOOOH reserved
F FOOOH
Digital Peripherals
(with PI, 128 1/128 Q)
F FOSOH _ P area
Analog Peripherals
(without PI, 128 1/128 Q)
F F100H _ f
Extended Peripherals
(only in Expansion Unit) 0 aiea
F F200H _
IPCs in
COR andfor CP
F F300H
Semaphores (32)
in COR
F F400H
Data Transfer Area for CPs L Kb y
(Dual-Port RAM Pages) yies or words
F F800H - ‘
Additional Data Area for CPs 1 Kbytes or words
(Extended Dual-Port RAM Pages) L
F FCOOH Distributed Peripherals
Extended Address Set
with IM 304, IM 307 and
IM 308 Interface Module
F FEOOH .
HW Registers
F FFFFH
Fig. 8-4 Address areas for peripherals (8 bits) on the S5 bus

CPU 948 Programming Guide

C79000-G8576-C848-04

Memory Assignment in the CPU 948

Address Areas for
Peripherals and
Programming Them

"P" peripherals with process image

Area Referenced with Parameter
(absolute address)
E FEOO LIB / TIB 0 to 127
Pl _ _ LIW / TIW 0 to 126
£peyp (Processimage input) LID / TID 0 to 124
Al/ ANI/OI1/ON I }0.0to 127.7
SI/ RI/=1
E FE8O LB / TQB 0 to 127
PIQ LQW/ T QW 0 to 126
Process image output 124
E FEFF (g put) LQD / TQD 0 to

AQ /ANQ/OQ/ONQW— 00 to 127.7
SQ /RQ/=Q -

When the operation is processed, only the process
image is changed. The new status of the process
image of the outputs is only output to the I/Os at
the end of the cycle.

F FOOO .)
Digital peripherals

I
E FOTE nputs/outputs

FF080 Digital or analog
peripherals
F FOFF Inputs/outputs

"P" peripherals

LPY / TPY 0 to 127
LPW/ TPW 0 to 126
LPY / TPY 128to 255
LPW/ TPW 128to 254

The inputs and outputs are addressed directly |n
bytes or words.

FF100 Extended peripherals

F FIFF Inputs/outputs

"O" peripherals

LOY / TOY 0 to 255
LOW/TOW 0 to 254

The inputs and outputs are addressed directly |n
bytes or words.

Using STEP 5 operations, you can access peripherals either directly or

via the process image (PI). Note that a process image exists only for

input and output bytes of the "P" peripherals with byte addresses from
0 to 127!

Note

CPU 948 Programming Guide
C79000-G8576-C848-04

Using the interface modules IM 304, IM 307 and IM 308, you can
access distributed address areas using your program. This allo
access to two new address areas similar to the O area. In contt
to the O area, however, access to these areas is only possible
using absolute addressing or using FB 196 of the "basic
functions" software package (refer to Catalog ST59).

WS
ast

User Memory Organization in the CPU 948

8.3 User Memory Organization in the CPU 948

Block management

Compressing memory

Location of blocks in the

user memory

Filler blocks

Depending on the version of the CPU 948 used, the user memory
occupies the memory area from 0 0000H to C FFFFH. When you

load the individual blocks of your program, they are stored in the

memory in random order (with addresses in ascending order).

When you correct a block, the old block in the memory is declared
invalid (i.e., the start ID is overwritten) and a new block is entered in
the memory and the address list. This also applies when you delete
blocks. The blocks are not really deleted in the memory but simply
declared invalid. Gaps created by deleting are managed as available
memory locations and are used again when you load new blocks.

The online COMPRESS MEMORY PG function pushes all valid
blocks in the memory together. When you activate the COMPRESS
MEMORY while the CPU is in the STOP mode, all blocks that are not
directly next to each other are shifted. However, when you activate
this function while the CPU is in the RUN mode, long data and
extended data blocks (i.e., longer than 512 data words) are not shifted
because of data length consistency. Compressing produces large
available memory areas which you can use for loading new blocks.

If the online COMPRESS MEMORY PG function is interrupted (e.qg.,
when the power is turned off), compressing is terminated and does not
resume automatically when power is turned on.

In the CPU 948, blocks are stored so that data word DW O or the first
STEP 5 statement of each block is locatedpatragraph address
Paragraph addresses are at 16-word boundaries. Therefore, all blocks
begin in the memory at the address xxxxBH (bit no. 0 to 3 = BH) and
all block bodies at the address yyyyOH (bit no. 0 to 3 = OH). The gaps
that result between blocks are filled in by invalid data blocks, so that
all blocks continue to exist in consecutive order.

These invalid data blocks are known as "filler blocks". They are
treated in the same way as the other blocks by the memory
management and have the following structure:

Start ID: 7070H ;
Block type/block number: 01FBH ;DB 251 invalid
Programmer ID: OOFFH sirrelevant
Library number: FFFFH ;irrelevant
Block length: 00XXH ;length 5 to 20 words
Data: FFFFH ;according

: ;to

: ;length;

FFFFH ;can be left out entirely

CPU 948 Programming Guide
C79000-G8576-C848-04

User Memory Organization in the CPU 948

Example
Block List in DB 0 Memory
Bit no. 15 0 Bit no. 15 0
Header 1
Start Block 1~ - - - > P XXXXOH
Body 1
X
X ”
Filler Block
X Ascending
Header 2 Addresses
p XXxxOH
" Body 2
X
Start Block n =~ - - - - -
. Header n
X S pp Xox0H Y
X Body n
X
X
X
X

P = Paragraph addresses (16 word boundary)

Fig. 8-5 Example: Location of blocks in memory

You can calculate the length of a filler block by finding the difference
between the end address of the last block stored and the address before
the next paragraph address.

Difference | Calculation for length of filler block (including

header)
Oto5 Add 10 to the difference
6 No filler block is inserted

7t0 10 Add 10 to the difference
11to 15 Subtract 6 from the difference

CPU 948 Programming Guide
C79000-G8576-C848-04 8-11

User Memory Organization in the CPU 948

8.3.1
Block Headers in Each block in the memory begins with a header that is five words
User Memory long. The block header is divided as follows:

1st word: Block start ID: 7070H

2nd word: High byte = Block type

Bit no.| 15 | 14 | 13 | 12 | 11 | 10 9 8

01H Data block DB

02H Sequence block SB
04H Program block PB
05H Function block FX
08H Function block FB
0CH Data block DX

10H Organization block OB

00 The block is invalid; it is not entered in the
address list in DB 0.

01 The block in the RAM is valid; it is entered in the
address list in DB 0.

Low byte = Block number

The low byte of the second header word contains the
block number (0 to 255). It is coded as a hexadecimal
number: 00 to FFH.

3rd word: The high byte of the third word contains the IDs for
the programmer. The low byte contains part of the
library number.

4th word: The fourth word contains the rest of the library number.
5th word: The fifth word (low and high bytes) contains the length of

the block, including the block header. The length is
indicated in words.

CPU 948 Programming Guide
8-12 C79000-G8576-C848-04

User Memory Organization in the CPU 948

8.3.2
Block Address List in
Data Block DB 0

Address list start addresses

Block start addresses

Location of block
addresses in DB 0

CPU 948 Programming Guide
C79000-G8576-C848-04

Data block DB 0 is located in the system RAM of the CPU (beginning
at address E E200H). It contains a list with the start addresses of all
blocks in the user memory of the CPU. The system program generates
(COLD RESTART) or checks (WARM RESTART) this list after

power up; it updates it automatically when you use a programmer to
enter or change blocks.

DB 0 has a separate, reserved address list of 256 words in each type of
block. Blocks that are not loaded or have been deleted have the start
address '0'.

The start addresses of each block address list are specified (see Section
8.2.1).

The block start addresses in the address lists always point to the first
word after the block header:

e with data blocks, to data word DW 0O

» with logic blocks, to the first STEP 5 statement (in FBs to the 'JU’
operation before the name and the parameter list).

Since each block is located at a paragraph address (16 word

boundary), each address list entry in DB 0 is restricted to one word
with bits number 4 to 19 of the address.

n = E E400H (start address of the PB address list)

DBO
15 0
n Address PB 0
n+1 Address PB 1
n+2 Address PB 2

If 0" is entered as

—. —— _——— the address, the
0 block is not

loaded.
n+178 Address PB 178
n+179 Address PB 179
Fig. 8-6 Block addressesin DB 0

User Memory Organization in the CPU 948

Example of how to obtain a
block address

8.3.3
RI/RJ Area

The block start addresses of the program blocks
are located in DB 0 and begin at address E E400H.

The start address of PB 22 can therefore be read

out by accessing memory at address E E416H

(= start address of the PB + 16H).

The Rl area is an area that is 256 words long in the internal system
RAM of the CPU. RI occupies addresses E F400H to E FAFFH.

The RJ area is an area that is 256 words long in the internal system
RAM of the CPU. RJ occupies addresses E F600H to E F6FFH.

You can use the entire Rl area (RI 0 to RI 255) and the entire RJ area
(RJ 0 to RJ 255) for your own purposes.

The RI/RJ area is only filled with zeros following OVERALL RESET.

CPU 948 Programming Guide
C79000-G8576-C848-04

RS/RT Area

8.34
RS/RT Area The RS and RT areas contain information for the system programmer and
system internal data.

TheRS areais an area that is 256 words long in the internal system

RAM of the CPU. RS occupies addresses E FOOOH to E FOFFH.

Caution
f You should onlywrite to system data words RS 60 to RS 63:

All other system data should only beead:
Writing to the system data area can affect the functional capability
of your programmable controller and connected programmers:
serious disturbances can occur which may put both people and
machines in danger.

TheRT areais an area that is 256 words long in the internal system
RAM of the CPU. RT occupies addresses E F200H to E F2FFH.

You can use the whole RT area (RT 0 to RT 255) for your own
purposes if

1. you do not use standard FBs
and

2. you do not use PG functions via SINEC H1 and the parallel S5 bus.

Only an overall reset can clear the RS/RT areas.

CPU 948 Programming Guide
C79000-G8576-C848-04 8-15

RS/RT Area

Using the online function SYSTEM PARAMETERS, you can obtain
the information contained in some of the system data (about the
internal structure of the CPU, the software release, the CPU identifier

etc.)
Assignment of the RS area
Table 8-2 Assignment of the RS area
RS Name Address
0 Input byte IB 0 image table E FOOOH
(external process interrupts)
1 External process interrupts in the E FOO1H
processing queue (IB 0)
2t04 System program
5 Current cycle time E FOO5H
6 System program
7 STOP mode ID (ISTACK) E FOO7H
8 Start/restart IDs (ISTACK) E FOO8H
91015 System program
16 Error area: output bytes 0 to 15 E FO10H
E FO11H
17 to 23 | Error area: output bytes 16 to 127 to
E FO17H
E FO18H
2410 31 | Error area: input bytes 0 to 127 to
E FO1FH
E FO20H
32to 47 | Error area: interprocessor to
communication flag bytes 0 to 255 E FO2FH
48 t0 49 | System program
50 PAFE byte for "backplane bus functions' E FO32H
51to 59 | System program
E FO3CH
60 to 63 | Available to user to
E FO3FH
64 to 67 | System program
E FO44H
68to 71 | Error address with QVZ and PARE errors to
E FO47H
72to 74 | System program

CPU 948 Programming Guide

C79000-G8

576-C848-04

RS/RT Area

CPU 948 Programming Guide
C79000-G8576-C848-04

RS Name Address
Table 8-2 continued:
75 System message, function number E FO4BH
76 System message, parameterl E FO4CH
77 System message, parameter 2 E FO4DH
78 System message, parameter 3 E FO4EH
791095 | System program
96 Current time of day (seconds) E FO60H
97 Current time of day (hours) E FO61H
98 Current time of day (days) E FO62H
99 Current time of day (year/month) E FO63H
100 to 119| System program
120 Software protection/password E FO7BH
121 to 135| System program
E FO88H
136to 137 | Locations for self-test function to
E FO89H
138 System program
139 Cycle time used after retriggering E FO8BH
140 to 252 | System program
253 free for distributed periphery FOFDH
254 t0 255| System program

As a supplement to the listing above, the following pages provide
the bit assignments of a few system data registers that you can
evaluate via STEP 5 operations or with your programmer (see

Section 5.4 for information on the abbreviations).

Bit Assignment of the System Data Words

8.35
Bit Assignment of the
System Data Words

System data RS 0 Input byte IB 0 Image table (external process interrupts)

Address E FOOOH

Table 8-3 Bitsin RS 0 (image of IB 0)

High byte
Bit no. Assignment
15
14
13
1 Occupied by system program
11
10
9
8
Low byte
7 Status of 1 0.7
6 Status of 1 0.6
5 Status of 1 0.5
4 Status of 1 0.4
3 Status of 1 0.3
2 Status of 1 0.2
1 Status of 1 0.1
0 Status of 1 0.0

CPU 948 Programming Guide
8-18 C79000-G8576-C848-04

Bit Assignment of the System Data Words

System data RS 1 Condition code of external process interrupts currently in
processing queue

Address: E FOO1H

Table 8-4 Bits of RS 1 (current process interrupts)

High byte
Bit no. Assignment
15
14
13
All the bits have the value "0’

12
11
10
9
8

Low byte
7 Bit="1" edge 0.7
6 Bit="1"edge 0.6
5 Bit="1":edgel0.5
4 Bit="1"edge 0.4
3 Bit="1" edgel0.3
2 Bit="1" edge10.2
1 Bit="1"edgel0.1
0 Bit="1" edge 0.0

CPU 948 Programming Guide
C79000-G8576-C848-04 8-19

Bit Assignment of the System Data Words

System data RS 5

Example

Current cycle time

Address: E FOO5H

Table 8-5 Bits of RS 5 (cycle time)

High byte and low byte

Bit no. Assignment

The entered binary value * 10 msec. equals th

cycle time of the cycle processed last

O RLr N W oOo|O| N 00 ©

11

Bitno. |15(14|13|12]11|10/ 9 |8 |7 |5|4 3|2 1|0
Valuee 0/0|]0|0|jO|O]0OJO|JO]O]|2]1]0]|0]O

The time of the last cycle is as follows:

2%+2 3« 10ms=(16+8) + 10 ms = 240 ms

CPU 948 Programming Guide
C79000-G8576-C848-04

Bit Assignment of the System Data Words

System data RS 7 Programmable controller STOP mode IDs (ISTACK)

Address: E FOO7H

Table 8-6 Bits of RS 7 (PLC stop IDs)

High byte
Bit no. Assignment
15
14 Reserved
13
12 Faulty ISTACK level
11 Illegal start-up type (UANL)
10 Interruption in stop loop
9 lllegal call of system block (SYSFHL)
8 Error in start-up block (AFEL)
Low byte
7 Interruption by system (USYS —warm restart
possible)
6 Interruption by programming error
(UPROG - cold restart)
5 "End of program test" (BEARBE)
4 Stop switch (STOPS)
3 End of operation stop (STS)
2 End of cycle stop (STP)
1 Multiprocessing stop (HALT)
0 PG stop (PGSTP)

CPU 948 Programming Guide
C79000-G8576-C848-04 8-21

Bit Assignment of the System Data Words

System data RS 8

Start and restart IDs (ISTACK)

Address: E FOO8H

Table 8-7 Bits of RS 8 (start and start-up IDs)
High byte
Bit no. Assignment

15 Default: MANUAL COLD RESTART/
WARM RESTART (MSEG)

14 Default: AUTOMATIC COLD
RESTART (ANEG)

13 Default: AUTOMATIC WARM
RESTART (AWEG)

12 OVERALL RESET required (URLER)

11 WARM RESTART permitted (WIEZU)

10 COLD RESTART permitted (NEUZU)

9 OVERALL RESET executed (URLDF)

8 WARM RESTART executed (WIEDF)

Low byte

7 COLD RESTART executed (NEUDF)

6 Automatic start after NAU

5 Manual start

4 COLD RESTART WITH MEMORY

3 PG overall reset

2 PG system start

1 PG warm restart

0 PG cold restart

CPU 948 Programming Guide
C79000-G8576-C848-04

Bit Assignment of the System Data Words

System data words Error areas

RS 16 to RS 47
RS xx Address(es) Error area
RS 16 E FO10 Output bytes 0 to 15
RS 17 to E FOllto Output bytes 16 to 127
RS 23 E FO17
RS 24 to E F018 to Input bytes 0 to 127
RS 31 E FO1F
RS 32to E F020 to Interprocessor communication flag
RS 47 E FO2F bytes 0 to 255

RS 16 Address: E FO10H

Table 8-8 Bits of RS 16 (error area output bytes 0 to 15)

High byte
Bit no. Assignment

15 Output byte 0
14 Output byte 1
13 Output byte 2
12 Output byte 3
11 Output byte 4
10 Output byte 5

Output byte 6

Output byte 7

Low byte

Output byte 8

Output byte 9

Output byte 10
Output byte 11
Output byte 12
Output byte 13
Output byte 14
Output byte 15

Ol R, N W hlOWWO | N

If errors appear during update of the process image input/output tables
or interprocessor communication flags, the corresponding bits are set
to '1’. — The system data words RS 17 to 47 are structured analogous
to RS 16.

CPU 948 Programming Guide
C79000-G8576-C848-04 8-23

Bit Assignment of the System Data Words

Example of RS 16

The content of system data register RS 16 is
"8020" hexadecimal or "1000 0000 0010 0000"
binary.

The process image for output bytes 0 and 10 has
not been updated correctly.

System data RS 50 PAFE byte for "backplane bus functions"

System data RS 50 contains the parameter assignment error byte for
the "backplane bus functions" of a CPU.

15 87 0
RS 50 PAFE - E FO32H

System data words RS 68 Error addresses of QVZ and PARE errors
toRS 71

If a QVZ or PARE error occurs, the address at which the error was
detected is entered here.

15 0
RS 68 QVZ error addr. high E FO44H
RS 69 QVZ error addr. low E FO45H
RS 70 PARE error addr. high E FO46H
RS 71 PARE error addr. low E FO47H

CPU 948 Programming Guide
8-24 C79000-G8576-C848-04

Bit Assignment of the System Data Words

System data words System message
RS 75t0 RS 78

The entries in system data words RS 75 to RS 78 refer to the error that
occurred last. The message consists of four system data words with the
following structure:

15 0
RS 75 Error number Parameter type E FO4BH
RS 76 Parameter 1 E FO4CH
RS 77 Parameter 2 E FO4DH
RS 78 Parameter 3 E FO4EH
RS 75 Thehigh byte contains therror number which classifies the error.

The error number assigns the error to one of the following three areas:
Error groups * O01H to 2FH: user error
e 30H to 3FH: errorin DX 0 or DB 1,
e 40H system error
Parameter type Thelow byte contains theparameter typethat describes the structure
of the succeeding parameter block in RS 76 to RS 78. The parameter
types from O0H to 10H exist. The structure of the parameter field is

described later.

The two following tables list the error groups "general errors" and
"errors in DX 0 or DB 0".

CPU 948 Programming Guide
C79000-G8576-C848-04 8-25

Bit Assignment of the System Data Words

General errors

Table 8-9 RS 75: general errors

Error |Parameter Meaning
number type

01H O1H Block called is not loaded
02H O1H Addressing error
O3H O1H Cycle time error
04H 01H Substitution error
O5H 02H Timeout distributed peripherals
0O6H 03H Timeout user memory
O7H O1H Load/transfer error with data blocks
and extended data blocks
08H 01H Bracket counter overflow
09H 04H Data block to be opened does not exist
OAH O05H Error with internal time interrupts/
other interrupts
OBH 03H Timeout page frame area
OCH 03H Timeout global communication area
ODH 07H Timeout in process image updating
OEH 03H Timeout in IPC flag synchronization error
OFH 03H Timeout "P"/"O" peripherals
10H O3H Timeout since interface module (IM 3/IM 4
missing
11H 03H Parity error in user memory
12H O1H Timeout process image transfer
13H O1H Timeout input byte IB 0
14H O1H BSTACK overflow
15H O1H STS operation
16H O1H RUN/STOP switch set to STOP position
17H O1H Halt signal from the coordinator
18H 01H Not used
19H O1H Load/transfer error with L BY/T BY

(process image update)

1AH 01H Load/transfer error during addressing
via the BR register

1BH O1H I/Os not ready

1CH 08H Timeout/parity error during
initialization

CPU 948 Programming Guide
8-26 C79000-G8576-C848-04

Bit Assignment of the System Data Words

Error |Parameter Meaning
number type

Table 8-9 continued:

1DH 08H | AUTOMATIC WARM RESTART not
possible; COLD RESTART required

1EH OOH Illegal start-up type

1FH O1H Load/transfer error during block transfer
operation (incorrect memory area boundaries
with TNW, TXB, TXW)

20H 09H Illegal length for G DB/GX DX
21H 09H DB/DX already exists for G DB/GX DX
22H O9H Memory space insufficient for G DB/GX DX
23H 05H Masked system interrupt is coming through
24H OOH Block function (compress, transfer, input)
required in STOP, COLD RESTART
25H OOH Battery failure; no start-up possible
26H OOH Change from single to multiprocessor
operation prevents a WARM RESTART
27H O1H STOP caused by STP operation
28H O1H Continuous ready signal (I/O module defect))
29H 08H Error in DB O struct. after OVERALL RESET
DX 0/DB1 errors Table8-10 RS 75:ErrorsinDX0orDB1
Error |Parameter Meaning
number type
Errors in DX 0
30H OOH No DX 0 in multiprocessing
32H OOH Proc. int. and sys. int. selected simultaneously
33H OOH Interrupts and mode incompatible
34H 06H Invalid DX 0 header
35H O7H Error in DX 0 block ID
36H Oo7H Error in DX O parameter
Errors in DB 1
38H O6H No DB 1 in multiprocessing
39H O6H Invalid DB 1 header
3AH 07H DB 1 ID set more than once
3BH O7H DB 1 byte offset without ID

CPU 948 Programming Guide
C79000-G8576-C848-04 8-27

Bit Assignment of the System Data Words

Error
number

Parameter

type

Meaning

Table 8-10 continued

3CH O7H Peripheral entered in DB 1 is not
plugged in
3DH O7H Offset too big (parameter error)
3EH 07H Too many offsets
Error codes of the self test
functions
Table 8-11 RS 75: error codes of the self test functions
Error |Parameter Meaning
number type
61H OBH | Checksum error in system program code
62H O0AH | Checksum error in code of the STEP 5
logic blocks
63H OBH | Address decoder error
64H OCH | Error testing the user memory organized in
words
65H OCH | Error testing the user memory organized in
bytes
66H O0H Error testing cycle time monitoring
67H OOH Error testing the BASP signal
68H OOH Error testing the hardware clock
CPU 948 Programming Guide
8-28 C79000-G8576-C848-04

Bit Assignment of the System Data Words

Structure of the parameter
field (RS 76 to RS 78)

Table 8-12

RS 76 to RS 78: Parameter types

Parameter
type

Structure of the parameter field

00H

No parameter; parameter 1,2,3 =0

01H

Parameter 1:

block type/block number (IDs from block header)

Parameter 2:

operation that caused an interruption

02H

Parameter 1:

interface module number (IM 302) (distributed periphery)

Parameter 2:

number of the defective interface

Parameter 3:

incorrect byte offset

03H

Parameter 1:

not used

Parameter 2:

error address high

Parameter 3:

error address low

04H

Parameter 1:

block type/block number (IDs from block header)

Parameter 2:

operation that caused the interruption

Parameter 3:

number of the DB/DX to be opened

05H

Parameter 1:

The following bits are set depending on the error:

Bitno.0 | =1: timed interrupt/period 1

Bitno.1 | =1: timed interrupt/period 2

Bitno.7 | = timed interrupt/period 8

Bitno.8 | = timed interrupt/period 9

Bitno.9 | = clock masked (ignored) for too long
=0: queue overflow

Bit no. 10| reserved

Bit no. 11 | reserved

Bitno. 12 | = 1. interrupt G

Bitno.13 | = 1. interrupt F

Bitno.14 | = 1. interrupt E

Bitno. 15 | = 1. interrupt X

06H

Parameter 1

data word expected in DX 0 or DB 1 header

Parameter 2

actual data word in DX 0 or DB 1 header

07H

Parameter 1

block ID or code word in DX 0 or DB 1

Parameter 2

incorrect parameter 1 in DX 0 or DB 1
(FFFFH: parameter irrelevant)

Parameter 3

incorrect parameter 2 in DX 0 or DB 1
(FFFFH: parameter irrelevant)

CPU 948 Programming Guide
C79000-G8576-C848-04

Bit Assignment of the System Data Words

Parameter
type

Structure of the parameter field

Table 8-12 continued:

08H

Parameter 1

The following bits are set depending on the error:

Bitno.0 | =1: QVZin initialization

Bit no. =1: PARE ininitialization

Bit no. =1: content of the memory card too large

Bit no. =1: operating system error

Bit no. =1: incorrectblock ID

Bit no. =1: incorrect block delimiter

Bit no. reserved

N O oA WIN| P

Bit no. reserved

Bitno.8 | =1: DB 0 changed since last COLD RESTART

Bits no. 9 | reserved

to 15

Parameter 2

error address high, (when bit 2, 4 or 5 of parameter 1 ='1’

Parameter 3

error address low, (when bit 2, 4 or 5 of parameter 1 ='1’

09H

Parameter 1

Opcode "GX DX" or "G DB" (indicates the block type)

Parameter 2

block number

Parameter 3

data block length

10H

internal system error number

OAH

Parameter 1

block type/block number (IDs from block header)

Parameter 2

expected checksum

Parameter 3

actual checksum

OBH

Parameter 1

FFFFH

Parameter 2

error address high with address code error,
actual checksum high when testing the system program code

Parameter 3

error address low with address code error,
actual checksum low when testing the system program code

OCH

Parameter 1

check pattern when testing the user memory

Parameter 2

error address high

Parameter 3

error address low

CPU 948 Programming Guide
C79000-G8576-C848-04

Bit Assignment of the System Data Words

Example of a system message

RS 75 21H 09H E FO4BH
RS 76 7804H E FO4ACH
RS 77 0064H E FO4DH
RS 78 0078H E FO4EH

RS 75, error number = 21H:The error occurred in the STEP 5 user program when
generating a DB/DX.
RS 75, parameter type=09H: The parameter block in RS 76 to RS 78 contains
3 parameters.
RS 76, parameter 1 = 7804H: Opcode = "GX DX", this means block type "DX".
RS 77, parameter 2 = 0064H: Block number = 100 (dec.)
RS 78, parameter 3 = 0078H: Data block length = 120 data words

Information contained in the message:
In the STEP 5 user program, data block DX 100 should be generated with a
length of 120 data words. However, this already exists.

CPU 948 Programming Guide
C79000-G8576-C848-04 8-31

Bit Assignment of the System Data Words

System data words Real-time clock
RS 96 to RS 99

The current date and time of day are kept in system data areas RS 96
to RS 99 and can if necessary be read out from these locations.

15 0
RS 96 Seconds 1/10, 1/100 secornds E FO60H
RS 97 Hours Minutes E FO61H
RS 98 Day Day of the week | E FO62H
RS 99 Year Month E FO63H

The clock is updated by a 10 msec. pulse.

RS 96 Seconds and 1/100 seconds (address: E FO60H):

Table 8-13 Structure of RS 96 (real-time clock: seconds, 1/100 seconds)

High byte
Bit no. Assignment

15

14 Seconds, tens,
permitted: OOH to O5H

13

12

11

10 Seconds, units,
permitted: OOH to 09H

Low byte

7

6 1/10 second,
permitted: OOH to 09H

5

4

3

2 1/100 second,
permitted: OOH to 09H

1

0

CPU 948 Programming Guide
C79000-G8576-C848-04

Bit Assignment of the System Data Words

RS 97

RS 98

CPU 948 Programming Guide
C79000-G8576-C848-04

Hours and minutes (address: E FO61H):

Table 8-14 Structure of RS 97 (real-time clock: hours, minutes)
High byte
Bit no. Assignment
15 0 =12 hour format, 1 = 24 hour format
14 0=AM, 1=PM
13 Hours, tens, permitted: 00/01H with
12 12 hour format, 00/02H with 24 hour format
11
10 Hours, units,
9 permitted: 00H to 09H
8
Low byte
7
6 Minutes, tens,
5 permitted: O0H to 05H
4
3
2 Minutes, units,
1 permitted: OOH to 09H
0

Current date and day of the week (address: E FO62H):

Table 8-15 Structure of RS 98 (real-time clock: date, day of the week)
High byte
Bit no. Assignment
15
14 Date, tens,
13 permitted: O0H to 03H
12
11
10 Date, units,
9 permitted: 00H to 09H
8
Low byte
7
6 Day of the week,
5 permitted: 00H to 06H for Mon. to Sun.
4
3
2 0
1
0

Bit Assignment of the System Data Words

RS 99

Current year and month (address: E FO63H):

Table 8-16 Structure of RS 99 (real-time clock: year, month)
High byte
Bit no. Assignment
15
14 Year, tens,
permitted: OOH to 09H
13
12
11
10 Year, units,
9 permitted: 00H to 09H
8
Low byte
7
6 Month, tens,
5 permitted: 00/01H
4
3
2 Month, units,
1 permitted: 00 to O9H
0

CPU 948 Programming Guide
C79000-G8576-C848-04

Bit Assignment of the System Data Words

System data RS 120

Password

Specifying the
password/activating protection

Deleting the
password/deactivating
protection

Maximum of five attempts to

delete

How to specify or delete the
password

CPU 948 Programming Guide
C79000-G8576-C848-04

Software protection

System data RS 120 controls the system function "software
protection”. With this function, you can prevent blocks being read,
overwritten or deleted by the PG (e.g. by unauthorized personnel) by
specifying a password.

The "software protection” function is linked to a password. The
system program is informed of this via RS 120.

By specifying a password in RS 120, the password protection is
automatically activated.
You can specify a new password after deleting the old one.

If you delete the password, password protection is automatically
deactivated.

When the password is deleted, the system program must be informed
via RS 120.

If you attempt to delete the password and specify the wrong password,
the attempt is rejected by the system program and a count started.
After a maximum of five unsuccessful attempts, the system program
will no longer accept password entries. The password can then only be
deleted after a COLD RESTART.

If the password is successfully deleted, the error counter is reset.

The password is specified/deleted (and the software protection
activated/deactivated) by writing a bit pattern in RS 120 (see
Assignment when writing) in one of the following ways:

e by the STEP 5 program or
e with a PG job "output address".
Note

When you first receive your CPU and following an overall reset
the password is deleted and the software protection switched off.

Bit Assignment of the System Data Words

When is the software A password can be specified at any time. Once it has been specified,
protection software protection is, however, only active at certain times, as shown
activated/deactivated? below:

e inthe SOFT STOP mode:
once aftercalling OB 381),
cyclically before calling OB 39t

e inthe START-UP mode:
onceatfter calling the start-up OBs (OB 20, OB 21 OB 22),

e inthe RUN mode:
cyclically before calling OB 1.
Assignment of the system To call the software protection function, write system data RS 120

data when writing with a bit pattern for the function as shown in the following table.

Address: E FO78H

Table 8-17 Assignment of RS 120 (software protection) when writing

High byte
Bit no. Assignment
15 Action bit: 1 = execute function
14 Function bit: 1 = set password, 0 = delete PW
13
12
11 Bit nos. 8 to 13 of a 14-bit password
10
9
8
Low byte
7
6
5
4 Bit nos. 0 to 7 of a 14-bit password
3
2
1
0

H Processing a request does not depend on OB 38 or OB 39 being loaded. This means
that software protection can be activated in th©B mode.

CPU 948 Programming Guide
8-36 C79000-G8576-C848-04

Bit Assignment of the System Data Words

Reading system data RS 120 By reading out system data RS 120, you can find out whether a "job"
was executed by writing the system data. The system program enters a
result code here.

Assignment of the system data when reading

After calling the software protection function, you can evaluate the
result code to find out whether the job was successful.

Address: E FO78H

Table 8-18 Assignment of RS 120 (software protection) when reading

High byte
Bit no. Assignment
15 0
14 Error bit: 0 = no error, 1 = error
13 0
12 0
11 0
10 binary
9 delete error
3 counter
Low byte

7 0
6 0
5 0
4 1 = no password active
3 1 = deleting not possible, wrong password
2 1 = software protection (password) already

activated

1 = illegal password

1 = error counter overflow

CPU 948 Programming Guide
C79000-G8576-C848-04 8-37

Bit Assignment of the System Data Words

Valid result codes

Value Explanations

0000H No error

4x01H The maximum number of delete attempts has been exceeded. The counter can only be
reset with a cold restart.

4x02H lllegal password (0000H or 3FFFH)

4x04H You have attempted to specify a new password while the password protection was factive (x

= number of attempts to delete)

4x08H You attempted to delete the existing password (deactivate protection) with an incorrect
password. The error counter for incorrect attempts was incremented. The counte
reading x is transferred in the result code (binary number in bits no. 8 to 10).

—

4010H You attempted to delete a non-existent password.
The best time to activate The most effective protection is achieved when you activate the
software protection software protection in OB 38/0OB 39 (SOFT STOP mode). Protection

is then active immediately following an overall reset even with the
memory card inserted.

Reactions to violations of the ~ Once the software protection is active, the system program reacts to
software protection violations of the protection by PG jobs. The following table lists the
reactions to various PG jobs.

PG function Output on PG
Delete block Message "Block type and number illegal”
Read block Output of a dummy block:
FB/FX:
FB number
NAME :DUMMY
‘BE
DB/DX: DWO 6500
OB/PB/SB:
‘BE
Overwrite block The block is entered
(block does not yet exist)
Overwrite block Message "Block exists"; after confirming with the enter key
(block already exists) the message "Block type and number wrong" is displayed.

CPU 948 Programming Guide
8-38 C79000-G8576-C848-04

Bit Assignment of the System Data Words

Examples of writing and
reading RS 120

Activating the software protection in the start-up blocks:

(If you activate the protection in the program, it is best to activate it
in a start-up OB (OB 20, OB 21, OB 22, OB 38).)

L KH COAF KH = bit pattern "specify password"
: (password = 00AFH)
T RS 120

Evaluate result in RS 120:

Using the following sequence of STEP 5 operations in OB1or OB39,youcan
react to an error occurring when specifying the password by evaluating the
result.

Note that the result can only be evaluated after certain actions of the
system program (see page 8 - 35).

L RS 120

L KB 0
><F
:JC FByyy call function block for error processing

NAME : PW-ERROR

Delete and modify the password on the PG using the OUTPUT
ADDRESS function:

Initial status: The CPU is in the RUN or STOP mode.
Go through the following procedure on the PG:
1. Output the address E FO78H.

2. Delete the old password by overwriting the content with 80AFH in
hexadecimal ("0O0AFH" = old password).

3. Wait at least as long as the cycle time of OB 39 or OB 1.
4. Output the address E FO78H again.

5. Enter the new password "1234H" by overwriting the content with the
hexadecimal number D234H.

CPU 948 Programming Guide
C79000-G8576-C848-04 8-39

Bit Assignment of the System Data Words

System data words For self-test function
RS 136to RS 137

The system data words RS 136 to RS 137 are used for the self-test.

RS 136 Number of time slices (address: E FO88H)

RS 137 Control bits (address: E FO89H)

Using the control bits, the individual self-test functions can be
included or excluded (refer to Section 5.7).

Bit ='1": self-test function is included

Bit ='0’: self-test function is excluded

Table 8-19 Bits of RS 137 (control bits for self-test functions)

High byte
Bit no. Assignment
15 Memory test
14 Not used
13 Test cycle time monitoring
12 Not used
11 Test BASP signal
10 Clock test
9 Not used
Not used
Low byte

Test address lines

Not used

Code test of the STEP 5 logic blocks in
the user memory

4 Not used
3 Not used
2 Code test of the system program
1 Not used
0 Not used

CPU 948 Programming Guide
8 -40 C79000-G8576-C848-04

Bit Assignment of the System Data Words

System data RS 139

System data RS 253

CPU 948 Programming Guide
C79000-G8576-C848-04

Cycle time used when retriggering

Address E FO8AH

This system data word contains the time used for the cycle since the
last system checkpoint (at the beginning of OB 1) to the next
retriggering with OB 222 (if OB 222 is called more than once within
the cycle, the time to the last retriggering).

The time value is the content of RS 139 * 10 ms.

List of interface modules plugged in

Address: E FOFDH

Table 8-20 Bits of RS 253 (list of interface modules plugged in)

High byte
Bit no. Assignment

15
14 reserved
13
12
11 IM number 11
10 IM number 10
9 IM number 9
8 IM number 8

Low byte
7 reserved (IM number 8)
6 reserved (IM number 7)
5 reserved (IM number 6)
4 reserved (IM number 5)
3 reserved (IM number 4)
2 reserved (IM number 3)
1 reserved (IM number 2)
0 reserved (IM number 1)

Addressable System Data Area

8.3.6

Addressable System Data The system program uses the memory area from E 8200H to
Area E DEFOH as an addressable system data area.

PLC identification field At the start of this area there is an information field of 12 words in

which an identifier of the PLC is entered.

This field has the following structure:

Word

0 'S’ '5’ E 8200H
1 1 5’ E 8201H
2 5’ U’ E 8202H
3 'C P’ E 8203H
4 U’ 9’ E 8204H
5 4 '8’ E 8205H
6 A X' E 8206H
7 y' E 8207H
8 0

9 0

10 0

11 0 E 820BH

For 'x’ and 'y’ the current version number is entered.

CPU 948 Programming Guide
8-42 C79000-G8576-C848-04

Addressable System Data Area

System parameters System parameters in the memory area beginning with the address
E 8210H:
Word
0 Start add. interface module input E 8210H
1 Start add. interface module output E 8211H
2 Start add. process image input table E 8212H
3 Start add. process image output table E 8213H
4 Start add. flags E 8214H
5 Start add. timers E 8215H
6 Start add. counters E 8216H
7 Start add. system data E 8217H
8 Status ID PLC software version E 8218H
9 User memory end address E 8219H
10 System program memory E 821AH
11 Length of DB list E 821BH
12 Length of SB list E 821CH
13 Length of PB list E 821DH
14 Length of FB list E 821EH
15 Length of OB list E 821FH
16 Length of FX list E 8220H
17 Length of DX list E 8221H
18 Length of DB address list (DB 0) E 8222H
19 Slot ID (see below) | CPU ID 2 (see below) E 8223H
20 Block header length E 8224H
21 CPU ID 1 (see below) Programmer interfade8225H
software version

You can also use the SYSTEM PARAMETER PG online function to
find the information contained in a few system data registers (e.g.,
concerning the internal structure of the CPU, the software version, the
CPU ID).

CPU 948 Programming Guide
C79000-G8576-C848-04 8-43

Addressable System Data Area

Word 19 and word 21 Structure of words 19 and 21:
Word 19
Bit no. High byte
15 0
14 0
13 0
12 0
11 Slot ID CPU 4
10 Slot ID CPU 3
9 Slot ID CPU 2
8 Slot ID CPU 1
Low byte
7 CPU type:
6 0010 =CPU 948
(only valid in conjunction with the CPU ID)
5
4
3 CPU-ID 2:
> 1000 = S5-155U
1
0

CPU 948 Programming Guide
8-44 C79000-G8576-C848-04

Addressable System Data Area

Word 21

Bit no. High byte
15 reserved
14
13
12
11
10
9
8

Bit no. Low byte
7
6 Release of the PG interface software
5 in the form "xyH"
4 Example:
3 13H corresponds to release "V1.3"
2
1
0

CPU 948 Programming Guide
C79000-G8576-C848-04 8 -45

Addressable System Data Area

CPU 948 Programming Guide
8 -46 C79000-G8576-C848-04

Memory Access Using 9
Absolute Addresses

Contents of Chapter 9

9.1

9.2

9.21
9.2.2
9.2.3

9.3

94

941
9.4.2
9.4.3
944

INtrOdUCTION.o o e e e e 9-4
Memory Access via Addresses iN ACCU 1. i 9-8
LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly. 9-9
Examples of Accessto DW > 255 i 9-15
LDI/TDI: Loading to or Transferring from a 32-Bit Memory Area Indirectly 9-17
Transferring Memory Blocks 9-19
Operations with the Base Address Register (BR Register). 9-22
Operations for Transfer between Registers 9-23
Accessing the Local Memory. e 24..9-
Accessing the Global Memory. 5..9-2
Accessing the Dual-Port RAM Memoryo e 9-29

CPU 948 Programming Guide
C79000-G8576-C848-04 9-1

Contents

CPU 948 Programming Guide
C79000-G8576-C848-04

Memory Access Using 9
Absolute Addresses

This chapter explains how to use STEP 5 operations and special
STEP 5 registers to address data in certain memory areas using
absolute addresses.

CPU 948 Programming Guide
C79000-G8576-C848-04 9-3

Introduction

9.1 Introduction

A

Local memory

Global memory

Memory organization

The STEP 5 programming language contains operations with which
you can access the entire memory area. These operations belong to the
"system operations".

The operations described in this chapter work with 20-bit absolute
addresses. Consequently, they are dependent on the memory size and
type, the peripherals, CPs, and IPs of your programmable controller.

Warning

If the operations described in this chapter are not used properly,
STEP 5 blocks and system data can be overwritten. Therefore,
only experienced programmers should use operations that worl
with absolute addresses.

Local memory is the memory area that is available in each CPU. It
includes the following: user submodule, RI/RJ area, RS/RT area,
counters, timers, flags, process images.

Global memory exists only once for all CPUs. You address it via the
S5 bus.

Memory areas are organiziedbytes orin words as follows:
e Bytes: Each address addresses a byte.

e Words: Each address addresses a 16-bit word
(= 2 bytes).

Organization of théocal memory is fixed (see Chapter 8)

Organization of thglobal memory depends on the type of modules
that are plugged into the programmable controller:

CPU 948 Programming Guide
C79000-G8576-C848-04

Introduction

The local memory is internal
and is available in each
CPU (acc. to the number

of CPUs plugged)

15 7 0
0 0000H
-
/_\ﬂ/\
The global memory is external
and is available via the S5 bus.
— It exists as a common memory
|| area shared by all CPUs in
one PLC.
E FBFFH B 15 7 0
E FCOOH — e — 15 7 0
00 FEH | F OOOOH\///'*\\yk\\¥// 255
E FFFFH ,
o 2 '
F FOOOH 1
F F400H 0 L
A
F FCOOH
Pages
F FEOOH
00 1024 byte/words
F FEFFH 2048 byte/words
F FFFFH

Page address register
(select register)

Fig. 9-1 Global and local memory

CPU 948 Programming Guide
C79000-G8576-C848-04 9-5

Introduction

Memory access Using absolute addresses, you can access the following local or global
memory areas with the operations indicated (refer to Fig. 9-2).

Access to the local and global You can access both the local and global areas:
area

e Local area (addresses 0 0000H to E FFFFH) and global area
(addresses F 0000H to F FFFFH) with:

LIR, TIR, LDI, TDI, TNW, TXB, TXW,

« Section of the local area organized in words (addresses 0 0000H
to E FBFFH) or in bytes (addresses E FC000 to E FFFF) with:

LRW, TRW, LRD, TRD.

Access only to the global area You can access the following parts of the global area:

« Section of the global area organized in bytes (addresses F 0000H
to F FFFFH) with:

LY GB,LY GW, LY GD, TY GB, TY GW, TY GD, TSG,

e Section of the global area organized in words (addresses F 0000H
to F FFFFH) with:

LW GW, LW GD, TW GW, TW GD, TSG .

Access to the page area You can access the following parts of the page area:

» Section of the global area organized in bytes (addresses F F400H
to F FBFFH, = dual-port RAM area) with:

LY CB,LY CW, LY CD, TYCB, TY CW, TY CD, TSC,

« Section of the global area organized in words (addresses F F400H
to F FBFFH, = dual-port RAM area) with:

LW CW, LW CD, TW CW, TW CD, TSC

CPU 948 Programming Guide
9-6 C79000-G8576-C848-04

Introduction

[1 access not possible [] access possible

] Access in multiprocessor L
mode can lead to errors

- C— ——— - — ——
[[5 [[5
1 4 4
a) LIR, TIR, LDI, TDI, TNW, TXB TXW b) LRW, TRW, LRD, TRD

S — [—— - ———
[[5 [5
= ! t
¢) LY GB, LY GW, LY GD, d) LW GW, LW GD,
TY GB, TY GW, TY GD, (TSG) TW GW, TW GD, (TSG)

= — ==

e) LY CB, LY CW, LY CD, f) LW CW, LW CD,
TY CB, TY CW, TY CD, (TSC) TW CW, TW CD, (TSC)

Fig. 9-2 Access to local or global areas using absolute addresses

CPU 948 Programming Guide
C79000-G8576-C848-04 9-7

Memory Access via Address in ACCU 1

9.2 Memory Access via Address in ACCU 1

Application

Operations

The operations listed in this section are suitable primarily for access to
data blocks and other operand areas. You should, hovmeterccess
blocks containing STEP 5 programs (OBs, FBs, PBs and SBs) with
these operations.

To access these areas, you can use various 16 or 32-bit wide registers.

These registers include the accumulators ACCU 1 to ACCU 4 and
other special registers used as resources by the CPU.

Table 9-1 Operations for indirect memory access using registers

Operation | Operand | Function

LIR Register |Load thel6-bit register with the content
no. of a memory word addressed by ACCU 1
0to 15 |(20-bit address).
TIR Register |Load the content of th¥6-bit register in

no. the memory word addressed by ACCU 1
0to 15 |(20-bit address).

LDI Register |Load the32-bit registerwith the contents
name |of the memory words 'n’ and 'n+1’
addressed by ACCU 1 (20-bit address).

TDI Register |Load the contents of tt&2-bit register in
name |the memory words 'n’ and 'n+1’ addressed
by ACCU 1 (20-bit address).

The absolute address of the memory word or the first of the two
memory words is located in ACCU 1 in the following representation:

«—— ACCU-1'H ———— p»<——————— ACCU-1-L
Bit no,31 2019 16/15
0 Afg”fgslg'ts Address bits 0 to 15

The following pages explainhich registersyou can use with the
operations.

Examples explaihow to use the operations.

CPU 948 Programming Guide
C79000-G8576-C848-04

Memory Access via Address in ACCU 1

9.2.1
LIR/TIR: Loading to or The following table shows which register numbers you can use with
Transferring from a 16-Bit the CPU 948 for the LIR and TIR operations and how these are
Memory Area Indirectly assigned.
Table 9-2 16-bit register for LIR/TIR
Register no. | Register assignment (each 16 bits wide)
0 ACCU-1-H (left word of ACCUL, bits 16 to 31:9)
1 ACCU-1-L (right word of ACCUL, bits 0 to 18)
2 ACCU-2-H
3 ACCU-2-L
5 Block stack pointer (offset)
6 DBA (data block start address register)
8 DBL (data block length register)
9 ACCU-3-H
10 ACCU-3-L
11 ACCU-4-H
12 ACCU-4-L
H Loading the contents of an addressed memagister into register '0’or '1
overwrites the address storedd@CU 1.
Registers 4, 7, 13, 14 and 15 do not exist on the CPU 948. LIR/TIR
operations with these register numbers must not be used.
LIR/TIR: with 8-bit If you use the LIR and TIR operations to access memory areas that are
memory areas only 8 bits wide, remember that

« the LIR operation overwrites the high byte of the registers with
non-defined valuegexcept for flags, PIQ, PII; with these areas,
FFH is written in the high byte)

and

« the TIR operation transfers only the low byte of the register. The
high byte of the register is lost.

Figs. 9-3 and 9-4 illustrate the difference when accessing word and
byte-oriented memory areas using LIR/TIR.

CPU 948 Programming Guide
C79000-G8576-C848-04 9-9

Memory Access via Address in ACCU 1

15 0

19 0 15 0

addressed Register n
memory A ’

ACCU 1 location

LIR n

19 0 15 0

addressed Register n
memory A !

ACCU 1 location

TIR n

Fig. 9-3 LIR/TIR with 16-bit memory areas (word-oriented)

19 0 15 0

addressed Register n
memory A = ’

ACCU 1 location

LIR n

19 0 15 0

addressed X X Register n
memory

ACCU 1 location

TIR n

Fig. 9-4 LIR/TIR with 8-bit memory areas (byte-oriented)

CPU 948 Programming Guide
9-10 C79000-G8576-C848-04

Memory Access via Address in ACCU 1

Registers 0to 3and 9 to 12: During program processing, the accumulators are used as buffers for

ACCUs 1, 2, 3and 4

Examples

the CPU. The TIR operation transfers the contents of the accumulators
into absolutely addressed memory registers. The LIR operation loads
the contents of absolutely addressed memory registers into the
accumulators. The absolute address of the memory locations is in
ACCU 1, bit number 0 to 19.

word FW 100.

‘LIR1

T FW 100
:BE

The contents of the memory location with address E F800 are loaded in flag

L DH 000E F800 Load address E F800 of the memory location in ACCU 1
Load the contents of the memory location addressed by

ACCU 1 in register 1 (= ACCU-1-L)
Store the contents of address E F800 in flag word FW 100

address E F800.

L FW 200

TIR 3

:BE

The content of the flag word 200 is transferred to the memory location with

L DH 000E F800 Load address E F800 to which the data will be trans-

Load flag word FW 200 in ACCU 1

ferred in ACCU 1 (flag word FW 200 to ACCU 2)
Transfer the contents of register 3 = ACCU-2-L in to
the memory location addressed by ACCU 1

Register 6: DBA (Data Block When you open a data block or an extended data block using the

Start Address)

CPU 948 Programming Guide

C79000-G8576-C848-04

C DB or CX DX operations, the address of DW 0 in the opened data
block is loaded into register 6. The block address list in DB 0 contains
this address.

The DBA register is set to '0’ before each OB 1 call.

The DBA registeremains the samef one of the following occurs:

e ajump operation (JU/JC) causes program processing to continue in
a different block,

or

e the CPU activates a different program processing level.

Memory Access via Address in ACCU 1

The DBA registechangesif one of the following occurs:
¢ Another data block is opened,
or

» the program returns to a higher order block after a new data block
is opened in the called block (refer to Section 2.4.3).

Example

Effect of the "CX DX 17" operation on the DBA register:
Addresses DX17
4 151BH

5 words
4 151CH
4 151DH Block header
4 151EH
4 151FH
DBA——— 4 1520H KH = 0000 DW 0 (at Paragraph address)

4 1521H KH = 0001 DW 1
4 1522H) DW 2

Fig. 9-5 Using the DBA register

When DX 17 is called, the address of the memory word in which DW 0 is
stored is entered in the DBA register. In this example, the DBA is 4152H.

Note: In the ISTACK, the address entered in the DBA register appears under
the heading 'DB-ADD".

CPU 948 Programming Guide
9-12 C79000-G8576-C848-04

Memory Access via Address in ACCU 1

Register 8:
DBL = Data Block Length

CPU 948 Programming Guide
C79000-G8576-C848-04

In addition to the DBA register, a DBL register is loaded every time a
data block is called. It contains the length (in words) of the data block
called,without the block header. The DBL register is set to '0’ before

each OB 1 call.

DBL register isretained, when

e program execution is continued in a different block following a
jump statement (JU/JC)

or

« adifferent program execution level is nested in.

It changeswhen
» adifferent data block is opened
or

e program execution returns to a higher order block after a new data
block is opened in the called block (refer to Section 2.4.2).

Note
You can change the DBA and DBL registers using LIR operatians
to address data block addresses higher than 255. The DBA
register containparagraph addressesMake sure that a change
in the DBA register does not automatically cause a change in the
DBL register and vice-vers@his would mean that transfer
error monitoring is no longer guaranteed.

On the CPU 948, changes in the DBA/DBL registersiatone,
as soon as theurrent block is completed(BSTACK entries).
Manipulations on the DBA/DBL registers are therefore only
effective in the block in which they were made.

Memory Access via Address in ACCU 1

Example

Effect of the

Fig. 9-6

"CX DX 17"

Addresses

4

4

DBA —» 4

151BH

151CH

151DH

151EH

151FH

1520H

1521H

1522H

1523H

1524H

1525H

1526H

1527H

Using the DBL register

operation on the DBL:

DX17

5 words

Block header

aaaa

bbbb

Ccccc

dddd

eeee

frff

9999

hhhh

When DX 17 is called, the number of existing data words is entered in the

DBL register. In this example the DBL is 8 (DW 0 to DW 7)

DW

DwW

DwW

Dw

DwW

DwW

DW

DwW

Note: Inthe ISTACK, the number entered in the DBL register appears under the
heading "DBL-REG".

DBL

CPU 948 Programming Guide

C79000-G8576-C848-04

Memory Access via Address in ACCU 1

9.2.2
Examples of Access to
DW > 255

Example 1:

The content of data word DW 300 in DB 100 is read and transferred to flag
word FW 100 (by changing the STEP 5 operation shown in bold face, it can
also be used to read other data blocks (DB or DX)).

FB 5

SEGMENT 1 0000 Reading out DW 300 from DB 100
NAME :LIR DW

0005 L DH O0O00E ECO00 Start addr. of the DB list

0008 L KF +100 plus the DB number

000A +D = Address list entry of DB 100
000B : (Bits 4 to 19)

0ooC 'LIR 1 Start addr. DB 100 to ACCU 1
000D :SLD 4 Convert addr. to physical addr.
000E ‘L KF +300 DW 300 is read out

0010 +D Addr. = start addr. of DB + DW addr.
0011 ‘LIR 1 Store content of DW 300 to ACCU 1
0012 T FW 100 in FW 100

0013 :BE

Example 2:

All the data words of a data block will have a constant written to them.

The program shown below writes the constant KH = A5A5 to all data words of
DB 100. After changing the STEP 5 operations shown in bold face, it can

also be used to write values to other data blocks (DB or DX). Non-existent
data blocks are detected and cause a jump to the NIVO marker.

The program uses three accumulators. Within the loop, the accumulator
contents do not change.

ACCU 1 initially contains the address of the first data word and is
incremented by one each time the loop is run through.

ACCU 2 contains the address of the last data word + 1. The loop is
terminated as soon as the content of ACCU 1 is the same as the content of
ACCU 2.

To write the data words, the operation TIR 10 is used which stores the
content of ACCU-3-L (the constant) at the address contained in ACCU 1.

ACCU contents within the loop:

ACCU 1: address of the current data word to be written to
ACCU 2: address of the last data word to be written to +1
ACCU 3: constant

Continued on the next page

CPU 948 Programming Guide
C79000-G8576-C848-04

Memory Access via Address in ACCU 1

Example 2 continued:

Flag assignment:

FW 10: Bits 4 to 19 of the start address of the DB/DX (points to DW 0)
FW 12: Length of the DB/DX (number of data words)

FD 14: Address of the last data word in the DB/DX + 1 (physical address)
FB 6

SEGMENT 1 0000 Writing a DB with a constant

NAME :FILL DB

0005 : I Required flags: FY 10 to FY 17 !
0006 L DH O0OOE ECO00 Start addr. of the DB list

0009 L KF +100 plus the DB number

000B +D = Address list entry of DB 100

00oC : (Bits 4 to 19)

000D LIR 1 Start addr. DB 100 to ACCU 1

000E T FW 10 Buffer start addr.

000F L KB 0 (Paragraph address)

0010 A=F If start addr. = 0, then

0011 :JC =NIVO DB does not exist

0012 :

0013 L FW 10 Start addr. of DB (1st DW)

0014 :SLD 4 Convert addr. to physical address

0015 L KB 1 Find out DB length via

0016 :-D 5th word in block header

0017 :LIR 1 Length including block header to ACCU 1
0018 :ADD BN -5 Number of DWs = total length - 5 words (header)
0019 :

001A T FW 12 Buffer length

001B :

001C L FW 12 Number of data words +

001D L FW 10 start address (DW 0 converted to

001E :SLD 4 physical address)

001F +D produces

0020 T FD 14 address of the last DW + 1

0021 :

0022 L KH ABA5 Constant, written to all data words
0024 :

0025 L FD 14 Address of the last DW + 1

0026 ENT Shift constant to ACCU-3-L

0027 : (= register 10)

0028 L FwW 10 Convert address of 1st data word (DW 0)
0029 :SLD 4 to physical address

002A :

002B SCHL : Loop:

002C : ACCU 1: address of DW to be written to
002D : ACCU 2: address of last DW + 1

002E : ACCU 3: constant

002F TIR 10 Store the value of ACCU-3-L in the DW with
0030 : the address in ACCU 1

0031 :

0032 :ADD DH 0000 0001 Increment address by 1

0035 :

0036 ><D Scan whether last DW reached

0037 :JC =SCHL (if not, return to the loop)

0038 :

0039 WEIT Continue the program ...

003A : after all DWs have been written to ...
003B :

003C :BEU

003D :

003E NIVO If DB 100 does not exist

003F ‘BE

CPU 948 Programming Guide

C79000-G8576-C848-04

Memory Access via Address in ACCU 1

9.2.3
LDI/TDI: Loading to or The following table shows which register names you can use on the
Transferring from a 32-Bit CPU 948 for the LDI and TDI operations and how these are assigned.

Memory Area Indirectly

Table 9-3 32-bit register for LDI/TDI

Register name Register assignment (each 32 bits wide)
Al ACCU 1 (ACCUL, bits 0 to 31)
A2 ACCU 2 (ACCUL, bits 0 to 31)
SA STEP address counter (bits 0 to 19)
BA BA register (block start address, bits 0 to 19)
BR BR register (base address register, bits 0 to 19)

H Loading the contents of an addressed memagister into the Al register overwrites
the address stored ACCU 1.

Byte addresses If you reference byte addresses with the LDI or TDI operations, note
the following:

« the LDI operation overwrites the high byte of the register nath-
defined values(except for flags, PI1Q, PII; with these areas, FFH is
written in the high byte)

and

« the TDI operation transfers only the low bytes of the register (the
high bytes are lost — refer to the example on the following page

Data storage with LDI/TDI

High register Low register
16 15

0
aaaa bbbb
Address y y
15 0
DW n aaaa <
DW n+1 bbbb <

CPU 948 Programming Guide
C79000-G8576-C848-04 9-17

Memory Access via Address in ACCU 1

SA Register: On completion of the operation, the 20-bit absolute addifabe

SAC = STEP Address operation to be processed next is entered in the SA register.
Counter

BA Register: During program processing of the STEP 5 user program, a 20-bit
Block Start Address absolute address is entered in the BA register. This address is in the

higher order block (corresponds to the return address). It is the address
of the operation to be processed next.

BR Register: The base address register (20 bits) allows you to calculate addresses

Available Base Address and to execute indirect load and transfer operations without using the

Register ACCUs for the address. It can be used freely during STEP 5 program
processing.

Example of TDI in the byte
area

L DH 1234 5678 Load data

L DH 000E FC00 Load address of flag

: byte FY O

‘TDI A2 Store content of ACCU 2

E FC00 =34 (The values '12H’ and '56H’ from
EFC01=78 ACCU 2 are lost)

CPU 948 Programming Guide
9-18 C79000-G8576-C848-04

Transferring Memory Blocks

9.3 Transferring Memory Blocks

Application With the operations explained in this section, you can re-store data
areas with a length of up to 255 words located in certain address areas.

Operations
Table 9-4 Operations for field transfer
Operation | Operand |Function
TNW 0to 255 Field transfer 0 to 255 words®
(in the 16-bit memory area)
TXB -- Field transfer from 8-bit to the 16-bit
memory
TXW - Field transfer from the 16-bit to the
8-bit memory
D' Can also be used for transfer from the byte to the byte area.
Parameters Field length

For TNW: Operand = number of words (0 to 255)

For TXB/TXW ACCU 3 = number of words (0 to 127)

End address of the source area

ACCU 2 = end address of the source area (20 bits)

End address of the destination area

ACCU 1 = end address of the destination area (20 bits)

Theentire source and destination areas must be located in one of the
memory areas listed in Table SaBd cannot overlap

Permitted memory areas

Table 9-5 Memory areas permitted for TNW, TXB and TXW

Addresses Memory area

User memory:
0 OOO0OH to GFFFFH | 16-bit area (dependent on memory
configuration)

CPU 948 Programming Guide
C79000-G8576-C848-04 9-19

Transferring Memory Blocks

Sequence

TNW, TXB and TXW
operations

Special features

Interruptions
by POWER DOWN

Interruptions by QVZ

Addresses Memory area

Table 9-5 continued:

System RAM:
E 8000H to E 9FFFH | System data, 16 bits

E BOOOH to E FBFFH | System data (RI/RS, timers, counters etc.),
16 bits

E AOOOH to E AFFFH | S flags, 8 bits, low byte in 16-bit word
(High byte not defined)

E FCOOH to E FFFFH | Flags, process image, 8 bits
(High byte = FFH)

F O000H to F FFFFH | 1/Os, 8/16 bits

(Refer also to Chapter 8)

The field transfer is made in descending order, i.e. it begins with the
highest address of the source area (= end address) and ends with the
lowest.

The operations TNW, TXB and TXW are long-running STEP 5
operations which can only be interrupted by POWER DOWN and
QVvz.

If one of the operations is interrupted by a power failure (NAU)
followed by a warm restart, the operation does not resume at the point
at which it was interrupted but from theginning again.

If a timeout (QVZ) occurs during the transfer, the operation is
interrupted and the appropriate error OB called.

The error address is the address at which an error occurred (refer to
Section 5.6.3).

CPU 948 Programming Guide
C79000-G8576-C848-04

Transferring Memory Blocks

ADF during execution If an addressing error (ADF) occurs once or more than once during the
transfer, all the part fields are first transferred and then OB 25 is called
before the next operation is executed.

Example

TXB and TXW between 8 and 16-bit memory areas:

7 0 15 87 0
Ascending Ascending
Addresses Addresses
Y Byte 5 — Byte 6 Byte 5 Y

Byte 4 Byte 4 Byte 3

Byte 3 44— Byte 2 Byte 1 -

Byte 2 TXW ' - Source/

y Destination
—_— Byte 1 Address
Source/
Destination
Address

Fig. 9-7 Transferring memory fields

Transferring bytes 1 to 6 from an 8-bit to a 16-bit area:

'L <field length in words> e.g. 'L KH 0003

L <source address> 'L DH EFC10
:ENT :ENT

L <destination address> L DH EF208
‘TXB ‘TXB

Transferring bytes 1 to 6 from a 16-bit to an 8-bit area:

'L <field length in words> e.g. 'L KH 0003

L <source address> 'L DH EF008
:ENT :ENT

L <destination address> L DH EFC10
TXW TXW

CPU 948 Programming Guide
C79000-G8576-C848-04 9-21

Operations with the Base Address Register (BR Register)

9.4 Operations with the Base Address Register (BR Register)

Application

Operations

Changing the BR register

The base address register (20 bits) allows you to calculate addresses
and use indirect register load and transfer operations without using the
ACCUs.

The memory location whose absolute address is calculated as the sum
of the BR register content plus a constant is accessed.

Absolute address = BR register content + constant

Table 9-6 Load and arithmetic operations with the BR register

Operation | Operand |Function

MBR Constant |Load the BR register with a
(OH to 20-bit constant
F FFFFH)

ABR Constant |Add a 16-bit constant to the contents
(-32 768 to |of the BR register
+32 767)

« The BR register isetained, when the program is continued in a
different block of the same program execution levadue to a
jump statement ('JU FB’/'JC FB’).

e The BR register isetained afternesting in a different program
execution level.

« If a different program execution leveldalled by the system
program, the BR register is set'@.

CPU 948 Programming Guide
C79000-G8576-C848-04

Operations with the Base Address Register (BR Register)

9.4.1
Operations for
Transfer between Registers

Application You can use the operations described in this section for the fast
exchange of values between the registers ACCU 1 (32 bhits), step
address counter (SAC - 20 bits) and BR register (20 bits).

Operations

Table 9-7 Register-register operations

Operation | Operand |Function

MAS - Transfer the contents of ACCU 1 to
the STEP address counter (20 bits)

MAB - Transfer the contents of ACCU 1 to
the base address register (20 bits)

MSA - Transfer the contents of the STEP
address counter (20 bits) to accd1

MSB - Transfer the contents of the STEP
address counter (20 bits) to the base
address register (20 bits)

MBA - Transfer the contents of the base
address register (20 bits) to Accd1

MBS Transfer the contents of the base
address register (20 bits) to the STEP
address counter (20 bits)

D Bits 2°t0 2! are setto 0.

The following figure illustrates how the registers are changed by the
operations.

CPU 948 Programming Guide
C79000-G8576-C848-04 9-23

Operations with the Base Address Register (BR Register)

31 20 19 0 31 20 19 0

lMAS, MAB TMSA, MBA
19

ACCU 1 0 ... 00

ACCU 1

0 19 0
BR, BR,
SAC SAC
19 0 19 0
SAC SAC
lMSB TMBS
19 0 19 0
BR BR
Fig. 9-8 Transfer operations from one register to another
9.4.2
Accessing the Local
Memory
Application The following operations allow access to the local memory organized
in words using an absolute memory address. The absolute address is
the sum of the contents of the BR register and the 16-bit constant
contained in the operation (-32768 to +32767).
Operations
Table 9-8 Operations for accessing the local memory
Operation | Operand |Description
LRW Constant |add the specified constant to conteht
(-32768 to |of the BR register and load the word
+32767) addressed in this way in ACCU-1-L
LRD Constant |add the specified constant to conteht
(-32768 to |of the BR register and load the double
+32767) word addressed in this way in ACCU 1
TRW Constant |add the specified constant to content
(-32768 to |of the BR register and transfer the
+32767) content of ACCU-1-L to the word
addressed in this way
CPU 948 Programming Guide
9-24 C79000-G8576-C848-04

Operations with the Base Address Register (BR Register)

Error reaction

9.4.3
Accessing the Global
Memory

Application

Testing and setting an
"occupied” register in
the global area

CPU 948 Programming Guide

C79000-G8576-C848-04

Operation | Operand |Description

Table 9-8 continued:

TRD Constant |add the specified constant to content
(-32768 to |of the BR register and transfer the
+32767) content of ACCU 1 to the double word

addressed in this way

D ACCU 2pew= ACCU L

If the calculated address of the memory location is not between

0 0000H and E FFFFH, the CPU detects a load/transfer error (TRAF)
and callsOB 32 If OB 32 is not loaded, the CPU changes to the stop
mode with the error code TRAF (ISTACK).

This section describes the operations you can use with absolute
memory addresses to access the global memory organized in bytes or
words. The absolute address is the sum of the contents of the BR
register and the constants contained in the operation (-32768 to 32767).

You can control access of individual CPUs to commonly used memory
areas by using an "occupied" register. An "occupied" register is assigned
to each commonly used memory area. Each participating CPU must test
this register before accessing the memory area. The "occupied" register
contains either the value '0’ or the slot ID of the CPU that is presently
using the memory area. When the CPU is finished using the memory
area, itwrites '0’ to the "occupied"” register to re-enable the memory

area. (Note the explanations for the operations "set semaphore/SED" and
"enable semaphore/SEE" in Section 3.5.5.)

The TSG operation enables testing and setting of "occupied” registers.

Operation | Operand |Description

TSG -32768 to |Add the specified constant to the content
+32767 of the BR register and test and set the
location addressed in this way.

Operations with the Base Address Register (BR Register)

Sequence

Result

Error reaction

The location used is the low byte of the word addressed by the BR
register plus the constant. If the content of the low byte is '0’, the TSG
operation enters the slot ID in the location.

Testing (reading) and possible occupation of the location (writing)

form a program unit that cannot be interrupted.

You can evaluate the result of the test using condition codes CC 0 and
CC1L

CC1 CCO0 | Description

0 0 The "occupied” register contains '0’. The CPU
enters its own slot ID.

1 0 The slot ID of the CPU is already entered
in the "occupied" register.

0 1 The "occupied” register contains a
different slot ID.

Note
All CPUs that require synchronized accessdomnamon global
memory areamust use the TSG operation.

The absolute address must be between F 0000H and F FFFFH. If the
absolute addresses are not in the range shown, the CPU detects a
transfer error (TRAF) and cal3B 32 If OB 32 is not loaded, the

CPU changes to the STOP mode with the error code TRAF (ISTACK).

CPU 948 Programming Guide
C79000-G8576-C848-04

Operations with the Base Address Register (BR Register)

Load and transfer
operations on the) _
global memory organized Table 9-9 Operations for access to the global memory organized
in bytes in bytes
Operation | Operand |Description
LY GB |-32768 to |add the specified constant to content
+32767 of the BR register and load the byte
%ddressed in this way in ACCU-1-%
LY GW |-32768 to |add the specified constant to content
+32767 of the BR register and load the word
addressed in this way in ACCU-12L¥
add the specified constant to content
LY GD |-32768 to |of the BR register and load the double
+32767 word addressed in this way in Accd1
add the specified constant to content
of the BR register and transfer the
TY GB |-32768 to |content of ACCU-1-LL to the byte
+32767 addressed in this way
add the specified constant to content
of the BR register and transfer the
TY GW |-32768 to |content of ACCU-1-L to the word
+32767 addressed in this way
add the specified constant to content
of the BR register and transfer the
TY GD |-32768 to |content of ACCU 1 to the double
+32767 word addressed in this way

D ACCU-1-LH and ACCU-1-H are setto 0",

2 ACCU-1-H issetto’0.

) ACCU 2new: = ACCU id

Error reaction The range of absolute addresses for the load and transfer operations

for the global memory organized in bytes

CPU 948 Programming Guide
C79000-G8576-C848-04

between F 0000H and F FFFFH (LY GB, TY GB),

between F 0000H and F FFFEH (LY GW, TY GW)

or

between F 0000H and F FFFCH (LY GD, TY GD).

Operations with the Base Address Register (BR Register)

If the absolute addresses are not in the range shown, the CPU detects a
load/transfer error (TRAF) and calB 32 If OB 32 is not loaded,

the CPU changes to the STOP mode with the error code TRAF
(ISTACK).

Load and transfer
operations for the
global memory
organized in words

Table 9-10 Operations for access to the global memory organized
in words

Operation | Operand |Description

LW GW |-32768 to |add the specified constant to content
+32767 of the BR register and load the word
addressed in this way in AcCcU-142

add the specified constant to content
LW GD |-32768 to |of the BR register and load the double
+32767 word addressed in this way in ACCUH1

add the specified constant to content
of the BR register and transfer the
TW GW |-32768 to |content of ACCU-1-L to the word
+32767 addressed in this way

add the specified constant to content
of the BR register transfer the
TWGD |-32768 to |content of ACCU 1 to the double
+32767 word addressed in this way

D ACCU-1-H issetto’0.

2 ACCU 2pew : = ACCU bid

Error reaction The range of absolute addresses must be located
e between F 0000H and F FFFFH (LW GW, TW GW)
or
e between F 0000H and F FFFEH (LW GD, TW GD).
If the absolute addresses are not in the range shown, the CPU detects a
load/transfer error (TRAF) and caBB 32 ACCU 1 contains the

error ID 1A01H. If OB 32 is not loaded, the CPU changes to the
STOP mode with the error code TRAF (ISTACK).

CPU 948 Programming Guide
9-28 C79000-G8576-C848-04

Operations with the Base Address Register (BR Register)

9.4.4
Accessing the Dual-Port
RAM Memory

Application

Sequence of page access

Changing the page register

CPU 948 Programming Guide
C79000-G8576-C848-04

With the following operations, you can access pages organized as
bytes or wordsusing an absolute memory address. The absolute
address is the sum of the BR register content and the constant
contained in the operation (-32768 to 32767).

Between the addresses F F400H to F FBFFH, the global memory area
has a window for accessing one of a maximum of 256 memory areas
called dual-port RAM pages. One dual-port RAM page can occupy a
maximum of 2K addresses and can be organized in either bytes or
words. Before access to the dual-port RAM area, one of the 256 pages
must be selected by entering its number irstiect register(page

address register). The procedure of writing to the select register and
then accessing the dual-port RAM area cannot be interrupted.

Before you can access the dual-port RAM area (load/transfer), you must
select one of the 256 dual-port RAM pages. Do this by putting the
number of the dual-port RAM page that you want to open into
ACCU-1-L. Use the ACR operation to enter this number into the
CPU-internaldual-port RAM register. All dual-port RAM operations
that follow ACR write the contents of the dual-port RAM register into
the select register of the corresponding modules on the S5 bus before
dual-port RAM access.

* The page register igtained when another block is called.
» If the page register is changed in a block, its valuetésned
when the program returns to the calling block at the end of the

block.

e The page register igtained after nesting in another program
execution level.

Operations with the Base Address Register (BR Register)

Opening a dual-port RAM
page

Testing and setting an
"occupied” register in
the dual-port RAM area

Sequence

Operation | Parameter | Description

ACR Open the dual-port RAM page whose
number is located in ACCU-1-L ,
permissible values: 0to 255

The dual-port RAM page number must be between 0 and 255. If it is not,
the CPU detects a substitution error (SUF) and C&IR7. If OB 27 is
not loaded, the CPU changes to the STOP mode.

You can control access of individual CPUs to commonly used memory
areas by using an "occupied" register. An "occupied" register is assigned
to each commonly used memory area. Each participating CPU must test
this register before accessing the memory area. The "occupied" register
contains either the value '0’ or the slot ID of the CPU that is presently
using the memory area. When the CPU is finished using the memory
area, itwrites '0’ to the "occupied"” register to re-enable the memory

area. (Note the explanations of the operations "set semaphore/SED" and
"enable semaphore/SEE" in Section 3.5.5.)

The TSC operation handles the testing and setting of a location on the
open page.

Operation | Operand |Description

TSC -32 768 to |Add the specified constant to the content
+32 767 of the BR register and test and set the
location addressed in this way on the
open page.

The low byte of the word addressed by the sum of the BR register +
constant is used as the "occupied" register. If the low byte contains
'0’, the TSC operation enters the slot ID of the CPU in the "occupied"”
register.

Testing (reading) and possible occupation (writing) form a program
unit that cannot be interrupted.

CPU 948 Programming Guide
C79000-G8576-C848-04

Operations with the Base Address Register (BR Register)

Result You can evaluate the result of the TSC operation using condition
codes CC 0and CC 1:

CC1 CCO0 | Description

0 0 The "occupied” register contains '0’. The CPU
enters its own slot ID.

1 0 The slot ID of the CPU is already entered in
the "occupied" register.

0 1 The "occupied” register contains a
different slot ID.

Note
All CPUs that requirsynchronizedaccess to @ammon global
memory area(dual-port RAM area) must use the TSC operation.

Error reaction The location must be on the corresponding module and on the
common page between F F400H and F FBFFH. If this is not the case,
the CPU recognizes a transfer error (TRAF) and Gls32. If
OB 32 is not loaded, the CPU changes to the stop mode with the error
code TRAF (ISTACK).

Load and transfer
operations for the
dual-port RAM memory Table 9-11

. . Operations for access to pages organized in bytes
organized in bytes

Operation | Operand |Description

LY CB |-32768 to |add the specified constant to content
+32767 of the BR register and load the byte
addressed in this way in the open pag
into ACCU-1-LL D ¥

(1]

LY CW |-32768 to |add the specified constant to content
+32767 of the BR register and load the word
addressed in this way in the open pag
into ACCU-1-L2 %)

(1]

LY CD |-32768 to |add the specified constant to content

+32767 of the BR register and load the double
word addressed in this way in the open
page into ACCU P

CPU 948 Programming Guide
C79000-G8576-C848-04 9-31

Operations with the Base Address Register (BR Register)

Operation | Operand |Description

Table 9-11 continued:

TY CB -32768 to |add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU-1-LL to the byte
addressed in this way in the open pag

(1]

add the specified constant to content
TY CW -32768 to |of the BR register and transfer the
+32767 content of ACCU-1-L to the word
addressed in this way in the open

page

add the specified constant to content
TY CD -32768 to |of the BR register and transfer the
+32767 content of ACCU 1 to the double
word addressed in this way in the open

page.

D ACCU-1-LH and ACCU-1-H are setto 0",
2 ACCU-1-H is set to 0.

) ACCU 2new = ACCU i

Error reaction The range of absolute addresses must be
e between F F400H and F FBFFH (LY CB, TY CB),
e between F F400H and F FBFEH (LY CW, TY CW)
or
e between F F400H and F FBFCH (LY CD, TY CD).
If the absolute addresses are not in the range shown, the CPU detects a
load/transfer error (TRAF) and calB 32 If OB 32 is not loaded,

the CPU changes to the STOP mode with the error bit TRAF
(ISTACK).

CPU 948 Programming Guide
9-32 C79000-G8576-C848-04

Operations with the Base Address Register (BR Register)

Load and transfer
operations for the dual-port
RAM memory
organized in words Table 9-12 Operations for access to pages organized as words
Operation | Operand |Description
LW CW |-32768 to |add the specified constant to content
+32767 of the BR register and load the word
addressed in this way in the open page
into ACCU-1-L
LWCD |-32768 to |add the specified constant to content
+32767 of the BR register and load the double
word in the page addessed in this way in
the open page into ACCU P
add the specified constant to content
TW CW |-32768 to |of the BR register and transfer the
+32767 contents of ACCU-1-L to the word in
the open page addressed in this way.
add the specified constant to content
of the BR register and transfer the
TWCD |-32768 to |contents of ACCU 1 to the double word
+32767 in the open page addressed in this way.
Y ACCU-1-H issetto’0'.
3 ACCU 2new = ACCU L
Error reaction The range of absolute addresses must be

e between F F400H and F FBFFH (LW CW, TW CW)
or
e between F F400H and F FBFEH (LW CD, TW CD).
If the absolute addresses are not in the range shown, the system
program detects a load/transfer error (TRAF) and €32 If

OB 32 is not loaded, the CPU changes to the STOP mode with the
error bit TRAF (ISTACK).

CPU 948 Programming Guide
C79000-G8576-C848-04 9-33

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Mode and 10
Communication in the S5-155U

Contents of Chapter 10

101

101.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8

10.2

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8

10.3

104

104.1
104.2
10.4.3
10.4.4

MUItIProcessor Modet e e 10-4.

When to use the Multiprocessor Mode 10-4
What Communications Mechanisms are Available? 10-4
Exchanging Datavia IPC Flags. o e 5..10-
Exchanging Data via Handling Blocks i, 10-8
What needs to be Programmed for the Multiprocessor Mode? 10-9
Howto Create Data BIock DB 1. e 10-9
Starting up in the Multiprocessor Mode i 10 - 13
TSt MOOEot e e 10 - 14
Multiprocessor Communication.t e 10-15
INtrOdUCTION. e e s 10-15

How the Transmitter and Receiver are Identified 10 - 16
Why Datais Buffered. 10 - 17

How the Buffer is Processed and Managed. i, 10-18
System Start-Upo e, 10.- 21

Calling Communication OBSo e 2.10-2
How to Assign Parameters to Communication OBs 10 - 23
How to Evaluate the Output Parameters e 10-24
Runtimes of the Communication OBS.t 10-31
INITIALIZE Function (OB 200) oottt e e e e e e 10 - 33
FUNCHiON. .. . e e e 10 - 33

Call Parameters.o e e 10.-.35

Input Parameters. 10.-.35

Output Parameters.t 10 -.38

CPU 948 Programming Guide
C79000-G8576-C848-04 10-1

Contents

105

105.1
105.2
1053
1054

10.6

10.6.1
10.6.2
10.6.3
10.6.4

10.7

10.7.1
10.7.2
10.7.3
10.7.4

10.8

108.1
10.8.2
10.8.3
10.8.4

10.9

10.9.1
10.9.2
10.9.3

10-2

SEND Function (OB 202)t e
FUNCHiON. .. . e e e 10 - 40

Call Parameters.o e 10.-.40
Input Parameters. 10.-.40
Output Parameters. e 10 -.42
SEND TEST Function (OB 203).ottt e e e e 10 - 45
FUNCHiON. .. o e e 10 - 45

Call Parameters.o e e 10.-.45
INpuUt Parameters e 10.-.45
Output Parameters. e 10 -.45
RECEIVE Function (OB 204)t e e e
FUNCHiON. .. . e e e 10 - 47

Call Parameters. e 10.-.47
Input Parameters. 10.-.47
Output Parameters. 10 -.48
RECEIVE TEST Function (OB 205).ottt e e e e 10-51
FUNCHiON. .. o e e e 10-51

Call Parameters. e e 10.-.51
Input Parameters. 10.-.51
Output Parameters. 10.-.51
APPlICAtIONS . . . o e 10.-.53
Calling the Special Function OB using Function Blocks
Transferring Data BIOCKS 0-60. 1
Extending the IPC Flag Area 66. 10 -

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Mode and 10
Communication in the S5-155U

CPU 948 Programming Guide
C79000-G8576-C848-04

At the beginning of this chapter, you will see when you can use the
multiprocessor mode and which data exchange is possible in this
mode. The chapter provides you with information about programming
for multiprocessor operation (Section 10.1).

The second part of the chapter provides you with detailed instructions
and examples of exchanging larger amounts of data in the
multiprocessor mode (multiprocessor communication Sections 10.2 to
10.9).

10-3

Multiprocessor Mode

10.1 Multiprocessor Mode

Definitions of terms

10.1.1
When to use the
Multiprocessor Mode

10.1.2
What Communications
Mechanisms are Available?

10-4

The S5-155U is set up for multiprocessor operation as soon as you
plug in a coordinator module, regardless of how many CPUs or
CP/IPs are plugged in. The CPUs must be plugged in without any
gaps between them.

« If your user program is too large for one CPU and there is not
enough memory, distribute your program on several CPUs.

« When a particular part of your system has to be processed
especially fast, separate the appropriate program part from the total
program and run it on its own fast CPU.

« When your system consists of several parts that you can separate
easily and control independently, let CPU 1 process system part 1,
CPU 2 process system part 2, etc.

For more information on multiprocessing, read the information in your
system manual. This will help you to decide which CPUs are best suited
for your problem.

« ‘"Interprocessor communication flags" are available for cyclic
exchange of binary data between CPUs (CPU 948, CPU 946/947,
CPU 928B, CPU 928 and CPU 922) or betw€&us and
communications processors (CPs).

« For the exchange of large amounts of data (e.g., entire data blocks)
between the CPU 948, CPU 946/947, CPU 928B, CPU 928 and
CPU 922 you are supported by tspecial functions for
multiprocessing” OB 200 to OB 20%for more information refer to
Section 10.2).

e "Handling blocks" are available for communication with
intelligent input/output modules (IPs) and with CPs (These
handling blocks must be ordered separately).

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Mode

10.1.3
Exchanging Data via IPC
Flags

Memory area

Jumper settings

CPU 948 Programming Guide
C79000-G8576-C848-04

Interprocessor communication (IPC) flags are available for cyclic
exchange of binary data. They are used mainly for transmitting
informationbyte by byte

Data is transferred as follows:
CPU(s) o CPU(s)
CPU(s) o Communications processor(s)

The system program transfers IPC flags once per cycle. For data
transfer between CPUSs, the IPC flags are buffered physically on the
coordinator.

IPC flags are bytes that are transferred. You define them in DB 1 for
each CPU as IPC input or output flags. If, for example, you have
defined flag byte 50 on the CPU 1 as an trdput flag byte, its

signal state is transferred cyclically via the coordinator to the CPU on
which the flag byte F 50 is defined as an iRgut flag byte.

Note

There isno error message when the IPC flag byte exists
physically but is only written by one CPU and never read out and
vice-versa.

With the CPU 948 the memory area for the IPC flags in the
coordinator and the CPs covers the addrds$€00H to F F2FFH

On a CPU/communications processor there are 256 available IPC flag
bytes.

To avoid double assignments you must group the 256 available IPC
flag bytes on the COR or CP modules. Fields of 32 bytes can be
enabled or disabled (your system manual contains information about
setting the jumpers).

10-5

Multiprocessor Mode

Example

CPU 1

IPC output flags:
FY 96 to FY 119

IPC input flags:
FY 120 to FY 125

Coordinator

CPU 2

IPC output flags:
FY 120 to FY 125

IPC input flags:
FY 96 to FY 119

Fig. 10-1

Transferring IPC flags in the multiprocessor mode

Write

Read Enabled area
per jumpers:
IPC flag bytes
FY 96 to FY 127

Write

Read

10-6

Note
The only flag bytes that you can specify as IPC flags are the on
enabled on the coordinator or on the CRdJags cannot be
used as IPC flags!

A flag byte that is defined on one or more CPUs as anniR€

flag byte must be defined as an 18@put flag byte on one other
CPU or CP. ArPC output flag byte is only allowed orone CPU
but this may be used as an IPC input flag in all other CPUs in the
rack.

If you have flag bytes that you have not defined as IPC flags in a
CPU, you can use them as normal flags!

In DB 1, indicate only the number of IPC flag bytes that you actua
need: the smaller the number of IPC flag bytes, the shorter the
transfer time!

CPU 948 Programming Guide
C79000-G8576-C848-04

ly

Multiprocessor Mode

Data exchange between
CPUs and communication
processors

Example

If you want to exchange data between one CPU and one CP, you must
enable the necessary number of IPC flags on the CP. You have 256
bytes available that you can divide into groups of 32 bytes.

If you want to transfer data from one CPU to several CPs, the areas you
enable in the CPs and the coordinator masbverlap, otherwise the
same address is assigned twice.

If you want to use IPC flagemultaneouslyon the coordinator and in

one or more CPs, you must also prevent double addressing as follows:
Divide the IPC flags among the coordinator and the CPs in groups of
32 bytes. Remove jumpers on the coordinator to mask the IPC flag
bytes that you want to use in the CP (refer to the system manual).

You can define a specific flag byte as an IPC output flag&gCPU
only. However, you can define a specific flag byte as in IPC input flag in
several CPUSs.

CPU 1

IPC output flags:
CP 1: FY 96 to FY 119
CP 2: FY 201 to FY 205

IPC input flags:
CP 1: FY 120 to FY 125
CP 2: FY 195 to FY 200

CP 1
cP 1 . Enabled area:
IPC flag bytes
CP 2 FY 96 to FY 127
CP 2
g Enabled area:
P CP1 IPC flag bytes
= FY 192 to FY 223
P CP 2

Fig. 10-2 Example of IPC flag areas on the CPs

CPU 948 Programming Guide
C79000-G8576-C848-04

10-7

Multiprocessor Mode

Transmitting IPC flags in
multiprocessor operation

Multiprocessor
communication

10.14
Exchanging Data via
Handling Blocks

10-8

At the end of each program cycle, along with the updating of the
process image, the CPU transmits the IPC flags specified in DB 1
when the coordinator signals the CPU that it can access the S5 bus.

The coordinator allocates the bus enable signal to each CPU in
sequence. When a CPU has access to the S5 bus, it can transmit only
onebyte. Because of this interleaved transmission, related (byte
groups) IPC flag information can be separated and subsequently
processed with old or incorrect values.

If you want to transfer information that takes up more tragbyte,

you can prevent corruption of data by setting a parameter in extended
data block DX 0. This parameter uses semaphores to ensure that all
IPC flags specified in DB 1 are transferred in groups (see Chapter 7).
While one CPU is transmitting IPC flags, another CPU cannot
interrupt it. Because the next CPU has to wait to transmit its data,
cyclic program processing of this CPU is delayed accordingly.

Under certain circumstances, the setting you make in DX 0 can
increase the cycle time considerably.

For transferring data blocks or more exactly fields of data with a size
of max. 64 byte (= 32 data words), the following special functions are
integrated in the CPU:

» OB 200: INITIALIZE: preassign

« OB 202: SEND: send a data field

e OB 203: SEND TEST: test sending capacity
e OB 204: RECEIVE: receive a data field

e« OB 205: RECEIVE TEST: test receiving capacity

Handling blocks are capable of multiprocessing. A special parameter
assignment for the multiprocessor mode is not necessary. For more
information on handling blocks refer to the appropriate manual.

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Mode

10.15

What needs to be e To allow the coordinator to coordinate access by the individual

Programmed for the CPUs to the I/O aregpu must program data block DB 1 Even

Multiprocessor Mode? if the CPU does not use 1/Os or the IPC flags, a (empty) DB 1
must exist (for more information refer to Section 10.1.6)

« Data block DX 0 must also exist. Program this so that process
interrupts via input byte 1B 0 are disabled andstystem interrupts
are activated

10.1.6
How to Create Data Block For multiprocessing, you must program DB 1 for each CPU. This
DB 1 establishes thimputs, outputs (byte addresses 0 to 127) dR€

input and output flags with which each CPU works.

Note
The system program recognizes only the inputs and outputs
defined in DB 1 when it updates the process image!

Inputting or changing DB 1 * Create/modify DB 1 on the PG using the DB 1 screen form
or

» by editing DB 1 as a data block on the PG and then transferring it
to the CPU.

Note
The CPU accepts the entered or changed DB 1 only after a cold
restart!

Using the DB 1 screen form 1. Select the editor for the DB 1 screen form on your PG
(refer to Fig. 10-3).

2. Enter the required values for "digital inputs" etc. as decimal
numbers.

CPU 948 Programming Guide
C79000-G8576-C848-04 10-9

Multiprocessor Mode

3. Enter the values by pressing the enter key on the PG.
The PG then generates DB 1.

4. Transfer DB 1 to the CPU.

Note
Entry of the timer field length is ignored! This parameter must be
specified in DX O (see Chapter 7).

Example of the DB 1 screen

form

4 DB 1 I/0 assignment: h
Digital inputs: .01 2 3 7,10, ,
Digital outputs: 0002, 4,12,
IPC flag inputs: .50, 54,60, , ., o, . .
IPC flag outputs: , 70, 72,200, o, o,
Timer field length: R

. /

Fig. 10-3 PG screen form for generating DB 1

Editing DB 1 as a data block 1. Write the DB 1 start ID in data words 0, 1 and 2:

DWO: KH=4D4l (M 'A)
DW1: KH=534B (S 'K)
DW2: KH=3031 (0 '1)

CPU 948 Programming Guide
10-10 C79000-G8576-C848-04

Multiprocessor Mode

2. Type in the individual operand areas (from data word 3 onwards).
Before each operand area, you must specify an ID. The possible ID
words are as follows:

ID word for digital inputs KH = DEOO
ID word for digital outputs KH = DAQOO
ID word for IPC input flags KH = CEQO
ID word for IPC output flags KH = CAQ00

After each ID word, use fixed-point format to list the numbers of the
inputs and outputs used.

3. Complete the entries with the DB 1 end ID "KH = EEEE" and
transfer DB 1 to the CPU.

Note

You can make the DB 1 entries in any order. Remember that the
process image of the inputs and outputs is updated me\bese
order to which you store the addresses in DB 1 (i.e. the last entry
is updated first).

Multiple entries of the same bytes (e.g., for test purposes) are
possible. The system program makes multiple updates of the process
images of bytes that are entered more than once.

Example of editing DB 1
DB1 FD: CPU948ST.S5D

0: KH = 4DA41;
1: KH = 534B;
2: KH = 3031;
3 KH = DEOQO;
4: KF = +00000;
5: KF = +00001;
6: KF = +00002;
7: KF = +00003;
8: KF = +00007;
9: KF = +00010;
10: KH = DAOQO;
11: KF = +00000;
12: KF = +00002;
13: KF = +00004;
14: KF =+00012;
15: KH = CEO0O;
16: KF = +00050;
17: KF = +00051;
18: KF = +00060;
19: KH = CAOQ0;
20: KF = +00070;
21: KF =+00072;
22: KF =+00100;
23: KH = EEEE;
24:

DW 0-2:
Start ID
for DB 1
ID word for digital inputs
Input byte O
Input byte 1
Input byte 2
Input byte 3

Input byte 10

ID word for digital outputs
Output byte O
Output byte 2

Output byte 12
ID word for IPC flag inputs
Flag byte 50

Flag byte 60
ID word for IPC flag outputs
Flag byte 70

Flag byte 100
End ID

CPU 948 Programming Guide
C79000-G8576-C848-04

10-11

Multiprocessor Mode

Entering DB 1

10-12

The system program adopts DB 1 during a cold restart. The system
program checks to see if the inputs and outputs or IPC flags indicated
in DB 1 exist in their corresponding modules. If they are not present
there, a DB 1 error causes the CPU to go into the STOP mode and the
STOP LED flashes slowly. The CPU no longer processes your
program.

After you program DB 1 and the CPU accepts it during a cold restart,
the following rules apply:

e Only the inputs and outputs indicated in DB 1 can access peripheral
modules via the process images (L.../T... ... 1B, ...Iw, ...ID, ...QB,
...QW, ...QD operations and logic operations with inputs and outputs).
Access to process image addresses not entered in DB 1 cause
addressing errors.

e You canload peripheral bytes directly by bypassing the process
image using the L PB/L PY, L PW, L OY, L OW operations for all
acknowledging inputs, regardless of entries in DB 1.

e You cantransfer directly (T PB/T PY, T PW) to bytes 0 to 127 only
for the outputs indicated in DB 1. This is because the process image is
also written to during direct transfer. Writing to 1/O addresses not
entered in DB 1 causes an addressing error.

e Transfer without a process image
Direct transfer to byte addressel27is possibleegardless of the
entries in DB 1
Direct transfer of byte addresses of the extended 1/0s (T OY,
T OW) is also possible regardless of the entries in DB 1.

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Mode

10.1.7
Starting up in the You can start the coordinator for multiprocessing in one of the
Multiprocessor Mode following ways:

Initial status: The RUN/STOP switch of each CPU is
in the RUN position. The RUN/STOP switch
on the coordinator is in the STOP position.

Handling: Move the RUN/STOP switch on the coordinator
from STOP to RUN. (Starting the S5-155U in
multiprocessor operation simply by starting the
coordinator is possible only if the coordinator
itself caused the controller to change to the STOP
mode).

or:

Initial status: The RUN/STOP switch of each CPU is in
the RUN position as well as that of the
coordinator.

Handling: Use the PG START function to start the
CPU that caused the STOP in the required
restart type.

Starting up individual CPUs The restart type that each CPU now uses depends on what took place
while the CPU was in the STOP mode. Some CPUs need MANUAL
WARM RESTART, others, a COLD RESTART.

If the CPU settings were not changed in that time, executnaal
warm restart.

Note
Due to the various restart types, incorrect signal statuses can be
transferred from one CPU to another via the IPC flags. This could
happen if the controller was in cycle prior to entering the STOP
mode. Prevent this by programming the start-up organization
blocks OB 20, OB 21 and OB 22 appropriately.

You can call special function block OB 223 to check whether the
start-up types of all the CPUs are the same (refer to Chapter 6).

CPU 948 Programming Guide
C79000-G8576-C848-04 10-13

Multiprocessor Mode

Power failure/return of power

10.1.8
Test Mode

Special features of test
operation

10-14

When power is shut off and then restored, the coordinator starts
automatically. In this case, all CPUs execut&aff OMATIC
WARM RESTART or anAUTOMATIC COLD RESTART ,
depending on the setting in DX 0 (see Chapter 7).

The start-up of the individual CPUs in multiprocessor operation is
synchronized. Each CPU waits until all others have ended their
initialization phase. Then they begin their cycle simultaneously.
However, you can use a setting in DX 0 to cancel start-up
synchronization.

Proceed as follows:

1. Make sure that the "test mode" function is enabled on the
coordinator.

2. Switch the mode selector on the COR from STOP to TEST.
The BASP LED goes off.

3. Go through a COLD RESTART or WARM RESTART on the
CPUs you want to change to the RUN mode.

In test operation, you can run CRbdividually or in any combination.
CPUs in the STOP mode cannot disable the entire PLC.

Start-up of individual CPUs isot synchronized in test operation. The
CPUs begin their cyclic operation at different times according to the
length of the start-up organization blocks OB 20, OB 21 or OB 22.

If an error occurs in one CPU during test operatioly that CPU goes
into the STOP mode. The error does not affect the other CPUs.

Warning

Since no CPU can output the BASP signal in case of an error
in the test mode, the test mode must be switched inactive after
successful installation to avoid a critical or even dangerous
situation arising in the system.

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Communication

10.2 Multiprocessor Communication

Definition

10.2.1
Introduction

Required knowledge

Basic sequence

Data fields

CPU 948 Programming Guide

C79000-G8576-C848-04

Multiprocessoicommunication means the exchange of larger
amounts of data (data blocks) between CPUs operating in the
multiprocessor mode. The COR C is necessary for multiprocessor
communication.

To transfer data blocks, or to be more precise, blocks of data with a
maximum length of 64 bytes (= 32 data words), you can use the
following special functions that are integrated in the CPU:

» OB 200: INITIALIZE: preassign

« OB 202: SEND: send a field of data

e OB 203: SEND TEST: test sending capacity
e OB 204: RECEIVE: receive a data field

OB 205: RECEIVE TEST: test receiving capacity

The special function OBs, OB 200 and OB 202 to OB 205 are simply
called "communication OBs" in the following sections.

To use these functions, you only require basic knowledge of the
STEP 5 programming language and the way in which SIMATIC S5
programmable controllers operate. You can obtain this basic
information from the publications listed in the Further Reading.

To transfer data, you must activate the SEND function on the
transmitting CPU and the RECEIVE function on the receiving CPU.
The data words of a DB or DX data block located in the transmitting
CPU are transported via the coordinator 923C to the receiving CPU
one after the other and written to the DB or DX data block with the
same number and under the same data word address; i.e. this
represents a "1:1" copy operation.

The amount of data that can be transferred with the SEND and
RECEIVE functions is normally 32 words.

If the block length (without header) is not a multiple of 32 words, the
last field of data to be transferred is an exception and is less than 32
words long.

10-15

Multiprocessor Communication

The data block in the receiving CPU can be longer or shorter than the
data block to be sent. It is, however, important that the data words
transferred by the SEND function exist in the receiving block;
otherwise the RECEIVE function signals an error.

Example:
Data to be Data
sent in the received
transmitting in the
CPU: receiving
CPU:
Data block: DB 17 DB 17
Data word address: DW 32 to DW 63 DW 32 to DW 63
10.2.2
How the Transmitter and Each field of data exchanged between the CPUs is marked with a
Receiver are Identified number to indicate the source and destination CPU.
The CPUs are numbered so that the leftmost CPU has the number 1
and each subsequent CPU to the right has a number increased by 1.
Example

S5-135U/155U:

(. [

)
c|l c|c | cC c | c I
o| P | P | P P | P I T Q| Q | ™M
R| U |U|U
c | 1|2 |3

(. [

)

Fig. 10-4 Sender/receiver identification

CPU 948 Programming Guide
10-16 C79000-G8576-C848-04

Multiprocessor Communication

10.2.3

Why Data is Buffered Generally, the multiprocessor mode is used to distribute tasks on
several CPUs. Since the tasks are not identical and the performance of
the CPUs involved can be different, the program execution of the
individual CPs in the multiprocessor mode is alwagynchronous
This means that the data sent by a CPU cannot always be received
immediately by another CPU.

For this reason, the data to be transferred is buffered on the

coordinator 923 C. The number of the sender and receiver are always
included along with the data.

Example

Data transfer from CPU 3 to CPU 2:
1st step:
i ‘ SEND, parameter of receiving (CP(U =2
)
C C C C C C |
oO| P P| P P | P I I I Q| Q| wm
R | U ul u
C 1 2 3
[. L
)
CPU 3 huffers its data on the coordinator.
2nd step:
RECEIVE, parameter of transmitting[Cl;U =3
)7
C C C C C C |
o|P | P |P P | P | I I Q| Q| m
R U U U
C 1 2 3
[. [
)
When CPU 2 is ready to receive, it copies the data from the coordinator
buffer to the destination DB.

CPU 948 Programming Guide
C79000-G8576-C848-04 10-17

Multiprocessor Communication

10.2.4
How the Buffer is
Processed and Managed

Principle The buffer is based on the FIFO principle (first in - first out, queue
principle). The data is received in the order in which it is sent. This
applies to each individual link (identified by the transmitting and
receiving CPU) and is independent of other links.

Data protection The buffer is battery-backed; this means that the "automatic warm
restart following a power down" is possible without any restrictions. A
loss of power during a data transfer does not cause any loss of data in
the programmable controller.

Management The coordinator 923 C has a memory capacity of 48 data fields each
with a fixed length of 32 words. The INITIALIZE function assigns
these fields to individual CPU links.

Eachmemory field can receive exactly oriield of data. The length

of the data can be from 1 data word to 32 data wordsté field is
entered in anemory field by a SEND function and read out again by a
RECEIVE function.

The number of memory fields assigned to a link is directly related to the
parameters for the transmitting capacity (SEND, SEND TEST function)
and receiving capacity (RECEIVE, RECEIVE TEST function).

Thetransmitting capacity indicates how many of the memory fields
reserved for a link are free at any particular time.

Thereceiving capacityindicates how many of the memory fields
reserved for a link are occupied at any particular time.

The sum of the transmitting and receiving capacity is always equal to
the number of memory fields reserved for a link.

CPU 948 Programming Guide
10-18 C79000-G8576-C848-04

Multiprocessor Communication

Example

Occupation of the buffer by a link
The link between CPU 3 and CPU 2 is initialized. The link is assigned seven

memory fields in the buffer of the coordinator. Following this, the data
transfer shown below would be possible.

Transmitting capacity

(no. of free
memory fields)
4 initialize send send 4 fields send 4 fields send 2 fields
field A B, C, D, E F G H I K L

7

6 —]

5 —

4 —

Transmitter: CPU 3

3 —

2 |

1 —

7 6 2 4 0 5| 5 7
0 > Time
0 1 5 3 7 2 2

71—

2 |

3 JE—

Receiver: CPU 2

4 —]

5 PR—

6 —

7 —|

receive receive receive receive
4 i fields A, B fields C, D, fields H, | fields K, L

Receiving capacity E, F G
(no. of free

memory fields)

Fig. 10-5 Example of the occupation of the COR buffer

Sending/receiving n data fields means that the corresponding functions are
called n times one after the other.

To simplify the representation, at any one time, data can either be sent or
received in this example.

It is, however, possible and useful to transmit (CPU 3) and receive (CPU 2)
simultaneously ("Parallel processing in a multiprocessor programmable
controller"). In the example, fields H and | are received while fields K

and L are sent.

The example illustrates the queue organization of the buffer: the fields of
data sent first (A,B,C...) are received first (A,B,C...).

CPU 948 Programming Guide
C79000-G8576-C848-04 10-19

Multiprocessor Communication

Summary

10-20

Buffering data on the coordinator COR 923C allows the asynchronous
operation of transmitting and receiving CPUs and compensates for
their different processing speeds.

Since the capacity of the buffer is limited, the receiver should check
"often" and "regularly" whether there are data in the buffer (RECEIVE
TEST function, receiving capacity > 0) and should attempt to fetch
stored data (RECEIVE function). Ideally, the RECEIVE function

should be repeated until the receiving capacity is zero. This means that
the transmitted data are not buffered for a longer period of time and
that the receiver always has the current data. This also means that
memory fields remain free (the transmitting capacity is increased) and
prevents the sender from being blocked (i.e. when the transmitting
capacity is zero).

Note

A receiving capacity of zero represents the ideal state (i.e. all
transmitted data have been fetched by the receiver), on the other
hand a transmitting capacity of zero indicatesrrect planning,
as follows:

- the SEND function is called too often,

- the RECEIVE function is not called often enough
or

- there are not enough memory fields assigned to the link.
The capacity of the buffer is insufficient to compensate tempo-

rary imbalances in the frequency with which the CPUs trans
mit and receive data.

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Communication

10.2.5
System Start-Up

COLD RESTART

WARM RESTART

CPU 948 Programming Guide
C79000-G8576-C848-04

If you require multiprocessor communication, then all CPUs involved
must go through theameSTOP-RUN transition (= RESTART), i.e.

all the CPUs go through a COLD RESTART or all CPUs go through a
WARM RESTART.

You must make sure that the restart of at least all the CPUs involved
in the communication igniform (see Section 10.1.7), in the
following ways:

« direct operation (front switch, programmer),
e parameter assignment (DX 0)
and/or

e programming (using the special function organization block OB 223
"stop if non-uniform restarts occur in the multiprocessor mode")

In organization block OB 20 (COLD RESTAR®hly oneCPU must
set up the buffer (in the COR 923C) using the INITIALIZE function.
Any existing data is lost.

Following this, i.e. during the RESTART, you can call the SEND,
SEND TEST, RECEIVE, RECEIVE TEST functions in the individual
CPUs. With appropriate programming, you must make sure that this
only occurs after the buffer in the coordinator has been correctly
initialized.

On completion of the RESTART, i.e. in the RUN mode, the user
program is processdbm the beginning, i.e. from the first operation
in OB 1.

You mustnot use the INITIALIZE function in the organization blocks
OB 21 (MANUAL WARM RESTART) and OB 22 (AUTOMATIC
WARM RESTART). Calling the SEND, SEND TEST, RECEIVE,
RECEIVE TEST functions can cause problems (refer to the following
sections).

On completion of the WARM RESTART, i.e. in the RUN mode, the
user program is not processed from the start, but fromdtiné at

which it was interrupted. The point of interruption can, for example,
be within the SEND function.

10-21

Multiprocessor Communication

10.2.6
Calling Communication OBs

Double call

Parallel processing

Areas occupied

10-22

Proceed as follows:

1. Callthe INITIALIZE function only in the cold restart
organization block OB 20 on one CPU.

2. Callthe SEND, SEND TEST, RECEIVE, RECEIVE TEST
functions eithepnly within the cyclic program oonly within the
time-driven program.

Depending on the assignment of parameters in DX O ("interrupts at
operation boundaries"), and the type of program execution (WARM
RESTART, interrupt handling, e.g. OB 26 for cycle time error) it is
possible that one of the functions INITIALIZE, SEND, SEND TEST,
RECEIVE and RECEIVE TEST can be interrupted.

If a user interface inserted at the point of interruption also contains one
of the functions SEND, SEND TEST, RECEIVE and RECEIVE

TEST an illegal call (double call) is recognized and an error is
signalled (error number 67, Section 10.2.8).

Once you have completed the assignment of the buffer (INITIALIZE
function), you can execute the functions SEND, SEND TEST,
RECEIVE and RECEIVE TEST in any combination and with any
parameter assignment in all the CPUs simultaneously and parallel to
each other.

Taking a single link (e.g. from CPU 2 to CPU 3) it is possible to
execute the SEND function (CPU 2) and the RECEIVE function
(CPU 3) simultaneously. While CPU 2 is sending data fields to the
coordinator, CPU 3 can already receive (fetch) buffered data fileds
from the coordinator.

The communication OBs do not require a working area (for buffering
variables) and do not call data blocks. They do, of course, access areas
containing parameters, although only the parameters marked as output
parameters are modified.

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Communication

Results bits

Changes in the ACCUs

10.2.7
How to Assign Parameters
to Communication OBs

Input parameters

Output parameters

CPU 948 Programming Guide
C79000-G8576-C848-04

The results bits (CC 1/CC 0, RLO etc.) are influenced by the
communication OBs. For more detailed information refer to Section
10.2.8.

« CPU922, CPU 928,
CPU 928B: The contents of ACCU 1 to ACCU 4 and the
contents of the registers are not affected by
the communication OBs.

e CPU 946/947,
CPU 948: The contents of all registers and ACCU 1, 2
and 3 remain the same, only the contents of
ACCU 4 are affected.

The communication OBs have the following types of parameter:

e input parameters,

e output parameters
and

e call parameters.

Input and output parameters are located in a maximum 10 byte long
data field in the F flag area The data field is divided into an area for
input parameters and an area fayutput parameters.

The input parameters specify how a function is handled. All or part of
the parameters are read out by communication OBs and evaluated, no
write access takes place.

The output parameters contain all the information that the calling
program needs about the result of a job, e.g. error bits.

Some or all of the output parameters are written to by the
communication OBs, this area is not read.

Note

You can assiga flag area with 10 flag bytedor all
communications functions. The functions themselves require
different numbers of bytes. Refer to the description of the single
functions (Section 10.4ff).

10-23

Multiprocessor Communication

Call parameters For all communication OBs the number of the first flag byte in the
data field (= pointer to data field) in ACCU-1-L is transferred as the
call parameter. Permitted values are O to 246.

Example

Data field with parameters for the RECEIVE function
(OB 204)
FY x +0: transmitting CPU input parameter
FY x + 1: — not used
FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter
FY x+ 4. block ID output parameter
FY x +5: block number output parameter
FY x + 6: address of the first output parameter
FY x+ 7. received data word output parameter
FY x + 8: address of the last output parameter
FY x+9: received data word output parameter
This example illustrates that the number of the first F flag byte in the
data field must not be higher than FY 246, since otherwise the parameter
field of up to 10 bytes would exceed the limits of the flag area (FY 255).

10.2.8

How to Evaluate the Among other things, the output parameters indicate whether or not a

Output Parameters function could be executed and if not they indicate the reason for the
termination of the function.

Condition codes The INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE

TEST functions affect the condition codes (see programming
instructions for your CPUs, general notes on the STEP 5 operations):

e the OV and OS bits (word condition codes) are always cleared,
« the OR, STA, ERAB bits (bit condition codes) are always cleared,

¢ RLO, CC 1 and CC 0 indicate whether a function has been executed
correctly and completely.

CPU 948 Programming Guide
10-24 C79000-G8576-C848-04

Multiprocessor Communication

Table 10-1 Condition codes of the communication OBs

Condition codes

Evaluation Meaning
RLO | CC1 | CCO
0 0 0 JC= Function executed
completely and correctly
1 0 0 JC= Function aborted,
pointer to data field
illegal (>246)

Function aborted
owing to an initialization

conflict
1 0 1 JC= and |Function aborted
M= owing to an error
(error number 1 to 9)
1 1 0 JC= and |Function aborted
JP= owing to a warning

(warning number 1 or 2)

In the following sections, it is assumed that the pointer to the data
field contains a correct value The first byte of the output parameter
provides detailed information about the cause of termination.

Condition code byte
Btno. 7 | 6 | 5 4| 3| 2| 1] o0

w E I 0 Number
W=1: Warning
E=1 Error
I=1: Initialization conflict
Number: - of a warning
- of an error

- of an initialization conflict

CPU 948 Programming Guide
C79000-G8576-C848-04 10-25

Multiprocessor Communication

The first byte in the field of the output parameters (condition code
byte) also indicates whether or not a function has been correctly and
completely executed. This byte contains detailed information about
the cause of termination of a function.

Assuming that at least the pointer to the data field contains a correct
value, this byte ialwaysrelevant.

If the function has been executed correctly and completely, all the bits
are cleared (= 0), and all other output parameters are relevant.

If the function is aborted with a warning (bit number 7 = 1), only the
condition code for the transmitting/receiving capacity is relevant,
other output parameters (if they exist) are unchanged.

If the function is aborted owing to an error (bit number 6 = 1) or an
initialization conflict (bit number 5 = 1), all other output parameters
remain unchanged.

Evaluation of the code byte The identifiers 'W’, 'E’ and I’ indicate the significance of the
numbers.
Apart from this bit-by-bit evaluation, it is also possible to interpret the
whole condition code byte as a fixed point number without sign. If
you interpret the condition code byte asyte, the groups of numbers
have the following significance:

Table 10-2 Code byte for the communication OBs/number groups

Number group Significance
0 Function executed correctly and completely
33to 42 Function aborted owing to an initialization
conflict
6510 73 Function aborted owing to an error
129t0 130 Function aborted owing to a warning

Errors are detected and indicated in the ascending order of the error
numbers. This means that several errors may have occurred although
(currently) onlyoneis indicated. The other errors are then indicated by
further calls.

CPU 948 Programming Guide
10- 26 C79000-G8576-C848-04

Multiprocessor Communication

Example

The SEND function indicates an error and is not
executed.
parameter modifications and the SEND function
again indicates an error with a higher number
than previously, you can assume that you have
corrected one of several errors.

If you then make program and/or

Initialization conflict An initialization conflict can only occur with the INITIALIZATION
function. If a conflict occurs, you must modify the program or the
parameters.

Initialization conflict numbers (evaluation of the condition code byte

as a byte):

Table 10-3

Condition code byte: Initialization conflict numbers

Cond.
code

byte

Significance

33

The pages required for multiprocessor communication

(numbers 252 to 255) are not or not all available.

34

The pages required for multiprocessor communication
(numbers 252 to 255) are defective.

35

The parameter "automatic/manual” is illegal.
The following errors are possible:

- the "automatic/manual” ID is less than 1,

- the "automatic/manual” ID is greater than 2.

36

The parameter "number of CPUs" is illegal.
The following errors are possible:

- the number of CPUs is less than 2,

- the number of CPUs is greater than 4.

37

The parameter "block ID" is illegal.
The following errors are possible:

- the block ID is less than 1,

- the block ID is greater than 2.

38

The parameter "block number" is incorrect, since itis a d
block with a special significance.
The following errors are possible:
- if block ID =1 DBO0O,DB1
-ifblockID =2: DXO0

39

The parameter "block number " is incorrect, since the da
block does not exist.

40

The parameter "start address of the assignment list" is tc

ata

ta

[0)

high or the data block is too short.

CPU 948 Programming Guide
C79000-G8576-C848-04

10 -27

Multiprocessor Communication

Cond.
code

byte

Significance

Table 10-3 continued:

41 The assignment list in the data block is not correctly
structured.
42 The sum of the assigned memory fields is greater than 48.
Errors If an error occurs, you must change the program/parameters.

Error numbers (evaluation of the condition code byte as a byte):

Table 10-4

Condition code byte: Error numbers

Cond.
code

byte

Significance

65

The parameter "receiving CPU" (SEND, SEND TEST)
is illegal. The following errors are possible:
- The number of the receiving CPU is greater than 4,
- the number of the receiving CPU is less than 1,
- the number of the receiving CPU is the same as the
CPU’s own number.

66

The parameter "transmitting CPU" (RECEIVE, RECEIVE
TEST) is illegal. The following errors are possible:

- The number of the transmitting CPU is greater than 4,

- the number of the transmitting CPU is less than 1,

- the number of the transmitting CPU is the same as the

CPU’s own number.

67

The special function organization block call is wrong
(SEND, RECEIVE, SEND TEST, RECEIVE TEST). The
following errors are possible:

- Secondary error, since the INITIALIZE function cou
not be called or was terminated by an initializatig
conflict.

Double call: the call for this function (SEND, SEND
TEST, RECEIVE or RECEIVE TEST) is illegal,
since one of these functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower
processing level (i.e. cyclic program execution).
- The CPU’s own number is incorrect (system data
corrupted); following power down/power up the CPU
number is generated again by the system program.

S o

10-28

CPU 948 Programming Guide
C79000-G8576-C848-04

Multiprocessor Communication

CPU 948 Programming Guide
C79000-G8576-C848-04

Cond.
code

byte

Significance

Table 10-4 continued:

68

The management data (queue management) of the
selected links are incorrect; set up the buffer in the
coordinator 923C again using the INITIALIZE function
(SEND, RECEIVE, SEND TEST, RECEIVE TEST).

69

The parameter "block ID" (SEND) or the block ID provided

by the sender (RECEIVE) is illegal. The following errors are

possible:
- The block ID is less than 1,
- the block ID is greater than 2.

70

The parameter "block number" (SEND) or the block num

ber

supplied by the sender (RECEIVE) is illegal, since it is a data

block with a special significance. The following errors are

possible:
- IftheblockID=1: DBO0,DB 1

- ifthe block ID=2: DXO0

71

The parameter "block number" (SEND) or the block number

provided by the sender (RECEIVE) is incorrect. The
specified data block does not exist.

72

The parameter "field number" (SEND) is incorrect.
The data block is too short or the field number too high.

73

The data block is not large enough to receive the data field

transmitted by the sender (RECEIVE).

10-29

Multiprocessor Communication

Warning

10-30

The function could not be executed; the function call must be
repeated, e.g. in the next cycle.

Warning numbers (evaluation of the condition code byte as a byte):

Table 10-5 Condition code bytes: Warning numbers

Cond. Significance
code

byte

129 | The SEND function cannot transfer data, since the
transmitting capacity was already zero when the
function was called.

130 | The RECEIVE function cannot accept data, since the
receiving capacity was already zero when the function
was called.

CPU 948 Programming Guide
C79000-G8576-C848-04

Runtimes of the Communication OBs

10.3 Runtimes of the Communication OBs

The "runtime” is the processing time of the special function
organization blocks; the time from calling a block to its termination
can be much greater if it is interrupted by higher priority activities

(e.g. updating timers, etc.).

Table 10-6 Runtimes of the communication OBs
Special function OB
Block CPU 922 CPU 928 CPU 928B CPU 946/] CPU 948
name 947
OB 200/ 230 ms 130 ms 130 ms 128 ms 90 ms
initialize
OB 202/ 806s (294us | 666s (250us | 696s (280us | 762us (426ys | 542us (220us
send basic time basic time basic time basic time basic time
+ 16pus/word); | + 13 us/word);| + 13 us/word); + 21ps/ + 19ps/
118usifa | 115usifa 145psifa | double word);| double word);
warning occursvarning occurswarning occurs 243ps if a 110usifa

warning occur

svarning occur

warning occur

OB 203/ send test 72us 50us 80us 201us 115ps
OB 204/ receive 825us (281us | 660us (244us | 690ps (274us | 772us (421us | 506ps (218us
basic time basic time basic time basic time basic time
+ 17 usiword);| + 13usiword); | + 13ps/word); +22us/ + 18ps/
115psifa 98usifa 128psifa | double word);| double word);
warning occursvarning occurswarning occurs 243ps if a 132usifa

svarning occur

OB 205/
receive test

70us

48us

78 us

223ps

120ps

The runtimes listed in table 10-6 assume that of four CPUs inserted in
a rack, only the CPU whose runtimes are being measured accesses the

SIMATIC S5 bus. If other CPUs use the bus intensively, the runtime
increases particularly for the send/receive functions.

CPU 948 Programming Guide

C79000-G8576-C848-04

10-31

Runtimes of the Communication OBs

Transfer time

10-32

An important factor of a link (e.g. from CPU 1 to CPU 2) is the total
data transfer time. This is made up of the following components:

e time required to send (see runtime),

« length of time the data are buffered (on the COR 923C coordinator)
and

« the time required to receive data (see runtime)

The length of time that the data are "in transit" is largely

dependent on the length of time that the data is buffered and

therefore on the structure of the user program (see "Buffering
Data").

CPU 948 Programming Guide
C79000-G8576-C848-04

INITIALIZE Function (OB 200)

10.4 INITIALIZE Function (OB 200)

10.4.1

Function To transfer data from one CPU to another CPU, the data must be
temporarily buffered. The INITIALIZE function sets up a buffer on
the COR 923C coordinator.
The memory is initialized in fields with a fixed length of 32 words.

Each memory field accepts one data field with a length between 1 data
word and 32 data words. A data field is entered in a memory field by a
SEND function and read out by a RECEIVE function.

If you are using two CPUs, there are two links (transfer directions,
"channels"):

CPU 1 CPU 2

If you are using three CPUs, there are six links:

CPU 1 CPU 2

CPU 3

CPU 948 Programming Guide
C79000-G8576-C848-04 10-33

INITIALIZE Function (OB 200)

If you are using four CPUSs, there are twelve links:

CPU 1 CPU 2

CPU 3 CPU 4

The INITIALIZE function specifies how the total 48 available memory
fields are assigned to the maximum twelve links.

This means that each possible link, specified by the parameters
"transmitting CPU" and "receiving CPU" has a certain memory capacity
available.

Note

Before you can call the SEND / RECEIVE / SEND TEST /
RECEIVE TEST functions, one CPU must have already called th
INITIALIZE function and executed it completely and without errors.

If the INITIALIZE function is called several times, one after the other,
the last assignment made is valid. While a CPU is processing the
INITIALIZE function, no other multiprocessor communication
functions including the INITIALIZE function can be called on other
CPUs.

CPU 948 Programming Guide
10-34 C79000-G8576-C848-04

INITIALIZE Function (OB 200)

10.4.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.4.3
Input Parameters

Mode (automatic/manual)

Number of CPUs

CPU 948 Programming Guide
C79000-G8576-C848-04

Before calling OB 200, you must supply the input parameters in the
data field. OB 200 requires eight F flag bytes in the data field for input
and output parameters:

FY x + 0: Mode (automatic/

manual) input parameter
FY x + 1: Number of CPUs nput parameter
FY x + 2: Block ID input parameter
FY x + 3: Block number input parameter
FY x + 4: Start address of the input parameter

FY x + 5:] | assignment list
FY X + 6: Condition code byte output parameter

FY x + 7: Total capacity output parameter

When OB 200 is called, you transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246
Mode = 1: automatic

Mode = 2: manual

Mode = 0 or 3 to 255: illegal, causes an

initialization conflict

This parameter is only relevant when you have selected the
"automatic" mode. With the "automatic" setting, the memory fields
are dividedevenlyaccording to the number of CPUs.

Number of Number of Memory fields per
CPUs links link
2 2 24
3 6 8
4 12 4
0;1; 5to 255 lllegal, causes an initialization conflict
10-35

INITIALIZE Function (OB 200)

Block ID, block number,
address assignment list

Block ID

Block number

Start address of the
assignment list:

10 - 36

The parameters are only relevant if you select the "manual” mode.
You must then create an assignment list in a data block in which the
48 available memory fields (or less) are assigned to the maximum 12
links. This function is particularly useful when some CPUs transfer
more data than others.

The CPUs not involved in the multiprocessor communication do not
need and should not have memory fields assigned to them.

The parameters

e block ID,
e block number
and
« start address of the assignment list

specify where the assignment list is stored.

ID=1: DB data block
ID=2: DX data block
ID=0or3to255: illegal, causes an

initialization conflict

For the block number, you specify the number of the DB or DX data
block in which the assignment list is stored.

Along with the block ID and number, this specifies the area (or more
precisely, the start address of the area) in the data block in which the
assignment list is stored.

As the address of the assignment list, specify the data word nhumber at
which the assignment list begins in flag bytes FY x+4 (high byte) and
FY x+5 (low byte).

CPU 948 Programming Guide
C79000-G8576-C848-04

INITIALIZE Function (OB 200)

Assignment list

CPU 948 Programming Guide
C79000-G8576-C848-04

With the assignment list, you specify how many of the existing 48
memory fields are to be assigned to the links.

The list isnot changedby the system program. It has the following
structure.

Table 10-7 Assignment list for OB 200 (initialize)

Dataword | Format | Value Significance
DW n+ O KS S1 Transmitter =CPU 1
DW n+ 1 KY 2,a Receiver =CPU 2
DW n+ 2 KY 3.,b Receiver =CPU3
DW n+ 3 KY 4.c Receiver =CPU4
DW n+ 4 KS S2 Transmitter = CPU 2
DW n+ 5 KY 1.,d Receiver =CPU1
DW n+ 6 KY 3.,e Receiver =CPU3
DW n+ 7 KY 4 f Receiver =CPU4
DW n+ 8 KS S3 Transmitter =CPU 3
DW n+ 9 KY 1,9 Receiver =CPU1
DW n+10 KY 2.,h Receiver =CPU 2
DW n+11 KY 4 i Receiver =CPU4
DW n+12 KS S4 Transmitter =CPU 4
DW n+13 KY 1.k Receiver =CPU1
DW n+14 KY 2,1 Receiver =CPU 2
DW n+15 KY 3.m |Receiver =CPU3

Instead of the lower case letters a to m (in bold face) numbers between 0
and 48 must be inserted depending on the number of assigned memory
fields. The sum of these numbers must not exceed.48

Note
You must keep to the structure shown in table 10-7 even if you have
less than four CPUs.

10-37

INITIALIZE Function (OB 200)

Example

You have three CPUs in your rack, CPU 2 sends a lot of data to the other

two CPUs. The other two CPUs, however, only send a small amount of data

back to CPU 2 as acknowledgements in a logical handshake. There is no data

exchange between CPU 1 and CPU 3

The assignment list is stored in data block DB 40 from DW 0 onwards and has

the following parameters:

DB40 FD: CPU948ST.S5D
0: KS = S1; Transmitter: CPU 1
1: Ky=2 2 Receiver: CPU 2/2 fields
2: Ky=3, O; Receiver: CPU 3/no field
3: Ky=4, O0; Receiver: CPU 4 (does not exist)/no field
4. KS = S2; Transmitter: CPU 2
5: Ky=1, 22; Receiver: CPU 1/22 fields
6: Ky=3, 22; Receiver: CPU 3/22 fields
7 KY =4, O0; Receiver: CPU 4 (does not exist)/no field
8: KS = S3; Transmitter: CPU3
o: Ky=1, O0; Receiver: CPU 1/no field
10: Ky=2, 2; Receiver: CPU 2/2 fields
11: KY=4, O0; Receiver: CPU 4 (does not exist)/no field
12: KS = S4; Transmitter: CPU 4 (does not exist)
13: Ky=1, O; Receiver: CPU 1/no field
14: Ky=2, O; Receiver: CPU 2/no field
15: KY = 3,0; Receiver: CPU 3/no field
16:

1044

Output Parameters
Condition code byte This byte informs you whether the INITIALIZE function was
executed correctly and completely.

Initialization conflict The initialization conflicts listed are recognized and indicated by the
function in the ascending order of their numbers.

If an initialization conflict occurs, you must change the
program/parameters.

All the numbers listed in Table 10-3 can occur in the condition code
byte.

CPU 948 Programming Guide
10-38 C79000-G8576-C848-04

INITIALIZE Function (OB 200)

Errors

Warning

Total capacity

CPU 948 Programming Guide
C79000-G8576-C848-04

The "error" number group cannot occur with the INITIALIZE
function.

The "warning" number group cannot occur with the INITIALIZE
function.

This parameter specifies how many of the 48 available memory fields
are assigned to links.

In the "automatic" mode, this parameter always has the value 48. In the
"manual’ mode, it can have a value less than 48. This means that existing
memory capacity is not used.

10-39

SEND Function (OB 202)

10.5 SEND Function (OB 202)

10.5.1
Function

10.5.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.5.3
Input Parameters

Receiving CPU

10 - 40

The SEND function transfers a data field to the buffer of the
COR 923C coordinator. It also indicates how many data fields can still
be sent or buffered.

Before calling OB 202 you must specify the input parameters in the data
field. OB 202 requires six F flag bytes in the data field for input and
output parameters:

FY x + 0: receiving CPU input parameter
FY x + 1. block ID input parameter
FY x + 2: block humber input parameter
FY x + 3: field number input parameter
FY x + 4: condition code byte output parameter
FY x +5: transmitting capacity output parameter

When OB 202 is called, transfer the flag byte at which the parameter
data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

CPU number of the receiver (destination); the permitted value is between
1 and 4 but must be different from the CPU’s own number.

CPU 948 Programming Guide
C79000-G8576-C848-04

SEND Function (OB 202)

Block ID

Block number

Field number

CPU 948 Programming Guide
C79000-G8576-C848-04

ID=1: DB data block
ID=2: DX data block
ID =0 or 3 to 255: illegal, causes an

error message

The block number, along with the block ID and the field number
specifies the area from which the data to be sent is taken (and where it
is to be stored in the receiving CPU).

Remember that certain data blocks have a special significance, for
example, DB 0, DB 1 or DX O (see programming instructions for your
CPUs). These data blocks must therefore not befoséue data

transfer described here!

If you attempt to use these block numbers, the function is aborted with
an error message.

The field number indicates the area in which the data to be sent is
located.

Field Data area
number
First data word Last data word
0 DW O DW 31
1 DW 32 DW 63
2 DW 64 DW 95
3 DW 96 DW 127
4 DW 128 DW 159
5 DW 160 DW 191
6 DW 192 DW 223
7 DW 224 DW 255
8 DW 256 DW 287
9 DW 288 DW 319

10-41

SEND Function (OB 202)

Example

10.54
Output Parameters

Condition code byte

Initialization conflict

10-42

The following situations are possible:

e DB islonger than source area
If the data block is sufficiently long, you obtain a 32-word long
area per field as shown in the table above.

DB is too short
If the end of the data block is within the selected field, in the last
field an area with a length between 1 and 32 words will be
transferred.

¢ Field is outside the DB:
If the first data word address of a field is not within the length of
the data block, the SEND function detects and indicates an error.

Data block with a length of 80 words: DW 0 to
DW 74, 5 words are required for the block header.

Field no.: First data word: Last data word: Length:

0 DW 0 Dw 31 32 words
1 DW 32 DW 63 32 words
2 DW 64 DW 74 11 words
3 and

higher Incorrect parameter assignment

This byte informs you whether the SEND function was executed
correctly and completely.

Has no significance with the SEND function.

CPU 948 Programming Guide
C79000-G8576-C848-04

SEND Function (OB 202)

Errors

CPU 948 Programming Guide
C79000-G8576-C848-04

When the SEND function is called, the following error numbers
(evaluation of the condition code byte) can occur:

Condition
code byte

Significance

65

The parameter "receiving CPU" is illegal.
The following errors are possible:
- The number of the receiving CPU is greater th
- The number of the receiving CPU is less than
- The number of the receiving CPU is the same
the CPU’s own number.

an 4,

67

The special function organization block call is wron
The following errors are possible:
- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has

level (e.g. cyclic program processing).
- The CPU’s own number is incorrect (system data
corrupted)
following power down/power up the CPU number
is generated again by the system program.

68

The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

69

The parameter "block ID" is illegal.
The following errors are possible:

- The block ID is less than 1,

- the block ID is greater than 2.

70

The parameter "block number" is illegal, since itis a ¢
block with a special significance.
The following errors are possible:
- Ifthe blockID=1:DB 0, DB 1
- If the block ID =2 : DX 0

71

The parameter "block number" is incorrect.
The specified data block does not exist.

72

The parameter "field number" is incorrect. The data
block is too short or the field number too high.

- Double call: the call for this function, SEND, SEND

N

already been called in this CPU in a lower processing

ata

10-43

SEND Function (OB 202)

Warning The function could be executed; the function call must be repeated,
e.g. in the next cycle.

The following warning numbers (evaluation of the condition code
byte) can occur:

Condition Significance
code byte
129 The SEND function cannot transfer data, since the

transmitting capacity was already zero when the
function was called.

Transmitting capacity The "transmitting capacity” indicates how many data fileds can still be
sent and buffered.

CPU 948 Programming Guide
10-44 C79000-G8576-C848-04

SEND TEST Function (OB 203)

10.6 SEND TEST Function (OB 203)

10.6.1
Function

10.6.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.6.3
Input Parameters

Receiving CPU

10.6.4

Output Parameters

Condition code byte

CPU 948 Programming Guide
C79000-G8576-C848-04

The SEND TEST function determines the number of free memory
fields in the buffer of the COR 923C coordinator.

Depending on this number m, the SEND function can be called m
times to transfer m data fields.

Before calling OB 203, you must specify the input parameters in the
data field. OB 203 requires 4 F flag bytes in the data field for input
and output parameters:

FY x + 0: receiving CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: transmitting capacity output parameter

When OB 203 is called, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

The CPU’s own number and the number of the receiving CPU identify
the link for which the transmitting capacity is determined.

This byte indicates whether the SEND TEST function was executed
correctly and completely.

10 -45

SEND TEST Function (OB 203)

Initialization conflict

Errors

Warning

Transmitting capacity

10 - 46

Has no significance for the SEND TEST function.

When calling the SEND TEST function, the following error numbers
(evaluation of the condition code byte) can occur:

Condition
code byte

Significance

65

The parameter "receiving CPU" is illegal.
The following errors are possible:
- The number of the receiving CPU is greater th
- The number of the receiving CPU is less than
- The number of the receiving CPU is the same
the CPU’s own number.

an 4,

67

The special function organization block call is wron
The following errors are possible:

could not be called or was terminated by an
initialization conflict.

TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower proces
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted);
following power down/power up the CPU number
is generated again by the system program.

68

The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

- Secondary error, since the INITIALIZE function

- Double call: the call for this function, SEND, SEND

Sing

The "warning" number group cannot occur with the SEND TEST

function.

The "transmitting capacity" parameter indicates how many data fields
can be sent and buffered.

CPU 948 Programming Guide
C79000-G8576-C848-04

RECEIVE Function (OB 204)

10.7 RECEIVE Function (OB 204)

10.7.1

Function The RECEIVE function takes a data field from the buffer of the
COR 923C coordinator. It also indicates how many data fields are still
buffered and can still be received.
The RECEIVE function should be called in a loop until all the
buffered data fields have been received.

10.7.2

Call Parameters

Structure of the (parameter) Before calling OB 204, you must specify the input parameters in the
data field data field. OB 204 requires 10 F flag bytes in the data field for input
and output parameters:

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter
FY x + 4. block ID output parameter
FY x + 5: block number output parameter
FY X + 6: address of the first output parameter
FY x + 7: received data word output parameter
FY x + 8: address of the last output parameter
FY x + 9:Hreceived data word

ACCU-1-L When calling OB 204, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:
ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

10.7.3

Input Parameters

Transmitting CPU The receive block receives data supplied by the transmitting CPU.

Specify the number of the transmitting CPU. The permitted value is
between 1 and 4, but must be different from the CPU’s own number.

CPU 948 Programming Guide
C79000-G8576-C848-04 10 - 47

RECEIVE Function (OB 204)

10.7.4
Output Parameters

Condition code byte

Initialization conflict

Errors

10 - 48

This byte informs you whether the RECEIVE function was executed
correctly and completely.

Has no significance with the RECEIVE function.

When calling the RECEIVE function the following error numbers
(evaluation of the condition code byte) can occur:

Condition
code byte

Significance

66

The parameter "transmitting CPU" is illegal.
The following errors are possible:

- The number of the transmitting CPU is greater|

than 4,

- The number of the transmitting CPU is less tha

- The number of the transmitting CPU is the san

the CPU’s own number.

67

The special function organization block call is wron
The following errors are possible:

- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SENI
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower proces
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted)
following power down/power up the CPU number
is generated again by the system program.

68

The management data (queue management) of the
selected links are incorrect; set up the buffer in

the coordinator 923C again using the INITIALIZE
function.

69

The block identifiers supplied by the transmitter are
illegal.
The following errors are possible:

- The block ID is less than 1,

- The block ID is greater than 2.

CPU 948 Programming Guide
C79000-G8576-C848-04

an 1,
ne as

g.

N

Sing

RECEIVE Function (OB 204)

Warning

Receiving capacity

CPU 948 Programming Guide
C79000-G8576-C848-04

Condition
code byte

Significance

Error numbers continued:

70

The block number supplied by the transmitter is illegal
since it is a data block with a special significance.
The following errors are possible:

- Ifthe blockID=1:DB 0, DB 1

- Ifthe block ID=2:DX0

71

The block number provided by the transmitter is
incorrect. The specified data block does not exist.

73

The data block is too small to receive the data field
supplied by the transmitter.

The function could not be executed; the function call must be
repeated, e.g. in the next cycle.

The following warning number (evaluation of the condition code byte)

can occur:

Condition
code byte

Significance

130

The RECEIVE function cannot receive data, since
the receiving capacity was already zero when the
function was called.

The "receiving capacity" parameter indicates how many data fields are

still buffered and can still be received.

10-49

RECEIVE Function (OB 204)

Block ID:

Block number

Address of the first
received data word

Address of the last
received data word

10 -50

ID=1: DB data block
ID=2: DX data block
ID =0 or 3 to 255: illegal, causes an

error message

Block number of the DB/DX in which the received data are stored
(and from which they are taken by the SEND function in the
transmitting CPU).

Remember that the receive data blocks must be in a random access
memory, using read-only memories (EPROM) might possibly serve a
practical purpose for transmit data blocks only.

Data word number within the DB/DX in which the first
transferred/received data word was stored.

Data word number within the DB/DX in which the last
transferred/received data word was stored.

Note

The difference between the addresses of the first and last data
word transferred is a maximum of 31, since a maximum of 32
data words can be transferred per function call.

CPU 948 Programming Guide
C79000-G8576-C848-04

RECEIVE TEST Function (OB 205)

10.8 RECEIVE TEST Function (OB 205)

10.8.1
Function

10.8.2

Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.8.3
Input Parameters

Transmitting CPU

10.8.4

Output Parameters

Condition code byte

Initialization conflict

CPU 948 Programming Guide
C79000-G8576-C848-04

The RECEIVE TEST function determines the number of occupied
memory fields in the buffer of the COR 923C coordinator. Depending
on this number m, the RECEIVE function can be called m times to
receive m data fields.

Before calling OB 205, you must specify the input parameters in the
data field. OB 205 requires 4 F flag bytes in the data field for input
and output parameters:

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter

When calling OB 204, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

The CPU’s own number and the number of the transmitting CPU identify
the link for which the receiving capacity is determined.

This byte indicates whether the RECEIVE TEST function was executed
correctly and completely.

Has no significance with the RECEIVE TEST function.

10-51

RECEIVE TEST Function (OB 205)

Errors When calling the RECEIVE TEST function, the following error
numbers (evaluation of the condition code byte) can occur:

Condition Significance
code byte

66 The parameter "transmitting CPU" is illegal.
The following errors are possible:
- The number of the transmitting CPU is greater|
than 4,
- The number of the transmitting CPU is less than 1,
- The number of the transmitting CPU is the same as
the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:
- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted);
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE

function.
Warning The "warning" number group cannot occur with the RECEIVE TEST
function.
Receiving capacity The "receiving capacity" parameter indicates how many data fields can be

received and buffered.

CPU 948 Programming Guide
10-52 C79000-G8576-C848-04

Applications

10.9 Applications

10.9.1

Calling the Special
Function OB using
Function Blocks

CPU 948 Programming Guide

C79000-G8576-C848-04

Based on examples, this section explains how to program
multiprocessor communication.

Note

If you use the function blocks listed below and service interrupt
on your CPU (e.g. with OB 2) remember to save the "scratchpad
flags" at the start of interrupt servicing and to write them back
when the interrupt is completed.

This also applies to the setting "interrupts at block boundaries”|
since the call of the special function organization blocks
represents a block boundary.

1)

The following five function blocks (FB 200 and FB 202 to FB 205)
contain the call for the corresponding special function organization block
for multiprocessor communication (OB 200 and OB 202 to OB 205).
The numbers of the function blocks are not fixed and can be changed.
The parameters of the special function OBs are transferred as actual
parameters when the function blocks are called. The direct call of the
special function organization blocks is faster, however, is more difficult
to read owing to the absence of formal parameters

FB no. FB name Function
FB 200 INITIAL Set up buffer
FB 202 SEND Send a data field
FB 203 SEND-TST |Test sending capacity
FB 204 RECEIVE Receive a data field
FB 205 RECV-TST |Testreceiving capacity

The flag area from FY 246 to maximum FY 255 is used by the function
blocks as a parameter field for the special function organization blocks.

The exact significance of the input and output parameters is explained
in the description of the special function organization blocks.

10-53

Applications

Note
The following examples of applications involve finished applications
that you can program by copying them.

Programming function
blocks

FB 200: initializing the links

FB 200
INITIAL

(1) —AUMA INIC —(5)

(20 —NUMC TCAP —(6)

(8) —TNAS

(4) —STAS

Parameter Significance Parameter Data Parameter

name type type field
AUMA Automaticmanual I BY FY 246
NUMC Number of CPUs I BY FY 247
TNAS Type (H byte) anciumber (L byte) I w FW 248

of the data block containing the
assignment list

STAS Start address of thassignment list I W FW 250
INIC Ini tializationconflict Q BY FY 252
TCAP Total capacity Q BY FY 253

Continued on the next page

CPU 948 Programming Guide
10-54 C79000-G8576-C848-04

Applications

FB 200 continued

FB 200 LEN=45
SEGMENT 1 0000

NAME:INITIAL

DECL :AUMA 1/Q/D/B/T/C: 1 BI/BY/WID: BY

DECL :NUMC I/Q/D/BITIC: 1 BI/BY/W/D: BY

DECL :TNAS I/Q/D/BITIC: 1 BI/BY/WI/D: W

DECL :STAS I/Q/D/BITIC: 1 BI/BY/WID: W

DECL :INIC I/Q/D/BITIC: Q BI/BY/W/D: BY

DECL :TCAP I/Q/D/BITIC: Q BI/BY/W/D: BY

0017 L =AUMA Automatic/manual
0018 T FY 246

0019 L =NUMC Number of CPUs
001A T FY 247

001B 'L =TNAS DB type, DB no.
o0oi1cC T FY 248

001D L =STAS Start address of the assignment list
001E T FW 250

001F :

0020 L KB 246 SF OB:

0021 :JU OB 200 "Initialize

0022 :

0023 L FY 252 Initialization conflict
0024 T =INIC

0025 L FY 253 Total capacity

0026 T =TCAP

0027 ‘BE

CPU 948 Programming Guide
C79000-G8576-C848-04

10-55

Applications

FB 202: Sending a data field

FB 202
SEND
(y —RCPU ERWA —(4)
(29 —TNDB TCAP —(5)
(3 ~—FINO
Parameter Significance Parameter Data Parameter
name type type field
RCPU ReceivingCPU I BY FY 246
TNDB Type (H byte) anciumber (L byte) I W FW 247
of the sourcalatablock
FINO Field number I BY FY 249
ERWA Erroriwarning Q BY FY 250
TCAP Transmittingcapacity Q BY FY 251
FB 202 LEN=40
SEGMENT 1 0000
NAME:SEND
DECL :RCPU 1/Q/D/BITIC: | BI/BY/W/D: BY
DECL :TNDB 1I/Q/D/B/TIC: | BI/BY/W/D: W
DECL :FINO 1/Q/D/BITIC: 1 BI/BY/W/D: BY

DECL :ERWA |/Q/D/BITIC: Q BI/BY/W/D: BY
DECL :TCAP 1/Q/D/B/TIC: Q BI/BY/W/D: BY

0014 'L =RCPU Receiving CPU
0015 T FY 246

0016 L =TNDB DB type, DB no.
0017 T FW 247

0018 'L =FINO Field number

0019 T FY 249

001A :

001B 'L KB 246 SF OB:

0o1C JU OB 202 "Send a data field"
001D :

001E 'L FY 250 Error/warning

001F T =ERWA

0020 L FY 251 Transmitting capacity
0021 T =TCAP

0022 :BE

CPU 948 Programming Guide
10-56 C79000-G8576-C848-04

Applications

FB 203: Testing the transmitting capacity

FB 203
SEND-TST
(1) —RCPU ERRO —(2)
TCAP —(3)

Parameter Significance Parameter Data Parameter
name type type field
RCPU ReceivingCPU I BY FY 246
ERRO Error Q BY FY 248
TCAP Transmittingcapacity Q BY FY 249

FB 203 LEN=30
SEGMENT 1 0000

NAME:SEND-TST

DECL :RCPU I/Q/D/B/TIC: 1 BI/BY/W/D: BY

DECL :ERRO 1/Q/D/BITIC: Q BI/BY/W/D: BY

DECL :TCAP 1/Q/D/B/TIC: Q BI/BY/W/D: BY

000E 'L =RCPU Receiving CPU

000F T FY 246

0010 :

0011 L KB 246 SF OB:

0012 :JU OB 203 "Test transmitting capacity"
0013 :

0014 L FY 248 Error

0015 T =ERRO

0016 L FY 249 Transmitting capacity

0017 T =TCAP

0018 BE

CPU 948 Programming Guide
C79000-G8576-C848-04

10-57

Applications

FB 204: Receiving a data field

FB 204
RECEIVE
(1) —TCPU ERWA — (2
RCAP —(3)
TNDB —— (4)
STAA — (5)
ENDA —— (6)

Parameter Significance Parameter Data Parameter
name type type field
TCPU TransmittingCPU I BY FY 246
ERWA Error/warning Q BY FY 248
RCAP Receivingcapacity Q BY FY 249
TNDB Type (H byte) andiumber (L byte) of the Q W FW 250

destinatiordatablock
STAA Address of the first received data word Q W FW 252
(start address)
ENDA Address of the last received data word Q W FW 254
(end address)
Continued on the next page
CPU 948 Programming Guide
10 - 58 C79000-G8576-C848-04

Applications

FB 204 continued:
FB 204 LEN=45
SEGMENT 1 0000
NAME:RECEIVE
DECL :TCPU 1/Q/DIBITIC: | BI/BY/W/D: BY
DECL :ERWA I/Q/D/BITIC: Q BI/BY/W/D: BY
DECL :RCAP I/Q/D/BITIC: Q BI/BY/W/D: BY
DECL :TNDB 1/Q/D/BITIC: Q BI/BY/W/D: W
DECL :STAA 1/Q/D/BITIC: Q BI/BY/W/D: W
DECL :ENDA I/Q/D/BITIC: Q BI/BY/W/D: W
0017 'L =TCPU Transmitting CPU
0018 T FY 246
0019 :
001A 'L KB 246 SF OB:
001B JU OB 204 "Receive a data field"
001C :
001D 'L FY 248 Error/warning
001E T =ERWA
001F L FY 249 Receiving capacity
0020 T =RCAP
0021 L FW 250 DB type, DB no.
0022 T =TNDB
0023 L FW 252 Start address
0024 T =STAA
0025 L FW 254 End address
0026 T =ENDA
0027 ‘BE
FB 205: Testing the receiving capacity
FB 205
RECV-TST
(1) —TCPU ERRO —(2)
RCAP — (3)

Parameter Significance Parameter Data Parameter
name type type field
TCPU TransmittingCPU I BY FY 246
ERRO Error Q BY FY 248
RCAP Receivingcapacity BY FY 249

CPU 948 Programming Guide
C79000-G8576-C848-04 10 -59

Applications

FB 205 continued:

FB 205 LEN=30

SEGMENT 1 0000

NAME:RECV-TST

DECL :TCPU I/Q/D/B/T/C: | BI/BY/W/D: BY
DECL :ERRO 1/Q/D/BIT/C: Q BI/BY/W/D: BY
DECL :RCAP 1/Q/D/BITIC: Q BI/BY/W/D: BY

000E 'L =TCPU Transmitting CPU
OO0OF T FY 246
0010 :
0011 L KB 246 SF OB:
0012 JU OB 205 "Test receiving capacity"
0013 :
0014 L FY 248 Error
0015 T =ERRO
0016 L FY 249 Receiving capacity
0017 T =RCAP
0018 BE
10.9.2
Transferring Data Blocks In this example, the function block TRAN DAT (FB 110) transfers a

selectable number of data fields from a data block in one CPU to the
data block of the same type and same number in a different CPU.
The FB number (FB 110) has been selected at random and you can
use other numbers.

Programming FB 110 is described first followed by the application of
FB 110.

Programming FB 110

FB 110: Transferring a data block

Task

The data area to be transferred is stipulated by the input parameter FIRB
(= number of the first data field to be transferred) and NUMB (= number of
data fields to be transferred). A data field normally consists of 32 data
words. Depending on the data block length, the last data field may be less
than 32 data words.

The transfer is triggered by a positive-going edge at the start input STAR.

If the output parameter REST is zero after the transfer, this means that

the function block TRANDAT was able to send all the data fields (according
to the NUMB parameter).

Continued on the next page

CPU 948 Programming Guide
10-60 C79000-G8576-C848-04

Applications

FB 110 continued:

If, however, the REST output parameter has a value greater than zero, this
means that the function block must be called again, for example in the next
cycle. This means that you or the user program can only change the set
parameters (i.e. the values of all parameters) when the REST parameter
indicates zero showing that the data transfer is complete.

You can call the function block TRANDAT several times with different
parameters. In this case, various data areas are transferred simultaneously
(interleaved in each other). The special function organization blocks for
multiprocessor communication OB 202 to OB 205 can also be used "directly".
This possibly is illustrated in the application example.

If the SEND function (OB 202) is not correctly executed with the TRANDAT
function block, the error number is entered in the output parameter ERRO, the
RLO ="1" and the output parameter REST is set to '0’.

The TRANDAT function block uses flag bytes FY 246 to FY 251 as scratchpad
flags. All other variables whose value is significant as long as the output
parameter REST =0’ continue to have memory assigned to them using the
mechanism of formal/actual parameters. This is necessary to allow various
data blocks to be transferred simultaneously.

Implementation

FB 110

TRAN-DAT
(1) —STAR ERRO —(6)
(2) —RCPU REST —7)
(3) —TNDB CUBN —(8)
(4 —NUMB EDGF ——(9)
(5 — FIRB

Continued on the next page

CPU 948 Programming Guide
C79000-G8576-C848-04 10-61

Applications

FB 110 continued:

Parameter Significance Parameter Data
name type type
STAR Start the transfer of the data block on a positive-going edge | Bl
RCPU ReceivingCPU I BY
TNDB Type (H byte) anciumber (L byte) of the data block to be I W

transferred.
NUMB Number of data fields to be transferred. I BY
FIRB Number of the first data field to be transferred. I BY
ERRO Error Q BY
REST Number of data fields still to be transferred. Q BY
cuBN?Y | currentfield number Q BY
EDGFY |Edgeflag Q BI
D nternal scratchpad flag, not intended for evaluation
FB 110 LEN=89

SEGMENT 1 0000
NAME:TRAN-DAT

DECL :STAR 1/Q/D/B/T/C: | BI/BY/WI/D: BI
DECL :RCPU I/IQ/D/BITIC: | BI/BY/W/D: BY
DECL :TNDB I/Q/D/B/T/C: | BI/BY/W/D: W
DECL :NUMB I/Q/D/B/T/C: | BI/BY/W/D: BY
DECL :FIRB 1/Q/D/BIT/C: | BI/BY/W/D: BY

DECL :ERRO 1/Q/D/BIT/C: Q BI/BY/W/D: BY
DECL :REST I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :CUBN I/Q/D/BITIC: Q BI/BY/W/D: BY
DECL :EDGF 1/Q/D/BITIC: Q BI/BY/WI/D: BI

0020 'L =RCPU Assign parameter field for
0021 T FY 246 SF OB 202

0022 'L =TNDB

0023 T FW 247

0024 :

Continued on the next page

CPU 948 Programming Guide
10 -62 C79000-G8576-C848-04

Applications

FB 110 continued:

0025 'L =REST First send any remaining
0026 L KB 0O data fields

0027 ><F

0028 JC =TRAN

0029 :

002A AN =STAR Positive edge at start
002B ‘RB =EDGF input ?

002C :ON =STAR

002D ‘0 =EDGF

002E JC =GO0D

002F 'S =EDGF

0030 :

0031 'L =NUMB Initialize the global flags
0032 T =REST after postive edge at
0033 'L =FIRB START input

0034 T =CUBN

0035 :

0036 L =REST As long as REST ><0,
0038 LOOP :L KF+0 continue to attempt to
0039 1=F send data fields

003A JC =GOO0D

003B TRAN L =CUBN

003C T FY 249

003D L KB 246 SF OB:

003E JU OB 202 "Send a data field"
003F 'L FY 250

0040 :JM =ERRO Abort if error

0041 JP =GOOD Abort if trans-cap. = 0
0042 L =CUBN Increment

0043 l 1 field number

0044 T =CUBN

0045 L =REST Decrement number of
0046 :D 1 remaining data fields
0047 T =REST

0048 :JU =LOOP

0049 :

004A GOOD :A F 0.0 Regular end of program:
004B ‘AN F 0.0

004C L KB 0 RLO =0,ERRO =0
004D T =ERRO

004E ‘BE

004F

0050 ERRO :T =ERRO Program end if error:
0051 'L KB 0

0052 T =REST RLO =1, ERRO contains error number
0053 ‘BE

CPU 948 Programming Guide
C79000-G8576-C848-04 10-63

Applications

Application of FB 110

Task

Implementation

Application of FB 110 on the S5-155U

You want CPU 1 to transfer data blocks DB 3 (data fields 2 to 5) and DB 4
(data fields 1 to 3) to CPU 2 during the cyclic user program. The RECEIVE
function (OB 204) is also called in the cyclic user program.

Function CPU1 CPU 2
called in: called in:
Initialization (OB 200) OB 20 -
Send organization (FB 1) OB 1 -
Receive organization (FB 2) - OB1
exists: exists:
Send DB DB 3; DB 4 -
Receive DB - DB 3; DB 4

the second data block.

FB 1

SEGMENT 1 0000
NAME:S-OR

0000 'L KB 2
0001 T FY O
0002 'L KY 1,3
0003 T FW 1
0004 'L KB 4
0005 T FY 3
0006 'L KB 2
0007 T FY 4
0008 :

The user program in function block FB 1 of CPU 1 contains two calls for the
function block TRANDAT in each case with different sets of parameters.
The transfer of the first data block DB 3 begins after a positive edge

after input | 2.0. A positive edge at input | 2.1 starts the transfer of

ToCPU 2 ..

.. from data block DB 3

LEN=yy

.. four data fields

.. send from 2nd data field

Continued on the next page

10-64

CPU 948 Programming Guide
C79000-G8576-C848-04

Applications

Application example continued:

0009 JuU FB 110
000A NAME :TRAN-DAT
000B STAR : 12.0
000C RCPU : FY O
000D TNDB : FW 1
000E NUMB : FY 3
00O0F FIRB : FY 4
0010 ERRO: FY 5
0011 REST : FY 6
0012 CUBN : FY 7
0013 EDGF : F 8.0
0014 :

0015 :

0016 :JC =HALT
0017 :

0018 L KB 2
0019 T FY 10
001A 'L KY 1,4
001B T FW 11
001C L KB 3
001D T FY 13
001E 'L KB 1
001F T FY 14
0020 :

0021 JuU FB 110
0023 NAME :TRAN-DAT
0024 STAR : 12.1
0025 RCPU : FY 10
0026 TNDB : FW 11
0027 NUMB : FY 13
0028 FIRB : FY 14
0029 ERRO : FY 5
002A REST : FY16
002B CUBN : FY17
002C EDGF : F8.1
002D :

002E :

002F :JC =HALT
0030 ‘BEU

0031 :

0032 HALT :

0033 :

0034

0035

0036

00xx ‘BE

.. from data block DB 4

Abort after error

ToCPU 2 ..

.. three data fields

.. send from 2nd data field

Abort after error

The error handling takes place here
(e.g. stop, message output
on the printer, ...)

Continued on the next page

CPU 948 Programming Guide
C79000-G8576-C848-04

10 -65

Applications

FB 2

SEGMENT 1 0000
NAME:RECV-DAT

Application example continued:

In CPU 2, the RECEIVE function (OB 204) called by FB 2 enters each transmitted
data field into the appropriate data block. It may take
several cycles before a data block has been completely received.

LEN=yy

0000 'L KB 1 Receive data from CPU 1
0001 T FY 246
0002
0003 SCHL :L KB 246 SF OB:
0004 JUu 0OB204 "Receive"
0005 JM =ERRO Abort if error
0006 'L FY 249 The RECEIVE function is
0007 'L KB 0 called until there are no
0008 ><F further of data fields in
0009 JC =LOOP the buffer, i.e. the
000A : receiving capacity = 0.
000B ‘BEU
000C ERRO:
000D : The error handling takes place here
000E (e.g. stop, message output
OO0OF on printer, ...)
00xx ‘BE
10.9.3
Extending the IPC
Flag Area
The problem In the S5-135U/155U programmable controllers, each of the 256 flag
bytes of a CPU can become an input or output IPC flag by making an
entry in data block DB 1. This, however, reduces the number of
"normal” flag bytes. To transfer a data record (several bytes) other
mechanisms are also required (semaphore variable or DX 0 parameter
assignment "transfer IPC flags as a block") are necessary to prevent
the receiver from receiving a fragmented data record.
CPU 948 Programming Guide
10 - 66 C79000-G8576-C848-04

Applications

The solution Consecutive data words of a DB or DX data block are defined from
DW 0 onwards as "IPC data words". Each link is assigned its own
data block and is totalindependent of the other links.

At the beginning of the cycle block, the IPC data words are received with
the aid of the special function organization blocks for multiprocessor
communication. This is followed by the "regular” cyclic program, that
evaluates the received data and generates the data to be sent. At the end
of the cycle, this data is then sent with the aid of the special organization
blocks for multiprocessor communication. It can therefore be received by
the other CPUs at the beginning of their cycles.

The following applies for each of the maximum 12 possible links
regardless of the other links:

e The transmitting CPU is only active when the receiving CPU has
read out all the "old" data from the COR 923C buffer.

e The receiving CPU is only active when the transmitting CPU has
written all the "new" data in the COR 923C buffer.

This means that the receiving CPU can either receive a complete new
data record or the old data record remains unchangedixing of
"old" and "new" data.

Data structure Which data words (for the data word area below) are to be transferred
from which CPU to which CPU is described in the link list (see the table
on the following page). This is located in an additional data block that
must exist in all the CPUs involved.

The data word areas always begin from data word DW 0, and their
lengths are specified in data fields. Remember the following points:

* A complete data field consists of 32 data words.

e If the last data field is "truncated", i.e. it contains between 1 and 31
data words, less data words are transferred.

e If asend data block is longer than the number of fields of data
specified in the link list, the excess data words can be used in the
corresponding CPU.

« If areceive data block is longer than the received data word area,
the excess data words can be used in the corresponding CPU.

CPU 948 Programming Guide
C79000-G8576-C848-04 10 - 67

Applications

Structure of the

link list
Table 10-8 Link list for extending the IPC flag area
SUB-LIST 1 SUB-LIST 2
Link DB type DB No. of data
number fields

from CPU 1 DWO S1 DW 16 S1

to...

...CPU2 DW 1 DW 17 2

...CPU3 DW 2 DwW 18 3

...CPU 4 DW 3 DW 19 4

from CPU 2 DW 4 S DW 20 S2

to ...

..CPU1 DW5 DW 21 1

..CPU3 DW 6 1Y 10Y DW 22 3 2V
..CPU4 DW 7 DW 23 4

from CPU 3 Dw 8 S3 DW 24 S3

to...

..CPU1 DW 9 DW 25 1

...CPU2 DW 10 DW 26 2

..CPU4 DW 11 DW 27 4

from CPU 4 DWw 12 S4 DW 28 S4

to...

..CPU1 DW 13 DW 29 1

...CPU2 DW 14 DW 30 2

...CPU3 DW 15 Dw 31 3

215 20 215 20

D Refer to the example on the following page

10 - 68

CPU 948 Programming Guide
C79000-G8576-C848-04

Applications

The link consists of two similarly structured sub-lists, each with 16 data
words. For each of the four sender CPUs (S1, S2, S3, S4) three entries are
required to describe a link.

e Number of data fields
The number of data fields specifies the size (= the number of data
words) of the data word area to be transferred. (If links do not exist
or you do not require them, enter O for the number of data fields,
and for the DB type and DB number.)

» DB type

Type of data block containing the data word area to be transferred.

¢ DB number

Number of the data block containing the data word area to be trans-
ferred.

As shown in the table, these entries can be read in and completed in lines.
If, for example, you want to transfer the first two data fields in data block
DB 10 from CPU 2 (S2) to CPU 3, make the following entries:

CPU 2 6 2 sends ..

DWZZ‘ 3\ 2\ DWG‘ 1\ 10

I L

.to CPU 3 2 data fields from DB 10

Sub-list 2 is identical to the assignment ("manual” mode) required for
the INITIALIZE function (OB 200). Within the data block, sub-list 2
must occupy data words 0 to 15 and sub-list 2 data words 16 to 31.
You must not alter the entries shown in bold face.

CPU 948 Programming Guide
C79000-G8576-C848-04 10-69

Applications

Program structure

10-70

During restart, one of the CPUs calls the INITIALIZE function (OB
200) to reserve exactly the same number of coordinator memory fields
per link as data fields to be transmitted on this link.

To send and receive data word areas, each CPU uses two function
blocks:

FB no. Name Function

FB 100 SEND-DAT Send data word areas
to the other CPUs

FB 101 RECV-DAT Receive data word areas
from the other CPUs

These FB numbers have been selected at random and you can use
others.

The function blocks SEND-DAT and RECV-DAT read the link list to
determine which data word areas are to be sent from or received by which
data blocks. Thevhole data word area is always sent or received. If this

is not possible owing to insufficient transmitting or receiving capacity, the
send or receive function is not executed.

Note

This example (IPC flag extension using function blocks
SEND-DAT and RECV-DAT) can only run correctly when the
special function organization blocks for multiprocessor
communication OB 202 to OB 205 are not called in any of the
CPUs.

The function blocks SEND-DAT and RECV-DAT contain the
special function organization blocks for multiprocessor
communication OB 202 to OB 205. You cannot call these
organization blocks outside SEND-DAT/RECV-DAT.

CPU 948 Programming Guide
C79000-G8576-C848-04

Applications

Restart OB to reserve
the buffer on the
923C coordinator

Cyclic user program

extended by the calls for

the RECV-DAT and SEND-DAT
function blocks.

Function block: SEND-DAT
Send data blocks

Function block: RECV-DAT
Receive data blocks

Data block containing
the link list

Maximum three input and
three output blocks

1)

evalu-
ated

by ...

OB 20

. 1)
JU OB 200
BE
OB 1
C DB XXX
JU FB 101
C DB xxx
JuU FB 100
BE
FB 100
BE
FB 101
BE
DB xxx
KS = S1
KY =1,.
DB yyy
or/and
DX zzz

Fig. 10-6 Overview of the blocks required in each CPU

CPU 948 Programming Guide
C79000-G8576-C848-04

OB 200 must
only be called
in one processor.

10-71

Applications

Programming function
blocks

FB 100: Sending data word areas

Before you call FB 100, the data block containing the link list must be

open. The function block SEND-DAT requires the number of the CPU on which
it is called in order to evaluate the information contained in the link

list.

If the SEND function (OB 202) is not executed correctly in the function

block, the error or warning number is transferred to the output parameter
ERWA and RLO is set to 1.

If the input parameter CPUN (CPU number) is illegal, ERWA has the value 16

(bit no. 4 = 1).
The function block SEND-DAT uses flag bytes FY 239 to FY 251 as scratchpad
flags.
FB 100
SEND-DAT
(1) —€PUN ERWA —(2)

Parameter Significance Parameter Data
name type type
CPUN Number of theCPU on which FB 100 is called. D KF

The numbers 1 to 4 are permitted.
ERWA Erroriwarning (see SEND function/ Q BY
OB 202)
FB 100 LEN=90

SEGMENT 1 0000
NAME:SEND-DAT

DECL :CPUN I/Q/D/BITIC: D KM/KH/KY/KS/KF/KT/KC/KG:KF
DECL :ERWA I/Q/D/BITIC: Q BI/BY/WID: BY

000B LW =CPUN CPUN=CPUN-1

0ooC L KB 1 Error if:

000D -F

000E [IM =ERWA CPUno.<1

000F L KB 3

0010 >F

0011 JC =ERWA CPU no. >4

0012 ‘TAK

Continued on the next page

CPU 948 Programming Guide
10-72 C79000-G8576-C848-04

Applications

FB 100 continued:
0013 :
0014 SLW 2 CPUN=CPUN*4
0015 T FY 245 Base address
0016 :
0017 L KB 1
0018 T FY 244 Link counter
0019 :
001A LOOP L FY 245 Base address
001B L FY 244 + counter
001C +F
001D T FW 240
001E ‘ADD BN+16 + offset
001F T FW 242
0020 :
0021 :DO FW 242
0022 L DRO Number of reserved
0023 T FY 239 fields=07?
0024 L KB 0
0025 I=F
0026 JC =EMPT
0027 :
0028 B FW 242
0029 L DLO No. of the receiving CPU
002A T FY 246
002B L KB 246 SF OB:
002C JU OB 203 "Test sending capacity"
002D L FY 248 Abort if error
002E JC =OBER
002F :
0030 'L FY 249 Transmitting capacity >< no.
0031 L FY 239 of reserved fields?
0032 ><F
0033 :JC =EMPT
0034 :
0035 L KB 0 Field counter
0036 T FY 249
0037 :
0038 B FY 240
0039 L DW 0 Type and number of
003A T FW 247 the source DB
003B :
003C TRAN L KB 246 SF OB:
003D JU OB 202 Send a data field
003E 'L FY 250 Abort if error/warning
003F :JC =0OBER
0040 :
0041 L FY 249 Field no. = field no. + 1
0042 | 1
0043 T FY 249 All data fields transferred?
0044 L FY 239
0045 <F
0046 :JC =TRAN
0047 :
Continued on the next page

CPU 948 Programming Guide
C79000-G8576-C848-04 10-73

Applications

FB 100 continued:

0048 EMPT L FY 244 Increment

0049 1l 1 link counter

004A T FY 244

004B L KB 4 All links

004C <F processed ?

004D :JM =LOOP

004E 'L KB O Regular program end:
004F T =ERWA RLO =0, ERWA =0
0050 :BEU

0051 :

0052 ERWA L KB 16 Program end if error:
0053 OBER T =ERWA RLO =1, ERWA contains
0054 ‘BE error/warning number

FB 101: Receive data word areas

Before you call FB 101, the data block containing the link list must

already be open. The function block RECV-DAT requires the number of the CPU
in which it is called in order to evaluate the information contained in the

link list.

If the RECEIVE function (OB 204) is not correctly processed within the

function block, the corresponding error or warning number is transferred to

the output parameter ERWA and the RLO is set to 1. If the input parameter CPUN
is illegal, ERWA has the value 16 (bit no. 4 = 1).

The RECV-DAT function block uses flag bytes FY 242 to FY 255 as scratchpad

flags.
FB 101
RECV-DAT
(1) —€PUN ERWA —(2)

Parameter Significance Parameter Data
name type type
CPUN Number of theCPU, on which FB 101 is called. D KF

The numbers 1 to 4 are permitted.
ERWA Erroriwarning (see RECEIVE function / Q BY
OB 204)

Continued on the next page

CPU 948 Programming Guide
10-74 C79000-G8576-C848-04

Applications

FB 101 continued:

FB 101 LEN=88
SEGMENT 1 0000

NAME:RECV-DAT

DECL :CPUN I/Q/D/BITIC: D KM/KH/KY/KS/KF/KT/KC/IKG: KF
DECL ::ERWA I/Q/D/BITIC: Q BI/BYW/D: BY

000B LW =CPUN Error if:

000C L KB 1

000D <F

000E :JC =ERWA CPU no. <1

000F Lw =CPUN

0010 L KB 4

0011 >F

0012 JC =ERWA CPU no. >4

0013 :

0014 L KB 1 Link counter

0015 T FY 242

0016 :

0017 L KB 16

0018 T FW 244 Pointer to sub-list 2
0019 :

001A SRCH L FW 244 Search sub-list 2 until
001B o 1 the next entry for the
001C T FW 244 receiving CPU with the
001D :DO FW 244 number 'CPUN' is found.
001E L DLO

001F Lw =CPUN

0020 ><F

0021 :JC =SRCH

0022 :

0023 :DO FW 244

0024 L DRO Number of reserved
0025 T FY 243 memory fields =0 ?
0026 L KB O

0027 A=F

0028 JC =EMPT

0029 :

002A L FW 244 Determine the number of the
002B L KM 00000000 00001100 transmitting CPU from the
002D AW pointer to sub-list 2.
002E SRW 2

002F | 1

0030 T FY 246

0031 :

0032 L KB 246 SF OB:

0033 JU OB 205 "Test receiving capacity"”
0034 L FY 248

0035 JJC =O0BER Abort if error

0036 :

Continued on the next page

CPU 948 Programming Guide

C79000-G8576-C848-04 10-75

Applications

FB 101 continued:

0037 iL FY 249 Receiving capacity = number

0038 iL FY 243 of reserved

0039 ><F memory fields ?

003A JC = EMPT

003B :

003C RECV L KB 246 SF OB:

003D JU OB 204 "Receive a data field"

003E ‘L FY 248

003F :JM =OBER Abort if error/warning

0040 L FY 249 if receiving capacity = 0

0041 L KB 0O process next

0042 ><F link

0043 :JC =RECV

0044 :

0045 EMPT L FY 242 Increment

0046 l 1 link counter

0047 T FY 242

0048 'L KB 4 All links

0049 <F processed ?

004A :JM = SRCH

004B 'L KB 0 Regular program end:

004C T =ERWA RLO=0,ERWA =0

004D ‘BEU

004E :

004F ERWA L KB 16 Program end if error:

0050 OBER :T =ERWA RLO =1, ERWA contains

0051 ‘BE error/warning number

CPU 948 Programming Guide

10-76 C79000-G8576-C848-04

Applications

Application example

Application of FB 100/101 on the S5-155U

Task

You want to exchange data between three CPUs:

- From CPU 1to CPU 2: data block DB 3, DW 0 to DW 127 (= 4 data fields)
- From CPU 1to CPU 3: data block DX 4, DW 0 to DW 63 (= 2 data fields)

- FromCPU 2to CPU 1
and CPU 3: data block DB 5, DW 0 to DW 95 (= 3 data fields)

DX 4, 2 data fields

CPU 1
A
DB 5, DB 3,
3 data 4 data
fields fields
DB 5, 3 data fields
CPU 2 CPU 3

Fig. 10-7 Data exchange between 3 CPUs

Function block FB 1 is the interface for the cyclic user program on all
three CPUs. CPU 1 calls the INITIALIZE function (OB 200) during the cold
restart. The link list is in data block DB 100.

Continued on the next page

CPU 948 Programming Guide
C79000-G8576-C848-04

10-77

Applications

Implementation

1. Loading blocks

Application example continued:

The following blocks must be loaded in the indivitual CPUs:

Function CPU1 CPU 2 CPU 3

Restart OB OB 20 — —
User program FB 1 FB 1 FB 1
FB: SEND-DAT FB 100 FB 100 FB 100
FB: RECV-DAT FB 101 FB 101 FB 101
Link list DB 100 DB 100 DB 100
Input DB DB 5 DB 3 DB 5; DX 4
Output DB DB 3; DX 4 |DB 5 —

2. Creating the link list

The link list is created and entered in data block DB 100:

DB100 LEN=37

PAGE 1

——Sub-list1 ——

0: KS ='S1 Send from CPU 110 ..

1: KY =001,003; ..CPU 2 (DB 3)

2. KY = 002,004, .. CPU 3 (DX 4)

3: KY = 000,000;

4. KS=S2 ; Send from CPU 2 to ..

5: KY = 001,005; ..CPU 1 (DB5)

6: KY = 001,005; ..CPU 3 (DB 5)

7 KY = 000,000;

8: KS ='S37;

9: KY = 000,000;

10: KY = 000,000;

11: KY = 000,000;

12: KS ='S4’;

13: KY = 000,000;

14: KY = 000,000;

15: KY = 000,000;

Continued on the next page

10-78

CPU 948 Programming Guide
C79000-G8576-C848-04

Applications

Application example continued:

——Sub-list1-—

16: KS ='817,

17: KY =002,004,
18: KY =003,002;
19: KY =004,000;
20: KS =82

21: KY =001,003;
22: KY =003,003;
23: KY =004,000;
24: KS ="S3;;

25: KY =001,000;
26: KY =002,000;
27: KY =004,000;
28: KS =S4,

29: KY =001,000;
30: KY =002,000;
31: KY =003,000;

OB 20

SEGMENT 1
0000 :
0001
0002
0003
0005
0006
0008
0009
000A KB 246

000B Ju OB 200
0oocC :

000D ‘AN F 2525
000E :‘BEC

000F :

0010

0011

0012

0013

0014

KB 2
FY 246

=

KY 1,100
FW 248
KF+16
FW 250

B R

00xx ‘BE

Data words DW 16 to DW 31 contain the assignment list required for the
manual INITIALIZATION function (OB 200).

3. Program OB 200 call in the start-up block OB 20 for CPU 1

OB 200 is called by the OB 20 shown below in CPU 1 during the restart.

Send from CPU 1 to ..
.. CPU 2 (four data fields)
.. CPU 3 (two data fields)

Send from CPU 2 to ..
.. CPU 1 (three data fields)
.. CPU 3 (three data fields)

LEN=yyABS

Manual initialization of
the pages

The assignment list is entered
in DB 100 from data word 16
onwards

SF OB:
"Initialize"

Block end if there is no
initialization conflict

The error handling routine
is inserted here if an
initialization clonflict
occurs (e.g. stop, output
message on printer, or ...)

Continued on the next page

CPU 948 Programming Guide
C79000-G8576-C848-04

10-79

Applications

FB 1

SEGMENT 1 0000
NAME:EM-SE

0000

0000 .C DB100
0001 JuU FB101
0002

0003 NAME :RECV-DAT
0004 CPUN : KF+1
0005 ERWA : FYO
0006 JC =ERWA
0007 :

0008

0009

000A

00ooB

0ooC

000D

000E

000F :

0010 .C DB 100
0011 JU FB100
0012 :

0012 NAME :SEND-DAT
0013 CPUN : KF+1
0014 ERWA : FYO
0015 :JC =ERWA
0016 ‘BEU

0017

0018 ERWA :

0019

001A

001B

001C

00xx ‘BE

Application example continued:

4. Program calls for the function blocks in FB 1 of the CPUs:

The user program on each CPU is extended by the RECV-DAT and SEND-DAT call.
Function block FB 1 shown below is for CPU 1. For the other CPUs, the input
parameter CPUN (CPU number) must be modified.

LAN=yy

Link list DB 100
Receive the input
data blocks

Abort if error/warning

Here, the cyclic user program that
reads data from the input data
blocks and enters data in the
output data blocks is inserted.

Link list DB 100
Send the output
data blocks

Abort if error/warning

Run an error handling routine
following an error/warning (here,
the error handling routine is
inserted, e.g. stop, output error
message on printer or screen, or ..)

10 -80

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Interfaces and Functions 1 1

Contents of Chapter 11

111

11.2

11.2.1
11.2.2
11.2.3

11.3

11.4

11.4.1
11.4.2
11.4.3

11.5

11.5.1
11.5.2
11.5.3
11.5.4

OV IV BW . . . ot e e 11-4

PG FUNCHIONS. e e e e e 11-5

INfO .o e 11-6
Installation. e 11-7
Program Test. e 11.- 8

Serial Link PG - PLC via 1st or 2nd Serial Interface. 11-16
Parallel Operation of Two Serial PG Interfaces 11 - 17
Installation. e 11-19

(@] 1= = 11 [0 o 11-19
Sequence in Certain Operating Situations i 11-21
PG Functionsviathe S5 BUS e 7.11-2
Application 11 - 27

How the PG Functions Work viathe S5BUS i 11-29
Installation and Getting Started -31. 11
Condition Codes Indicating Problems 11-35

CPU 948 Programming Guide
C79000-G8576-C848-04 11-1

Contents

11-2

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Interfaces and Functions 1 1

CPU 948 Programming Guide
C79000-G8576-C848-04

This chapter explains how to connect your PG to the CPU 948 and the
functions provided by the PG software with which you can test your
STEP 5 program.

If you only use the standard PG interface (1st serial PG interface) you
do not need to read Sections 11.4 and 11.5. These sections tell you
about further interfaces with which you can connect a PG to your
CPU. These sections also contain points to note if you use PG
functions on both interfaces.

11-3

Overview

11.1 Overview

11-4

You can load and test your user program using the online functions of
the STEP 5 software.

To use these functions, the CPU must be connected to the PG. The
following interfaces are available for this link:

e link via the serial standard interface "PG - PLC",

« link via the 2nd serial interface of the CPU 948,

e link via the S5 bus with SINEC H1.

The PG functions can operate simultaneously on the two serial
interfaces, however, via the SINEC H1 link, the PG functions can only

be usedlternately with those on the serial interfaces

PG functions provide the following support for installing and testing
your STEP 5 program:

Table 11-1 Functions for installation and testing

Function Section

Info

Size of the internal RAM and free "Memory configuration”
user memory

List of loaded blocks "Output DIR"

Display contents of memory "Output address"
words/bytes and I/O bytes

Memory management

Delete the whole memory "Overall reset"

Create more memory space "Compress memory

Manage blocks "Transfer/delete blocks"
Program test

Start/stop CPU "Start/stop"

Test the operation sequence in a "Status block"

block

Test single program steps "Program test"

Display signal state of process "Status variables"

variables

Output signals in the stop mode "Force"

Display/change process variables "Force variables"

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Functions

11.2 PG Functions

Calling and using functions

Checkpoint

CPU 948 Programming Guide
C79000-G8576-C848-04

Note

The terms used in this section for the PG functions may in som
cases differ from the terms in your PG software. Please refer t
your STEP 5 manual.

How to call and use the individual PG functions is described in the
manual for your PG.

The PG functions are performed at defichdckpointsin the CPU.
In the CPU 948 there are four different checkpoints. Each of these
checkpoints has certain test functions assigned to it.

Checkpoint "Stop"

You can access PG functions that are permissible only in the STOP
mode at checkpoint "stop" (e.g. "start", "overall reset
memory" in the stop mode).

The "stop" checkpoint is located immediatefore OB 39 is called

(the block for cyclic processing in the soft STOP mode).

, compress

Checkpoint "Cycle"

PG functions that you want to execute during cyclic program
processing are called at checkpoint "cycle" (e.g. "compress memory"
in the RUN mode, "stop", "status"). The "cycle" checkpoint is located
immediatelybefore the updating of the process image of the inputs

(PIN). At this point, the system program has not updated the PII yet.
Checkpoint "Test"

PG functions that you want to execute as soon as the next breakpoint
is reached are called at checkpoint "test" (in the program test), see
Section 11.2.3).

Checkpoint "General Functions"

This checkpoint exists both in the STOP and the RUN mode. Online
PG functions that can be executed in all operating modes of the
programmable controller are called at checkpoint "general functions".
These functions include "transfer block”, "delete block”, "status
variables". In the STOP mode, this checkpoint is located immediately
before OB 39 is called (the block for cyclic processing in the soft
STOP mode). During cyclic program processing, the checkpoint is
locatedafter updating the process image of the inputs and before
calling OB 1.

11-5

PG Functions

11.2.1
Info
Memory configuration The CPU 948 is available with two memory versions and you can
check the memory capacity using the PG function "memory
configuration”. With this function, the following information about
the CPU user memory is transferred to the PG (from PG software
version V6.0 upwards with "Delta diskette" for the CPU 948):
e memory capacity (640 Kbytes/1664 Kbytes)
¢ longest free block of user memory
e sum of all free blocks of user memory.
The PG software V6.3 with "Delta diskette" for the CPU 948 displays
the memory configuration exactly.
With older PG software versions (e.g. V3.0 or MT1.0) the memory
configuration is as for the CPU 946/947 (refer to Fig. 11-1). The total
memory configuration of the CPU 948 must then be calculated from
the total of the submodule values.
4 PLC info SIMATIC SS/OESOC\
Memory configuraon S5 155 U
Module Submod Type Start address End address Length
0 1 RAM 00000 OFFFF 64 KW
1 1 RAM 10000 2FFFF 128 Kw (1)
1 2 RAM 30000 AFFFF 128 KW
1 3 Submod. empty / not plugged in
2 1 Submod. empty / not plugged in
2 2 Submod. empty / not plugged in
2 3 Submod. empty / not plugged in
Longest free block of RAM . 314800 Words
Sum of all free blocks of RAM : 315664 Words
F1 F2 F3 F4 F5 F6 F7 F8
QUTP ADDR| MEM CONF| SYSPAR BSTACK ISTACK RETURN /

1) corresponds to the memory configuration of the CPU 948-1: 320 Kw = 640 Kbytes

Fig. 11-1 PG display of the memory configuration

CPU 948 Programming Guide
11-6 C79000-G8576-C848-04

PG Functions

Output DIR

Output address

11.2.2
Installation

Overall reset

Compress memory

CPU 948 Programming Guide
C79000-G8576-C848-04

If you want to display a list of all the programmed blocks on the PG
with the CPU 948, OB 0 is displayed instead of the system program
blocks.

The function is permitted in the operating modes RUN, SOFT STOP,
HARD STOP and can also be called within the "program test"
function.

With the "output address" function, you can display the contents of
memory and 1/0 addresses in hexadecimal format. You can access all
addresses (RAM, S5 bus, areas with no modules assigned). In the
process image area no ADF is triggered, in the I/O area there is no
QVZ

In the areas addressed as bytes (flags, process image) the high byte is
represented as 'FF'.

With the function "delete all blocks" you can carry out an overall reset
of the CPU from the PG. The overall reset is carried out
unconditionally (refer to Section 4.2).

This function shifts all valid blocks in the user memory to the
beginning of the user memory. Unused areas that resulted from
deleting or correcting blocks are eliminated. This function shifts
complete blocks to the beginning of the memory area. Ideally, one
large free area results from many small unused areas. You can load
blocks into the resulting large space.

You can call this function in the RUN and soft STOP modes. In the
RUN mode, DBs and DXs that are longer than 512 data wordetre
shifted. In the STOP modall blocks are shifted.

The blocks are shifted via a buffer so that no data is lost if there is a
power failure. If this buffer is insufficient for intermediate storage of a
block, compressing continues at the next unused memory area.
Consequently, some unused areas can still remain after compressing.

See also Section 8.3.

11-7

PG Functions

Transfer block

Delete block

11.2.3
Program Test

Start/stop

11-8

With this function you can transfer new or existing logic and data
blocks to the user memory of the CPU.

If a block already exists in the user memory of the CPU, it is declared
invalid and the new block becomes valid.

With this function you declare a logic or data block in the user
memory as invalid.

The space taken up by such blocks is released and can be used again.

When you use the START and STOP PG functions, operating the PG
corresponds to manual operation.

You can put the programmable controller into the STOP mode by
calling the STOP function while the controller is in the RUN mode.

PGSTP is marked in the control bit display. In multiprocessor
operation, the HALT control bit is set for the other CPUs.

You exit the SOFT STOP status with a COLD RESTART or WARM
RESTART. In the single processor mode, the CPU exits the stop
mode. In multiprocessor operation, the restart type is registered
initially (the NEUDF or WIEDF control bit is set). However, the CPU
stays in the soft STOP mode until all CPUs are initialized for
multiprocessing. With the next operation "system start” you can start
the programmable controller. This corresponds to switching the
coordinator switch to RUN.

You can call the START PG function in the multiprocessor mode to
select the restart type you want for all the CPUs you are using. After
that, you can start the programmable controller with the last CPU.

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Functions

Status block You can call the "status" PG function to test related operational
sequences (STEP 5 operations) in one block at any location in the user
program.

The current signal status of operands, the accumulator contents, and
the RLO are output on the PG screen for every executed operation in
the block (i.e., step mode). You can also use this function to test the
parameter assignment of function blocks (i.e., field operation):

The signal status of the actual operands is displayed.

Calling the function and When you call the "status" function on a PG and enter the type and
specifying a breakpoint number of the block you want to test (possibly including the nesting
sequence and search key), you enter a breakpoint.

When the "status" function is called during program processing in the
RUN mode, program processing continues until it reaches the
operation marked by the specified breakpoint in the correct nesting
sequence. Then the system program executes each of the monitored
operations up to the operation boundary, outputting the processing
results to the PG.

Note

The results of operation processing are not output in each of th
subsequent cycles.

Nesting and interruptions A sequence of operations marked by a breakpoint is completed even if
a different program execution level (e.g., an error OB or interrupt OB)
is activated and processed. With this you can see whether data has
been changed by nested program sections.

If an interruption in a nested program execution level puts the CPU

into the STOP mode, data is output up to the operation that was
executed before the program execution levels changed. The data of the
remaining operations is padded with zeros (the SAC is also 0).

The "status" function is possible in the following modes. RUN,
RESTART (OB 20, OB 21, OB 22) soft STOP (OB@&#ty).

DO FW/DO DW operations While the "status block" function is active, if the cursor is positioned
exactly on the operation following DO FW or DO DW, the message
"Statement not processed" appears on the PG.

Remedy.
Avoid positioning the cursor on the operation following DO FW or
DO DW.

CPU 948 Programming Guide
C79000-G8576-C848-04 11-9

PG Functions

Older PG software versions

Program test

Calling the program test
and specifying the first
breakpoint

DO FW/DO DW operations

11-10

If you move the cursor quickly in the "status block" function with
older PG software versions, each cursor movement means a wait of 3
to 5 seconds.

Remedy.
Cancel the status with the abort key, reposition the cursor and then
continue the status function again. There are then no waiting times.

You can call the "program test" function to test individual program
steps anywhere in your user program. When you do this, you stop
program processing and allow the CPU to process one operation after
the other. The PG outputs the current signal status of operands, the
accumulator contents, and the RLO for each operation executed.

You can call the "program test" function in the RUN and soft STOP
modes. To call the function, specify ttype andnumber of the block

you want to test. You may also want to include the nesting sequence.
At the PG, mark the first operation you want to test. This is how you
specify the first breakpoint.

When you specify the first breakpoint durimgpgram processing

the CPU continues processing the program until it reaches the
operation marked by the specified breakpoint. The operation is
executed up to the operation boundary. (The DO FW and DO DW
operations are processiedluding the substituted operation.) The

CPU checks to see if the current block nesting sequence matches the
block nesting sequence that you specified. If the nesting sequences do
not match, the CPU continues program processing.

If program processing does not reach the specified breakpoint (e.g.,
because the CPU goes into the STOP mode or there is a continuous
loop in the user program), the PG displays the message "Statement not
processed". However, the function and the specified stopping point
remain active.

If the nesting depths match, the output command is disabled (the
"BASP" LED is on) and the PG displays the data of the processed
operation. The CPU waits for further instructions from the PG.

When the "program test" function is active, the cursor cannot be
moved beyond the operation following DO FW/DO DW.

Remedy.

Cancel the function, skip the sequence of operations mentioned above
and set a new breakpoint after the operation following

DO FW/DO DW

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Functions

Calling test functions in SOFT
STOP

Executing the function and
specifying another
breakpoint

Cancelling the
breakpoint

Aborting the function

CPU 948 Programming Guide
C79000-G8576-C848-04

You can also call the "program test" function and specify an initial
breakpoint when the CPU is in the soft STOP mode. The CPU
remains in the soft STOP mode, and you can execute either a COLD
RESTART or a MANUAL WARM RESTART. The CPU processes
the program up to the marked operation and it proceeds as outlined
above.

Initial situation: the CPU has processed the 1st break point.
To continue the function, you have two possibilities:
1. Specify the next operation as fbowing breakpoint:

Move the cursor down to the next operation to specify the following
breakpoint.

The CPU continues by processing this operation up to the operation
boundary. Then the CPU outputs the data and waits for further
instructions from the PG. However, if a nested program

execution level interrupts operation processing at the following
breakpoint, the CPU processes the nested program first. Then

the CPU returns to the 2nd breakpoint that you specified.

Note

You cannot specify a following breakpoint when the CPU is in
the STOP mode.

2. Specify anew breakpoint:

At the PG, specify any other operation in the same block

or in a different block. The CPU continues program processing
until it reaches the new breakpoint. The CPU processes the
operation up to the operation boundary, then it outputs the data.

You can cancel the breakpoint by pressing the <BREAK> key if the
CPU has not reached this breakpoint. After that you can specify a new
breakpoint or terminate the program test.

You can abort the "program test" function during program processing
and when the CPU is in the soft STOP mode by calling the "program
test end"” function. The CPU goes into the STOP mode (or stays in
STOP). The STOP-LED flashes slowly. BEARBE is marked in the
control bits display. Afterwards a COLD RESTART is required.

The function is also aborted if an interface error occurs during the
"program test" function (i.e., the cable between the PG and the
programmable controller is disconnected).

11-11

PG Functions

Nesting with "interruptability
at operation boundaries”

While the "program test" function is running, the other program
execution levels can be activated, if the mode "interruptability at

operation boundaries" is set.

When an operation has been processed at a breakpoint and a different
program execution level is called at this point (e.g. an error OB or an
interrupt OB) this is first processed completely before the program is
continued at the next breakpoint.

Note

The system program reads data and outputs it at an operation
boundary. At this point, all related program execution levels haye
not yet been processed.

The sequence of the "program test" function is illustrated in Fig. 11-2.

Execute operatio
1st breakpoint—» | and
read data

WAIT STATE (output data)

Next < <<<<< Process interrupt, timed
breakpoint . interrupt, error OB
Execute operatio
and
read data

WAIT STATE (output data)

Process interrupt, timed
interrrupt, error OB

w < <<<<<
‘ |
|
|

Fig. 11-2 Sequence of "program test"

Note

If an operation has been processed at a breakpoint and activation
of a different program execution level is requested, you can set a
breakpoint at an operation in the different program execution
level (e.g., you can look at a QVZ error OB directly after an
operation that triggers a QVZ error).

CPU 948 Programming Guide

11-12 C79000-G8576-C848-04

PG Functions

Interruptions

CPU 948 Programming Guide
C79000-G8576-C848-04

Program processing STOP mode:

If an interruption occurs during program processing (e.g., multi-
processor stop, /0 not ready/STOP, error OB not programmed
etc.) before the program reaches the specified breakpoint, the CPU
goes into the STOP mode immediately. If you execute a COLD
RESTART or a MANUAL WARM RESTART, the "program test"
function is still in effect and the breakpoint is still set.

Program processing at breakpoint STOP mode:

If stop conditions occur at the breakpoint or following breakpoint
during program processing, the CPU goes directly into the soft
STOP mode and outputs the data.

If you do not specify a new breakpoint while the CPU is in the
STOP mode, the "program test" function is still in effect after the
restart.

While the "program test" function is in effect, you can execute the
following other functions on your PG

- Output ISTACK

- Output BSTACK
- Load block

- Read block

- Delete block

- Output block list
- Force variables

- Force

In rare situations, the function may be terminated and the CPU is

subsequently in the STOP mode.

11-13

PG Functions

Status variables

Sequence in RUN

Sequence in
SOFT STOP

Force

Sequence of the function

11-14

Using the "status variables" function, you can display the current
signal states of certain operands (process variables).

When a checkpoint is reached, the PG displays the present signal
status of the desired process variable. You can display the following
process variables: inputs, outputs, flags, timers, counters and data
words. No addressing error (ADF) is triggered in the process image
area.

If the function is active in the RUN mode, the signal states of the
operands are scanned and displayed when the checkpoint is reached.
The system program reads inputs fromphazess imageAs long as

the function is not aborted, signal states are updated cyclically.

Note

If the program does not reach the system checkpoint, the system
program does not output the signal states (e.g., in a continuou
loop in the user program).

When the function is active in the STOP mode, the signal states of the

operands are displayed when they exist at the system checkpoint. It is

important to note that the inputs are scanned and output directly on the
I/O module.

You can call the "force” PG function to manually set the output bytes
of the programmable controller to the signal states you want.

Note

The "force" function is only permitted in tiséop mode(SOFT
STOP mode or within the "program test" function).

When you call the "force” function in the STOP mode, the disable
output command signal is suppressed (i.e., the BASP LED iff).
digital peripherals are cleared (i.e., the value 0 is written to each
address). While the peripherals are being cleared, this function cannot
be interrupted. If any timeout signals (QVZs) occur while the outputs
are being cleared, they are ignored.

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Functions

Terminating the function

Force variables

Special features

CPU 948 Programming Guide
C79000-G8576-C848-04

The peripheral outputs are forced byte by byte.

In multiprocessor operation, you can foatkeperipheral outputs
(regardless of the peripheral assignment in DB 1).

Timeout errors that occur are detected when outputs are changed (PG
message "I/O module does not exist").

You can terminate the function by pressing the <BREAK> key on the
PG. The disable output command signal is active again (i.e., the
"BASP" LED is on). The function also ends if the CPU goes into the
RUN mode between calling the function and actually forcing outputs.

You can call the "force variables" function to look at the values of
operands (process variables) in the process image table and change
them. You can use this function in the RUN and soft STOP modes and
within the "program test" function. You can display the following
process variables: inputs, outputs, flags, timers, counters and data
words.

Any change becomes effective at the next system checkpoint, i.e.
regardless of the system checkpoint (start of cycle or end).

Note that the forced values can be overwritten again (e.g. by the user

program or by the process image updating).

Note
The PG forces process variables in bytes.

If you are forcingseveral operandsthe bytes are changed in
memory one after the other distributed over several cycles.

11-15

Serial Link PG - PLC via 1st or 2nd Serial Interface

11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface

11-16

For the serial link PG - PLC there are the following possibilities:

Direct link to the CPU via the standard cable.

Link to the PG via the coordinator COR C. In this case the PG is
connected via the cable to the coordinator. This means that the 1st
serial interface is no longer available.

Link to the PG via a PG multiplexer 757. The permitted cables can
be found in the system manual 135U/155U /2/.

Link to the PG via SINEC H1/L2/L1 and "swing cable"; the
COR C or PG multiplexer can be connected in the link.

CPU 948 Programming Guide
C79000-G8576-C848-04

Parallel Operation of Two Serial PG Interfaces

11.4 Parallel Operation of Two Serial PG Interfaces

You can use the second interface on the CPU 948 (S| @s a
interface in exactly the same way as the first interface.

To be able to link your PG via this interface, you must also order the
PG interface module in addition to your CPU 948 (the order number is
listed in the system manual 135U/155U /2/).

Interface =

submodule _
\INIEE PG HJ il
ol | 8| § ©

sn S\

00000000

[\

Fig. 11-3 Using the second interface as a PG interface

All the PG functions are available on both interfaces. The following
sections contain only the information that you require if you work
with PGs or OPs on both interfaces simultaneously.

CPU 948 Programming Guide
C79000-G8576-C848-04 11-17

Parallel Operation of Two Serial PG Interfaces

Examples of configurations

11-18

Jil
(:
1

—
— =

CPU 948 CP 143

0

LILEE

"swing cable"

Si1
— SI2

SINEC H1

PG connected via SINEC H1 and COR C
PG connected directly

Fig. 11-4

First example of a configuration

CPU 948
OO
Zif 000
o(ulamnng | ||l
==

SI 1 OP connected directly
(for operation and monitoring)

SI 2 PG connected directly
(for programming)

il]

D

Fig. 11-5

Second example of a configuration

CPU 948 Programming Guide
C79000-G8576-C848-04

Parallel Operation of Two Serial PG Interfaces

11.4.1
Installation

11.4.2
Operation

CPU 948 Programming Guide
C79000-G8576-C848-04

To use the second interface of the CPU 948 as a PG interface, follow

the steps outlined below:

Step

Action

1 Install the PG submodule in the CPU 948.

(refer to the instructions in the Appendix)

2 Connect the PG to the serial interface SI2.

If you use the second interface as a PG interface then initially the full
range of functions of the standard PG interface is available on each
interface. This remains true, providing the individual functions do not

influence each other, i.e.

, called sequentially one after the other.

To understand the exceptions to this, the PG functions can be divided

into three groups:

Group

Name

Short-running functions

Functions that execute a job and then
terminated.
(e.g. "transfer"”, "delete" etc.)

Long-running functions

Functions that process a fixed number
jobs:

- "force”,

- "program test".

Cyclic functions

Functions that execute a job repeated
until you terminate them:
- "status block",
- "status variables",
- "force variables".

Caution

With long-running and cyclic functions you must coordinate the
activation of these functions on both PGs.

11-19

are

of

ly

Parallel Operation of Two Serial PG Interfaces

The table below lists the pairs of functions that gaanot work with
simultaneously.

Table 11-2 Functions which cannot run simultaneously on both PGs

Function active You must not activatehis
on the first PG: function on the second PG
"Force" Any function

"Program test" Any function

A "status" function” "Force"

A "status" function" "Program test"

A "status" function” "Overall reset”

"Status" on long running blocks | Any function

or blocks which are not processed

If you attempt to start one of the illegal functions, the second PG
displays an error message, €'4S function disabled: function
active".

The same error message'Owverflow in data exchange with PG"
appears if the CPU 948 is currently processing functions of the other
PG, which prevent your PG accessing the CPU within the monitoring
time. Your input is then rejected. Repeat your input once the functions
are completed on the other PG.

Note
Owing to the different performances and range of functions, time
monitoring and the response to errors is not identical in all PGs
and OPs.

If you activate the function "memory configuration”
simultaneously on both PGs, the displays may be incorrect.

Caution
If you input, correct or delete blocks online on both PGs
A simultaneously, you must make sure that the blocks are not
protected by the other PG before you access them.
"Status" of a block which is not processed or "status" in the STOP
mode blocks the other interface for all functions.

CPU 948 Programming Guide
11-20 C79000-G8576-C848-04

Parallel Operation of Two Serial PG Interfaces

11.4.3
Sequence in Certain
Operating Situations

Parallel operation with If you work with PGs on both interfaces simultaneously, both PGs

short-running functions want to execute their functions independently of each other. As long
as they stagger the jobs they send to the CPU, the jobs will be
processed in the order in which they arrive.

The situation may, however, arise that the CPU 948 either receives

two jobs simultaneously or receives a job from the second PG while a
job from the first PG is still active.

Since simultaneous processing is not possible, the jobs are processed
one after the other; the second job is, however, delayed by such a short
time that it is hardly noticeable for the user.

When jobs are sent simultaneously, the sequence is as follows:

User on PG 1 CPU 948 User on PG 2
Input at keyboard of PG 1 — Input at keyboard of PG 2
Interpretation of input 1 in PG 1 Interpretation of input 2 in PG 2

Job 1 transferred to the CPU
, H PG 2 t wait
Job 1 processed in the CPU u,?trﬁ the Cpncjushagva'

processed job 1.

EE S

Results of job 1 transferred to PG 1
. . — Job 1 transferred to the CPU
Results of job 1 interpreted

Job 2 processed in the CPU

Results of job 1 displayed <!
on PG 1 — Results of job 2 transferred to PG 2

Results of job 2 interpreted at PG 2
Results of job 2 displayed on PG 2

Fig. 11-6 Handling simultaneous jobs

From this sequence, you can see that both PGs can operate
independently from each other, but that the one nevertheless affects
the other.

It is possible that both PGs process the same block simultaneously or
that a block currently being processed by one PG is deleted by the
other PG.

With this configuration, you must always take into account the way in
which input at one PG affects the other PG.

CPU 948 Programming Guide
C79000-G8576-C848-04 11-21

Parallel Operation of Two Serial PG Interfaces

Parallel operation with
long-running functions

Parallel operation with
cyclic functions

User on PG 1

PG 1 informs the CPU

of the variables
to be output.

PG 1 requests the
current data

PG 1 requests the
current data

PG 1 requests the
current data.

PG 1 must wait until
the CPU is free.

PG 1 requests the
current data.

The long-running functions "force" and "'program test" cannot
interrupt other functions and cannot be interrupted by other functions.
They can therefore not be executed parallel to other functions,

i.e. they are treated as a standard job "en bloc".

Cyclic functions can be executed both parallel to other cyclic and to
short-running functions. The following example shows the standard
sequence of the "status variables" function.

CPU 948 User on PG 2

rf PG 2 sends a job

PG 2 must wait until
the CPU is free.

Job sent by PG 2 is processed

1 PG 2 job complete

ST

Fig. 11-7 Typical sequence of a cyclic function and parallel short-running function

11-22

CPU 948 Programming Guide
C79000-G8576-C848-04

Parallel Operation of Two Serial PG Interfaces

CPU 948 Programming Guide
C79000-G8576-C848-04

To allow a second PG to send a job to the CPU, the status function is
interrupted between two requests and then continued on completion of
the inserted job. Since the interrupting function requires CPU

facilities, the whole CPU system facilities must be divided between

the two functions, e.g. the updating of the data output by the "status
variables" function takes somewhat longer.

With both PGs working simultaneously, the sequence shown in figure
11.8 results.

This also applies when cyclic functions are active on both PGs; the
two PGs then access the PLC alternately.

11-23

Parallel Operation of Two Serial PG Interfaces

User on PG 1 CPU 948 User on PG 2

PG 1 informs the CPU
of the variables —>
to be output.

i

PG 1 requests the
current data.

PG 1 requests the h
current data. ﬁ PG 2 sends the first job
PG 2 must wait until
_ the CPU is free.
PG 1 requests the DN
current data. First job of PG 2 is processed
PG 1 must wait until
the CPU is free.
Ly First job of PG 2 complete
j PG 2 sends the second job
PG 1 requests the -
current data. ’

Second job sent by PG 2 is processed

PG 1 must wait until
the CPU is free.

L
i

Second job of PG 2 complete

Fig. 11-8 Sequence of two parallel cyclic functions

CPU 948 Programming Guide
11-24 C79000-G8576-C848-04

Parallel Operation of Two Serial PG Interfaces

Special feature with cyclic If the interrupting function blocks the CPU 948 ("status" in a block
functions on both PGs that is not executed) the interrupted function is also blocked. It can
only be resumed when the interrupting function is terminated.

When working simultaneously with two PGs, the following sequence
results:

User on PG 1 CPU 948 User on PG 2

PG 1 informs the CPU

of the variables
to be output.
47

PG 1 requests the
current data.

(PG signals: status
processing active)

PG 1 requests the

-
current data. PG2 sends a new job
(e.g. "Status PB 9").
PG 2 must wait until
-

the CPU is free.

PG 1 requests the Job sent by PG 2 is processed

current data.

(PG signals: status processing active

.) (PG signals: statement
PG 1 must wait until not processed)
the CPU is free.

PG 2 aborts the STATUS function;
The CPU processes the abort reques

<+ PG 2 job complete

PG 1 receives new data

-

Fig. 11-9 Sequence when a function blocks the CPU 948

CPU 948 Programming Guide
C79000-G8576-C848-04 11-25

Parallel Operation of Two Serial PG Interfaces

General notes If "status variables", "force variables" (with the status display) or
"status" is output onneinterface and "compress memory", "delete
block" or "transfer block™ on thether, the status display can be

corrupted.

CPU 948 Programming Guide
11-26 C79000-G8576-C848-04

PG Functions via the S5 Bus

11.5 PG Functions via the S5 Bus

11.51
Application

CPU 948 Programming Guide
C79000-G8576-C848-04

The PG functions via the S5 bus allow you to load and control
S5-155U programmable controllers with the CPU 948 connected via
SINEC H1 using the PG 7xx. With the PG functions via the S5 bus,
the CPU 948 can be loaded up to eight times faster than via the PG
interface. The actual speed depends on the length of the blocks to be
transferred.

You can also use the PG functions via the S5 bus in the multiprocessor
mode.

The PG functions via the S5 bus are a component of the system
program of the CPU 948.

Caution

The PG functions via the S5 bus can only be afiethately

with the PG functions via the first and second serial interface (i
one function only at a time).With some functions,
(simultaneous/nested functions) data or blocks may be corrupted.

o

With the CPU 948 numbers232 are reserved for the PG
functions via the S5 bus. These numbers are not freely availab
for handling blocks.!

[0

11-27

PG Functions via the S5 Bus

Fig 11-10 shows a typical configuration for the multiprocessor mode.

0|C C| |0
0] g .
ERFAE 4 —
S5-155U Oéqmﬂ ?J 0 = f Ei - PG 7xx
* = il |
| s o B 8 8 B A el | o

|

- -

SINEC H1 Bus coupler Bus coupler

Fig. 11-10 Multi processor mode with a CP 143
(2xCPU 948, 1 x CP 143)

No parameter assignment No parameter assignment is necessary oG B¢ 948to use the PG
for the CPU functions via the S5 bus.
Technical requirements The PG functions via the S5 bus with the CPU 948 can only be used

when the PG and PLC are networked via SINEC H1.
You require the following:

e a PG 7xx with SINEC-H1 connection and with STEP 5 software
version 6.3 (ST) or 6.0 (MT) installed with the delta diskette
CPU 948

e inthe PLC (central controller or expansion unit EU 185), a CP 143
communications processor from version 06 (firmware version 3.0)
upwards with the base interface number 232 selected (the base in-
terface number is set in the hardware using jumpers and in the SY-
SID using COM 143).

CPU 948 Programming Guide
11-28 C79000-G8576-C848-04

PG Functions via the S5 Bus

11.5.2
How the PG Functions Work
via the S5 Bus

Using pages

Interface numbers (SSNR)

CPU 948 Programming Guide
C79000-G8576-C848-04

For communication with the CPUs, the CP 143 has four pages
(interfaces). If you do not use the PG functions via the S5 bus, all the
pages are available for communication using handling blocks (HDBs).

When using the S5 bus functions, the pages of the CPU are divided
into two pages for user HDBs and two pages for PG functions.

The pages for user HDBs can be used as previously for SINEC H1
applications. Remember, however, the special features listed in
Section 11.5.3.

The pages for PG functions are used by the CP 143 and the CPU 948
for the PG functions via the S5 bus and are therefore no longer
available for communication via handling blocks.

The PG functions via the S5 bus are activated automatically in the CP
143 when you set tHease interface numberof the CP t®32 or 236
(jumpersand SYSID). You then occupy interface numbers 232 to

239. Interface numbers 240 to 247 are intended for later expansions
(e.g. CPs with eight pages/interfaces).

/ /\7_/—\

/
232 SINEC H1
233 SINEC H1
CP 1
234 PG functions
235 PG functions
,<
236 SINEC H1
237 SINEC H1
- CP 2
238 PG functions
239 PG functions
s
reserved (8 pages)

//\7A
-
Fig. 11-11 Interface assignment of the PG functions via the S5 bus

11-29

PG Functions via the S5 Bus

Parameters for the CP 143 Assigning parameters for the CP 143 is described in the CP 143
manual (Further Reading /6/).

Caution

The interface numbers 232ff and 236ff must not be assigned o
A the CP 143 when operating with other SIMATIC CPUs. When

operating the CPU 948 with other CPs, the use of interface

numbers 232 to 247 is restricted.

Multiprocessor mode The PG functions via the S5 bus can also be used in the
multiprocessor mode with the CPU 948.

With oneCP 143two CPUs(948) can use the online functions in the
S5-155U. The CP 143 can also be used in the expansion unit (EU 185).
In the multiprocessor mod€PU 1 uses the page with SSNR 234
andCPU 2 the page with SSNR 235

If a second CP 143 is inserted and has appropriate parameters
assigned, this is reserved for the online functions via the S5 bus with
CPU 3 and CPU 4 (with SSNR 238 and 239).

CPU 948 Programming Guide
11-30 C79000-G8576-C848-04

PG Functions via the S5 Bus

11.5.3
Installation and Getting
Started

The CP 143 is used
exclusively for
PG Functions

During installation, remember the following alternatives.

If the CP 143 is used exclusively for PG functions via the S5 bus, no
further parameters other than the SINEC H1 parameters must be set.

After POWER UP, the PG functions are always available on CPU 948
via the S5 bus without the CP 143 previously being synchronized with
the HDB SYNCHRON (FB 125). The mode selector on the CPU
must, however, be set to RUN.

An "empty" CPU 948 can be started up via the S5 bus without an
OVERALL RESET.

After POWER UP, the CPU 948 automatically synchronizes the pages
assigned to it on the CP 143 for PG functions via the S5 bus.

The following steps are necessary for starting up:

Step

Action

1 Set the interface number (SSNR) on the CP 143 (jumpers):
Select the SSNR according to the existing hardware configuration as shown below.
Keep in mind the explanations in Further Reading /6/.

Possible hardware configuration Corresponding SSNR on the CP 143
1xCPU948,1 x CP 143 232
1x CPU 948, 2 x CP 143 232 on 1st CP, 236 on 2nd CP
2xCPU948,1 x CP 143 232
3xCPU 948, 2 x CP 143 232 on 1st CP, 236 on 2nd CP
4 x CPU 948, 2 x CP 143 232 on 1st CP, 236 on 2nd CP

2 Insert the CP 143 in the S5-155U (power supply to the PLC must bé&)o

3 Connect the PG to the PG interface of the CP 143 and load the COM program.

4 Set the interface number selected in step 1 in the SYSID of the CP 143 using COM 143
and set the Ethernet address.

CPU 948 Programming Guide

C79000-G8576-C848-04

11-31

PG Functions via the S5 Bus

Step Action
5 Load the parameter data on the CP 143:
The parameter data of the CP 143 can either be stored
- inan EPROM cartridge
or
- inthe RAM of the CP 143.
You can transfer the parameter data via the serial interface of the PG 7xx.
The operations necessary for loading the parameter data of the CP 143 are described in /6/.
6 Perform an overall reset on the CPU, switch the power supply to the PLC off and on
again.
7 Edit the path to the CPU 948 in the bus selection screen form of STEP 5.
8 Select the path to the CPU 948 via SINEC H1/CP 143 in the presets screen form of

STEP 5.

Alternative operation via the
serial PG interface

Notes

11-32

Once these actions have been performed, the PG functions can be used
via the S5 bus. You can now load your user program and run or test it.

PG interface while a PG function is already being processed, a
message, for example, "AS function disabled: function active" is
displayed on this PG.

If a PG function is aborted by switching the mode selector on the CPU

from RUN to STOP or by an error, wait times of greater than 15
seconds are activated for communication via SINEC H1.

If you make a mistake on the PG (e.g. switching off the PG with a PG
function still active) it is possible that the "selection” function must be

repeated when the path is re-established.

CPU 948 Programming Guide
C79000-G8576-C848-04

At any one time, the CPU 948 only processes one PG function. If you
attempt to activate further PG functions on a second PG via the serial

PG Functions via the S5 Bus

The CP 143 is used for PG

Functions

and

Communication via

If you use the CP 143 for communication via SINEC H1 as well as for
PG functions via the S5 bus, you must make further settings in
addition to those described in Section 3.1 and must take certain special

SINEC H1 features into account.
During installation follow the procedure outlined below:
Step Action
1to 8 | Steps 1 to 8 are identical to those described for the alternative "The CP 143 is used exclusively
for PG functions"
9 Program the HDB SYNCHRON (FB 125) call in the start-up OBs OB 20 and OB 22 so
that the CP 143 is synchronized for SINEC H1 communication during
MANUAL/AUTOMATIC COLD RESTART and AUTOMATIC WARM RESTART.
The HDB SYNCHRON should only be called when the interface is actually used, since|the
connection to the PG is subsequently terminated and must then be re-established manually on
the PG.
Using pages for The following diagram illustrates how the PG functions via the S5 bus

communication via handling

blocks

CPU 948 Programming Guide

C79000-G8

576-C848-04

use the pages of the CP 143. The free pages for user HDBs can be
used by CPUs 1 to 4 for communication via SINEC H1.

11-33

PG Functions via the S5 Bus

1st CP 143
CPU 1
SSNR
Page for
232 user
HDB
CPU 948
SSNR Page for
233 user
HDB
PG CPU 2
G\ SSNR Page for
234 |PG
O\ functions CPU 948
SSNR
Page for
235 PG
q functions
2nd CP 143
CPU 3
SSNR
Page for
236 user
HDB ¥
CPU 948
SSNR Page for
237 user
. HDB
End point CPU 4
of path
SSNR
238 Page for
PG
functions CPU 948
SSNR N ;
age for
239 PG
functions
1 Communication via user HDB with
CPU 3 and CPU 4 is not possible.

Fig. 11-12 Paths between the PG and CPU 948 and assignment of the CP 143 pages

Special features when
communicating via pages for
user HDBs

11-34

By synchronizing the CP 143 for communication (FB 125 called with
SSNR 232, 233 or 236, 237) the existing connections are terminated
by the CP 143

The paths must then be re-established. Waiting times then occur on
the PG (even if you press the abort key). The path selection must be
repeated on the PG.

Owing to this response, you cannot use the PG funcsiatu’s

block" via the S5 bus for thetart-up OBs if you use pages for user

HDBs for communication. You should therefore call FB 125 (HDB
SYNCHRON) only in a COLD RESTART or in a restart following

POWER UP (COLD RESTART or WARM RESTART).

CPU 948 Programming Guide
C79000-G8576-C848-04

PG Functions via the S5 Bus

11.54
Condition Codes Indicating
Problems

RS 50

Evaluating PAFE in RS 50

Significance of the PAFE
codes

CPU 948 Programming Guide
C79000-G8576-C848-04

Each of the maximum four CPUs (CPU 948), for which the PG
functions via the S5 bus are activated, writes condition codes to its RS
and RT areas if an error occurs in the PG functions via the S5 bus.

These condition codes consist of a parameter assignment error byte
(PAFE) for each possible connection and a condition code word
(ANZW) to indicate the current sequence of the transmit and receive
blocks. These codes largely correspond to those of the handling blocks.

PAFE codes set during the synchronization of the PG functions are
stored in system data word RS 50 (address E FO32H).

The PAFE byte is always in the high byte of RS 50.

CPU no. RS 50 RS 50
high byte low byte
1 PAFE -
SSNR 234
2 PAFE -
SSNR 235
3 PAFE -
SSNR 238
4 PAFE -
SSNR 239

All errors are indicated which occur in the interaction with the
CP 143. The following PAFE codes are then set:

PAFE value | Significance
OOH No error
71H Interface (page) does not exist
81H Interface not ready
91H Interface overloaded
AlH Interface being used by a different CPU
B1H Job number or field size illegal (FB SYNCHRON)
C1H Interface not responding or not in time
D1H Other interface errors, also error code for the CP

11-35

PG Functions via the S5 Bus

Meaning of the code 71H:

The code 71H means that the page does not exist. If this error occurs,
the PG functions cannot be used via the S5 bus. In this case, check the
interface assignment of the CP 143. Interface numbers 232ff or 236ff
must be set (jumpeesd SYSID!).

RT area If the pages for PG functions exist and the connection to the CP 143 is
established, an information field consisting of 16 words is set up in the
RT area of the CPU 948 with the structure shown below.

Note

As long as there is no connection to the CP 143 (PAFE = 71), e.qg.
because there is no page with SSNR 232ff or 286ffdditional
information is stored in the RT area.

Address

E F2E8H Data sent from CPU to PG for RT 232
interface 234 or 238

E F2E9H Data sent from CPU to PG for RT 233
interface 235 or 239

E F2EAH reserved RT 234

E F2EBH reserved RT 235

E F2ECH Data sent from PG to CPU for RT 236
interface 234 or 238

E F2EDH Data sent from PG to CPU for RT 237
interface 235 or 239

E F2EEH reserved RT 238

E F2EFH reserved RT 239

E F2FOH reserved PAFE 234 RT 240

E F2F1H reserved reserved RT 241

E F2F2H reserved PAFE 235 RT 242

E F2F3H reserved reserved RT 243

E F2F4H reserved PAFE 238 RT 244

E F2F5H reserved reserved RT 245

E F2F6H reserved PAFE 239 RT 246

E F2F7H reserved reserved RT 247

CPU 948 Programming Guide
11-36 C79000-G8576-C848-04

PG Functions via the S5 Bus

ANZW

CPU 948 Programming Guide
C79000-G8576-C848-04

Note

The RT area isesetduring an OVERALL RESET.

If you use the PG functions via the S5 bus, the RT area is

occupied as described above and is then no longer available fg
other programs (e.g. standard FBs). You should bear this in mind
when planning your system.

=

ANZW contains the current status of the send and receive blocks. The
individual bits of an ANZW have the following significance:

High byte
Bit no. Assignment

15
14
13
12 Not used
11
10
9
8

Low byte
7 Not used
6 Data acceptance complete
5 Data transfer complete
4 1: error
3 Job complete with error
2 Job complete without error
1 0: SEND enabled”

1: SEND disabled

0 0: RECEIVE disabled ¥

1: RECEIVE enabled

D gpecifically for PG functions via the S5 bus

11-37

PG Functions via the S5 Bus

CPU 948 Programming Guide
11-38 C79000-G8576-C848-04

Appendix 1 2

Contents of Chapter 12

Appendix 1: Jumper Settings for System Interrupts i 12.-4..
Appendix 2: Inserting and Removing the PG Submodule. 12 -5
Appendix 3: Technical Data of the CPU 948 and CPU 928B. it 12-7
Appendix 4: Results IDs of some of the Special Function OBsin ACCU1................... 12 - 10

CPU 948 Programming Guide
C79000-G8576-C848-04 12-1

Contents

12 -2

CPU 948 Programming Guide
C79000-G8576-C848-04

Appendix 1 2

This chapter provides additional information about the CPU 948 such
as jumper settings for system interrupts, notes on inserting and
removing the PG submodule, comparisons of runtimes with

CPU 946/947 and CPU 928B, and results IDs of some of the special
function OBs .

CPU 948 Programming Guide
C79000-G8576-C848-04 12-3

Appendix 1: Jumper Settings for System Interrupts

Appendix 1: Jumper Settings for System Interrupts

12-4

For interrupt-controlled program execution with the CPU 948, there
are four system interrupts available, as follows:

- INT A/B/C/D (dependent on the CPU slot, see System Manual /2/,
- INTE,
- INTF
and
- INTG.

The interrupts you want to use must be enabled using jumpers. The
jumpers are located on the basic board above the receptacle for the
memory card. The exact position can be seen in the following diagram:

INTG

INTF

INTE
INTA/B/C/ID

S5155U Py g4

@HUN
sTop
Orun
OsTop
OSYS FAULT
Resey TN

URLOSCHEN
 OvERaLl
RESET

A

Sl |

Fig. 12-1 Location of the jumper

CPU 948 Programming Guide
C79000-G8576-C848-04

Appendix 2: Inserting and Removing the PG Submodule

Appendix 2: Inserting and Removing the PG Submodule

If you want to use a PG submodule, this must first be added to the
CPU (before the CPU is installed in the central controller).

Caution

Switch off the power supply to the programmable controller
before you remove the CPU.

Inserting the submodule
Note

The jumpers on the PG submodule are already correctly set when
supplied. If, following installation you encounter difficulties,
compare the jumper setting with the settings shown in the System
Manual /2/.

Insert your PG submodule as follows:

Step

Action

1

Switch off the power supply to your PLC.

2

Remove the CPU from the central controller.

3

Undo the two screws securing the cover of the submo
receptacle on the CPU and remove the cover.

dule

Insert the PG submodule through the front panel into t

connector (components in the same direction as those of

the CPU).

Secure the submodule with the two screws previously
used for the cover.

Insert the CPU in the central controller.

Switch on the power supply to your PLC again.

CPU 948 Programming Guide
C79000-G8576-C848-04

12 -5

Appendix 2: Inserting and Removing the PG Submodule

Removing the submodule

12-6

You remove the PG submodule as follows:

Step

Action

Switch off the power supply to your PLC.

Remove the CPU from the central controller.

Undo the two screws securing the submodule and remove

the submodule from the receptacle.

Insert a further submodule (as described above) or close

the submodule receptacle with the cover. Use the same
screws used to secure the submodule.

Insert the CPU in the central controller.

Switch the power supply to your PLC on again.

Note

Screwing the interface submodule to the CPU diverts disturbance
pulses via the screen of the CPU. The CPU must only be operated
with the submodule receptacle closed (cover or submodule).

CPU 948 Programming Guide
C79000-G8576-C848-04

Appendix 3: Technical Data of the CPU 948 and CPU 928B

Appendix 3: Technical Data of the CPU 948 and CPU 928B

the number of 1/0 bytes (n)
where 0 < €128

Operation / Processing CPU 948 CPU 928B
Typical command execution times for bit commands:
with
F1L,Q 0.18 us 0.57 us
D 0.7 ps 3.4 ps
Formal operand 0.91 us 2.4 us
Typical command execution times for word commands:
- Load operations
L FY (byte) 0.18 ps 0.81 ps
L FW (word) 0.5 us 0.9 ps
L FD (double word) 0.71 us 1.6 pys
- Fixed point arithmetic 0.55 ... 3.8pus 0.9...10.4ps
- Floating point arithmetic 3.3...6.3ps 9.1... 15.6ps
Cyclic program execution (single processor mode)
Basic overhead calling OB 1/FB 0: 65/— us 104/106us
Extra time for process image updating depending on n < 64: I: 14 pus +n * 1.1us

64 us+n*2.3us

n> 64:
92 uys+n*2.3pus

Q:5us +n*4.1us

Extra time for IPC flag transfer depending on the
number of IPC flags (n)
where 0 < = 256

n <64:
64 uys+n*2.1ps

n> 64:
92 us+n*2.1ps

[: 14ps +n* 1.4us

Q:5us +n*4.3us

Extra time for timer processing depending on the

n = number of timers running
(steps: 10 ms)

timer block length every 10 ms every 10 ms
Timer block length (TBL) =0 11.6 us 10 ps
timer block length #0 11.6us + TBL*0.32us 16pus +TBL*0.2us

(no difference between
running and stopped

timers)
Interrupt driven program execution
Cycle time extension from nesting an empty OB 2
(without STEP 5 operations) at a block boundary 262 us 300 ps
Reaction time 175 ps 270 s

CPU 948 Programming Guide
C79000-G8576-C848-04

12 -7

Appendix 3: Technical Data of the CPU 948 and

CPU 928B

Operation / Processing

CPU 948

CPU 928B

Time-driven program execution

Spec. in steps of
10 ms:

10, 20, 50, 100
200, 500 ms,
1,2,5s

or
10, 20, 40, 80, 160,
320, 640 ms,
1.28,2.56s

Cycle time extension from nesting an empty OB [13 310 s for the 1st timed
(without STEP 5 operations) at a block boundary 287 us int. OB
170ps for each furthel
timed int. OB due at th
same time
Clock rate for time-driven program Variable 10, 20, 50, 100,
(timed interrupts OB 10 to OB 18) basic clock rate 200, 500 ms,
from 1 to 255 ms. 1,2,5sec

Resolution for clock-driven timed interrupts

every minute,

every minute,

+ 32768 S flags

(0B 9) hourly, hourly,
daily, daily,
weekly, weekly,
monthly, monthly,
yearly, yearly,
once once
Resolution for delayed interrupt (OB 6) 1ms 1ms
Cycle time monitoring
Default 200 ms 150 ms
selectable between 1 to 2550 ms 1 to 13000 ms
triggerable yes yes
Memory sizes
Size of the user memory module
(in Kbytes) 640 or 64
1664
Size of memory for data blocks (DB-RAM, in - approx. 46.6
Kbytes)
Timers, counters and flags
Number of timers and counters 256 of each 256 of each
Number of flags 2048 flags 2048 flags

+ 8192 S flags

12-8

CPU 948 Programming Guide
C79000-G8576-C848-04

11

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

Byte IDs in
ACCU-1-LL

CPU 948 Programming Guide
C79000-G8576-C848-04

Some of the byte IDs are used by several special function OBs. Their
significance therefore depends on the OB called.

SF-OB | ACCU-1-LL Meaning
OB 124 01H Function processed correctly
Errors:
45H Block type not permitted
47H Block does not exist
4DH Online function COMPRESS MEMORY
ACTIVE
Warning
8DH Conflict with an online function
(except "compress memory")
8EH 10-ms waiting time not yet elapsed
OB 125 01H Function processed correctly
Errors:
42H Block already exists
43H Not enough memory
44H Block length not permitted
45H Block type not permitted
4DH Online function COMPRESS MEMORY|
active
Warnings:
8DH Conflict with an online function (except
"compress memory")
8EH 10-ms waiting time not yet elapsed
OB 126 01H Function processed correctly
Errors:
02H Function no. illegal
03H Pointer in ACCU-1-L (flag no.) illegal
04H Block type/number illegal or
block DB/DX does not exist
O5H The 1st ID word is not in the specified
data word of the data block (wrong DW
no.) or
the address list contains an incorrect 1D
word
06H Address list no. illegal
07H The function cannot be called at the
current program execution level
OB 223 01H Start-up modes same
02H Internal system error
O3H Start-up modes not same
04H Single processor mode, no comparison

start-up modes possible

12-9

of

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

12 -10

SF-OB | ACCU-1-LL Meaning
OB 254/ 01H Function processed correctly
255 Errors:

41H Block header on memory card
invalid

43H Not enough memory

48H Source data block does not exist

4AH Block number or type
illegal/source DB

4BH Block number or type
illegal/destination DB

4CH Destination data block already exists in
user memory

4DH Online function COMPRESS MEMORY|
active

4EH No memory card inserted
Warnings:

8DH Conflict with an online function
(except COMPRESS MEMORY)

8EH 10-ms waiting time not yet elapsed

CPU 948 Programming Guide
C79000-G8576-C848-04

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

Word IDs in
ACCU-1-L

CPU 948 Programming Guide
C79000-G8576-C848-04

Word results IDs are only used once (with one exception). The
following table is therefore sorted according to ID values.

IDin ID from Meaning
ACCU-1-L | SF OB:

8DO1H OB 141 | lllegal function no. in
ACCU-2-L Y

8D02H One of the reserved bits in ACCU 1
is "1 Y

8EO1H OB 142 | lllegal function no. in
ACCU-2-L Y

8EO2H One of the reserved bits (no. 4 to 15) in
ACCU1is ‘1’ Y

8EFFH Wrong mode (e.g. when the delayed
interrupt is to be disabled and DX 0
contains the parameter "process interry
via IBO = on"

8FO1H OB 143 | lllegal function no. in
ACCU-2-L Y

8FO02H One of the reserved bits in ACCU 1
is "1 Y

9601H OB 150 | Data block not loaded

960FH Block called more than once

9611H lllegal function no.

9612H Address area type illegal

9613H Data block no. illegal

9614H "Number of first data field word"
ilegal

9615H Data block length < 4 words

9621H Year specified in data field illegal

9622H Month specified in data field illegal

9623H Day of month specified in data field
ilegal

9624H Day of week specified in data field
ilegal

9625H Hours specified in data field illegal

9626H Minutes specified in data field illegal

9627H Seconds specified in data field illegal

9628H 1/100 seconds in data field not O

9629H Hour format not as in OB 151

1

the incorrect value is in ACCU-2-L

12-11

pts

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

12-12

IDin ID from Meaning
ACCU-1-L | SF OB:

9701H OB 151 | Data block not loaded

970FH Block called more than once

9710H Wrong mode ("process interrupts via
IB0=o0n")

9711H lllegal function no.

9712H Address area type illegal

9713H Data block no. illegal

9714H "Number of first data field word"
ilegal

9715H Data block length < 4 words

9721H Year specified in data field illegal

9722H Month specified in data field illegal

9723H Day of month specified in data field
ilegal

9724H Day of week specified in data field
ilegal

9725H Hours specified in data field illegal

9726H Minutes specified in data field illegal

9727H Seconds specified in data field illegal

9728H 1/100 seconds in data field not O

9729H Hour format not as in
OB 121/0B 150

972AH Job type illegal

990FH OB 153 | Block called more than once

9910H Wrong mode ("process interrupts via
IB0=o0n")

9911H lllegal function no.

9921H Delay time illegal

B401H OB 180 | No data block is open

B410H The shift number S is not a multiple of 1

B411H a) The shift number is too high; the bloc
end is exceeded by the new window
position.
b) The shift number is negative.

B501H OB 181 | Block does not exist

B502H Wrong block number

B503H Wrong block ID

CPU 948 Programming Guide
C79000-G8576-C848-04

16

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

CPU 948 Programming Guide
C79000-G8576-C848-04

IDin ID from Meaning
ACCU-1-L | SFOB:

B601H OB 182 | Data block not loaded

B60FH Block called more than once

B611H Content of data field incorrect

B612H Address area type illegal

B613H Data block no. illegal

B621H "Number of first data field word"
ilegal

B622H "Source data block type" illegal

B623H "Source data block no." illegal

B624H "No. of first data word to be transferred
in source DB" illegal

B625H Length of source data block in
block header < 5 words

B626H "Destination data block type" illegal

B627H "Destination data block no." illegal

B628H "No. of first data word to be written in
destination DB" illegal

B629H OB 182 |Length of destination data block in bloc

(cont.) |header<5 words

B62AH "Number of data words to be transferre
illegal (= 0 or > 4091)

B62BH Source data block too short

B62CH Destination data block too short

FOO1H OB 121 | lllegal function no.

FOOFH Block called more than once

F101H Year illegal

F102H Month illegal

F103H Day illegal

F104H Day of week illegal

F105H Hours illegal

F106H Minutes illegal

F107H Seconds illegal

F108H 1/100 to1/10 seconds illegal

F109H Hour format not as in OB 151

FOO1H OB 122 | lllegal function no.

12 -13

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

CPU 948 Programming Guide
12-14 C79000-G8576-C848-04

Indexes 1 3

Contents of Chapter 13

List of Abbreviations A-1..

List of Key WOrdS.t - Index

CPU 948 Programming Guide
C79000-G8576-C848-04 13-1

Contents

13-2

CPU 948 Programming Guide
C79000-G8576-C848-04

List of Abbreviations

List of Abbreviations

Abbreviations

(An explanation of the ISTACK abbreviations can be found in Section 5.4)

ACCU-1 (2, 3, 4)-L low word in accumulator 1 (2, 3, 4), 16 bit
ACCU-1 (2, 3, 4)-H high word in accumulator 1 (2, 3, 4), 16 bit
ACCU-1 (2,3, 4)-LL low byte of low word in accumulator 1 (2, 3, 4), 8 bit
ACCU-1 (2, 3, 4)-LH high byte of low word in accumulator 1 (2, 3, 4), 8 bit
ADF addressing error

ANZW condition code word

BASP disable command output (signal on S5 bus)
BCD binary coded decimal

BR base address register

BSTACK block stack

CcC1i,Ccco condition code bits for digital operations
COR coordinator module

CP communications processor

CPU central processing unit

CSF control system flowchart

DB data block

DBA data block start address (in register 6)

DBL data block length (in register 8)

DX extended data block

EPROM erasable programmable read only memory
ERAB first scan (bit code)

EU expansion unit

FB function block

FX extended function block

IM interface module

INT (system)interrupt

IP intelligent peripheral module

ISTACK interrupt stack

CPU 948 Programming Guide
C79000-G8576-C848-04 A-1

List of Abbreviations

KB
KDB

LAD
LED

NAU

OB
OR
(0N
ov

PAFE
PARE
PB
PEU
PG

P

PII
PIQ
PLC

QVZ

RAM
RLO

SAC
SB
SPU
STA
STL
STS
SUF
STUEB
STUEU

TRAF

ZYK

call for a non-existent logic block
opening a hon-existent DB/DX-data block

ladder diagram
light-emitting diode

power failure

organization block

or (bit code)

overflow latching (word code)
overflow (word code)

parameter assignment error byte
parity error

program block

power failure on expansion unit
programmer

process image

process image of the inputs
process image of the outputs
programmable controller

timeout

random-access memory
result of logic operation

step address counter
sequence block

operating system processor
status (bit code)

statement list

stop statement

substitution error

BSTACK overflow

ISTACK overflow

transfer or load error

cycle error

CPU 948 Programming Guide
C79000-G8576-C848-04

List of Key Words

List of Key Words

A

access to DW 255
ACCU writing conventions
accumulators
actual operands

of function blocks
ADF (addressing error)
arithmetic operations
assignment list

B

basic operations
BASP signal
binary logic operations
binary numbers
block
block preheader
body

header
number
preheader
block address list
block calls
block ID
block operations
blocks
deleting
generating
BR register
BSTACK (block stack)
evaluating
output

C

CClandCCO
seeresults codes

checkpoints
clock-controlled interrupt
clock-controlled interrupts

CPU 948 Programming Guide
C79000-G8576-C848-04

9-15
6-5
6-26

2-29
5-26
3-57
2-24

2-4, 3-19
4-26, 4-29
3-50
2-8

2-35

2-13, 2-24, 2-36
formal operands (block parameters) 2-27

2-13, 2-36

2-12, 2-36, 3-33

2-14

3-8, 8-13

2-16, 3-8, 3-32
2-36

3-32

6-14
6-17
9-22
5-5
5-7
5-6

11-5
4-33, 4-35, 6-43
4-29

COLD RESTART 4-21
collision of timed interrupts 4-39
communication OBs 10-22
condition code byte 10-25
parameters 10-23
runtimes 10-31
communication processors (CPs) 10-7
comparison operations 3-32
control bits 5-5, 5-9
correcting blocks 2-15
counter value 3-28
counters C 1-13
CPU type and ID 8-44
CSF (control system flowchart) 2-4
CYCLE 3-11, 4-30
interrupt points 4-31
program execution level 4-29
user interface OB 1 4-31
cycle monitoring time 6-63
cycle time
used 8-41
cyclic communication 4-9
cyclic processing 1-5
cyclic program execution 1-16, 4-30
cyclic timed interrupt 4-33
cyclic timed interrupts 4-29, 4-37
D
data area 6-59
data block DB 0 2-41, 3-8, 8-13
data block DB 1 2-41
data block DB 2 2-41
data block DX 0 2-41,7-4
parameters 7-8
structure 7-5
data block DX 1 2-41
data blocks
general 1-13
data blocks (DB/DX)
copying from memory card 6-65
copying/duplicating 6-65
general 2-13, 2-35
generating 3-33
programming 2-37
structure 2-35
Index - 1

List of Key Words

testing 6-57

validity 2-38
data word 1-13, 2-35, 2-39
date 6-38
DBA (data block start address) 9-11
DBL (data block length) 9-13
decimal numbers 2-8
decrementing 3-66
defaults, modifying 1-8
delay interrupts 6-32, 6-35
delayed interrupt 4-29, 4-33 - 4-34, 6-50
digital logic operations 3-50
disable interrupts 6-12, 6-29
dual-port RAM 9-29
E
ERAB

see results codes
error analysis 5-8
error in self-test 5-33
error information 5-5
errors

avoiding 5-4

cause 5-23

handling 5-20
F
F flags 1-12, 10-23
FEDBX (error in G DB/GX DX) 5-32
fixed point numbers 2-9
flags

multiple use 4-46
floating point numbers 2-8
formal operands 2-25, 3-52
function blocks (FB/FX)

general 2-13, 2-23

programming 2-25

standard function blocks 2-23,2-33

structure 2-24
G
global memory

access 9-25

general 9-4
GRAPH 5 2-5

Index - 2

H

hot restart

I/Os
modules
O area
P area
incrementing
interface to system program

4-27

1-11
1-11
1-11
3-66

1-8, 1-10, 2-18

interprocessor communication flags

data exchange via IPCs

general
jumper settings
interrupt-driven processing

interrupt-driven program execution

interrupts
jumper settings
interrupts
general
ISTACK
ISTACK (interrupt stack)
code bits
contents
error information
information in ISTACK
output

J

jump operations

L

LAD (ladder diagram)
LED display
library number
load operations
local memory
access
general
logic operations

10-5
3-13,10-5
10-5
1-6
4-32, 4-41

12-4

4-43
4-5

5-15
5-14
5-5
5-15
5-6, 5-9

3-59

2-4
4-12 - 4-13
2-36

3-21, 3-55

9-24
9-4
3-50

CPU 948 Programming Guide
C79000-G8576-C848-04

List of Key Words

M
mantissa
seefloating point number
memory access 9-6
via the BR register 9-22
via address in ACCU 1 9-8
memory card 3-10
memory organization 9-4
mode of operation of CPU 1-5
multiprocessor communication 6-62
application examples 10-53
assignment list 10-37
buffering data 10-17
data amount 10-15
initializing 10-33
modes 10-35
receive data 10-47
send data 10-40
sequence 10-15
test mode 10-14
multiprocessor mode
data exchange between CPUs
and CPs 10-7
data exchange with HDBs 10-8
programming 10-9
N
NAU (power failure) 4-19, 4-28
nesting depth 3-9
nesting program execution levels 4-6
no operation 3-33
o
O area seel/Os
operand areas 1-11
OR seeresults codes
organization block (OB)
general 2-12, 2-16

organization blocks
for communication in SOFT STOP 2-20
organization blocks (OB)

as user interfaces 2-18
for processing errors 2-20
special function organization blocks 6-4

OS (overflow latching)
see results codes
OV (overflow) seeresults codes

OVERALL RESET 4-14

CPU 948 Programming Guide
C79000-G8576-C848-04

P
P area

seel/Os
page area/DPR

occupied register 9-30
pages

accessing 9-29
parameters for DX 0 1-8
PARE (parity error) 5-28
PG functions 11-4
PG functions via S5 bus 11-27
PG interface module 11-17
PG screen form

for DX O parameter assignment 7-14

for generating DB1 10-10
PG software 1-18
PG submodule

installing 12-5

removing 12-6
PLC identification field 8-42
priority 1-6, 4-5, 4-7, 4-33, 4-42, 7-10

process image

outputs (PIQ) 1-5

defining/transferring 6-20

inputs (PII) 1-5

general 1-11

inputs (PII) 1-11

outputs (PIQ) 1-11

updating 4-29
PROCESS INTERRUPT 4-29
process interrupts

disable 3-72

enable 3-72, 4-45
process interrupts via input byte IB 0

general 4-41

user interfaces 4-41
programstoring 3-10
program blocks (PB) 2-12,2-16
program execution level

general 4-6, 6-32
program execution levels 4-4
programming

general 1-15
programming language

C with S5-C compiler 1-18

GRAPH 5 1-18

SCL 1-18

STEP 5 1-18
programming language SCL 1-18
programming tools 1-18

Index - 3

List of Key Words

Q
QVZ (timeout error) 5-25
R
reaction time 4-46
reactions with error OBs not loaded 5-21
real-time clock 8-32
results codes
ERAB 3-16, 3-20
CClandCCO 3-18, 3-61
OR 3-17
oS 3-17
ov 3-17
RLO 2-7,3-17, 3-20
STA 3-17, 3-20
RI/RJ area 8-14
RLO
see results codes
RS/RT area 8-15
assignment of RS area 8-16
RUN
general 4-29
S
S flags 1-12
S-6 (communication error) 5-32
scratchpad flags 10-53
self-test 5-34
activating/deactivating tests 5-37
control bits 8-40
error handling 5-38
error information 5-39
sequence blocks (SB) 2-12
serial link PG - PLC 11-16
set/reset operation 3-20
shift operations 3-61
software protection 8-35
special functions
calling 6-5
errors in processing 6-6
general 6-4
interfaces to special functions 6-5
STA (status)
see results codes
standard function blocks
see alsdunction blocks
START-UP 3-11
general 3-11, 4-16

Index - 4

interruptions 4-28

triggering 4-17,4-19
start-up types

comparing 6-64
starting up 10-13
STEP 5 operations 3-15
STL (statement list) 2-4
STOP

mode 4-9
stop operations 3-33
structure of the memory area 8-4 -8-5
structured programming 2-5
sub-level 4-7
SUF (substitution error) 5-28
suitability of the CPU 948 1-4
supplementary operations 2-4
system data 8-15
system data words

bit assignment 8-18
system interrupt

see interrupt 12-4
system interrupts 7-9
system operations 2-4,3-59, 9-4
system program 1-7
system program defaults 1-8
system RAM 8-6
system time 6-8, 6-38
T
testing address lines 5-36
testing the block code 5-36
testing the hardware clock 5-35
testing the system program code 5-36
testing the user memory 5-35
time slice 5-34

calculating 5-37

setting the number 5-37
time-controlled processing 1-6
time-controlled program execution 4-33
timed interrupts 4-29, 7-8
timed job 4-35, 6-43
timer and counter operations 3-26, 3-53
timers T 1-13
TRAF (load and transfer error) 5-29
transfer operations 3-21, 3-55
transferring memory fields 9-19
U
user interfaces

for clock-controlled interrupt 4-35

CPU 948 Programming Guide
C79000-G8576-C848-04

List of Key Words

for cyclic program execution
for delayed interrupt
for interrupts
for process interrupts
for start-up
for timed interrupts
user memory
user program
processing
see program
storing
tasks

w

WARM RESTART
WEFES/WEFEH

(collision of timed interrupts)

z

ZYK (cycle time error)

CPU 948 Programming Guide
C79000-G8576-C848-04

4-31
4-34
4-44
4-41

4-24
4-38
1-14, 3-10
1-7,1-9
3-4,3-11

1-10
1-9

4-21

5-30

5-27

Index - 5

List of Key Words

CPU 948 Programming Guide
Index - 6 C79000-G8576-C848-04

T

Siemens AG
A&D AS E 81

Ostliche Rheinbriickenss0
D-76181 Karlsruhe
Federal Republic of Germany

From:

Your Name _

Your Title:

Company Name:
Street:

Country:
Phone:

Please check any industry that applies to you:

(J Automotive O Pharmaceutical

O Chemical O Plastic

(J Electrical Machinery O Pulp and Paper

O Food (O Textiles

3 Instrument and Control (J Transportation

(3 Nonelectrical Machinery J othe
a

Petrochemical

CPU 948 Programming Guide
C79000-G8576-C848-04 1

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

Do the contents meet your requirements?

Is the information you need easy to find?

Is the text easy to understand?

Does the level of technical detail meet your requirements?

RN

a kc wn

Please rate the quality of the graphics/tables:

Additional comments:

CPU 948 Programming Guide
2 C79000-G8576-C848-04

	Titel
	Contents
	1 Introduction
	1.1 Area of Application for the S5-155U with the CPU 948
	1.2 Typical Mode of Operation of a CPU
	1.3 The Programs in a CPU
	1.4 Which Operands are available to the User Program?
	1.5 How much Memory is available for the User Program?
	1.6 How to Tackle Programming
	1.7 Programming Tools
	1.8 Converting User Programs of the CPU 928B for the CPU 948

	2 User Program
	2.1 STEP 5 Programming Language
	2.2 Program, Organization and Sequence Blocks
	2.3 Function Blocks
	2.4 Data Blocks

	3 Program Execution
	3.1 Principle of Program Execution
	3.2 Program Organization
	3.3 Storing Program and Data Blocks
	3.4 Processing the User Program
	3.5 STEP 5 Operations with Examples

	4 Operating Statuses and Program Execution Levels
	4.1 Program Execution Levels
	4.2 STOP Mode
	4.3 START-UP Mode
	4.4 RUN Mode

	5 Interrupt and Error Diagnostics
	5.1 Frequent Errors in the User Program
	5.2 Error Information
	5.3 Procedure for Error Analysis
	5.4 Control Bits and Interrupt Stack
	5.5 Error Handling Using Organization Blocks
	5.6 Causes of Error and Reactions of the CPU
	5.7 Self-Test

	6 Integrated Special Functions
	6.1 Introduction
	6.2 OB 121: Set/Read System Time
	6.3 OB 122: "Disable Interrupts" On/Off
	6.4 OB 124: Delete STEP 5 Blocks
	6.5 OB 125: Generate STEP 5 Blocks
	6.6 OB 126: Define, Transfer Process Images
	6.7 OB 129: Battery State
	6.8 OB 131: Delete ACCUs 1, 2, 3 and 4
	6.9 OB 132/133: Roll-Up ACCU/Roll-Down ACCU
	6.10 OB 141: "Disable Single Cyclic Timed Interrupts" On/Off
	6.11 OB 142: "Delay All Interrupts" On/Off
	6.12 OB 143: "Delay Single Cyclic Timed Interrupts" On/Off
	6.13 OB 150: Set/Read System Time
	6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt
	6.15 OB 153: Set/Read Time for Delayed Interrupt
	6.16 OB 180: Variable Data Block Access
	6.17 OB 181: Test Data Blocks (DB/DX)
	6.18 OB 182: Copy Data Area
	6.19 OB 202 to 205: Multiprocessor Communication
	6.20 OB 222: Restart Cycle Monitoring Time
	6.21 OB 223: Compare Start-Up Modes
	6.22 OB 254/255: Copy/Duplicate Data Blocks

	7 Extended Data Block DX 0
	7.1 Application
	7.2 Structure of DX 0
	7.3 Parameters for DX 0
	7.4 Examples of Parameter Assignment

	8 Memory Assignment and Memory Organization
	8.1 Structure of the Memory Area
	8.2 Memory Assignment in the CPU 948
	8.3 User Memory Organization in the CPU 948

	9 Memory Access Using Absolute Addresses
	9.1 Introduction
	9.2 Memory Access via Address in ACCU 1
	9.3 Transferring Memory Blocks
	9.4 Operations with the Base Address Register (BR Register)

	10 Multiprocessor Mode and Communication in the S5-155U
	10.1 Multiprocessor Mode
	10.2 Multiprocessor Communication
	10.3 Runtimes of the Communication OBs
	10.4 INITIALIZE Function (OB 200)
	10.5 SEND Function (OB 202)
	10.6 SEND TEST Function (OB 203)
	10.7 RECEIVE Function (OB 204)
	10.8 RECEIVE TEST Function (OB 205)
	10.9 Applications

	11 PG Interfaces and Functions
	11.1 Overview
	11.2 PG Functions
	11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface
	11.4 Parallel Operation of Two Serial PG Interfaces
	11.5 PG Functions via the S5 Bus

	12 Appendix
	Appendix 1: Jumper Settings for System Interrupts
	Appendix 2: Inserting and Removing the PG Submodule
	Appendix 3: Technical Data of the CPU 948 and CPU 928B
	Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

	13 Indexes
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Z

	Remarks Form

